JP2001038190A - Hydrothermal reaction method and device - Google Patents

Hydrothermal reaction method and device

Info

Publication number
JP2001038190A
JP2001038190A JP11220831A JP22083199A JP2001038190A JP 2001038190 A JP2001038190 A JP 2001038190A JP 11220831 A JP11220831 A JP 11220831A JP 22083199 A JP22083199 A JP 22083199A JP 2001038190 A JP2001038190 A JP 2001038190A
Authority
JP
Japan
Prior art keywords
reactant
gas
oxidizing agent
pump
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11220831A
Other languages
Japanese (ja)
Inventor
Masaaki Wakita
正明 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Kurita Water Industries Ltd
Original Assignee
Komatsu Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Kurita Water Industries Ltd filed Critical Komatsu Ltd
Priority to JP11220831A priority Critical patent/JP2001038190A/en
Publication of JP2001038190A publication Critical patent/JP2001038190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct an efficient hydrothermal reaction by easily removing a gas without discharging the gas to the outside when the gas is generated in a material to be reacted, and the supply of a liq. by a pump is disturbed. SOLUTION: A material to be reacted and an oxidizing agent are passed respectively through supply lines 2 and 12 from storage tanks 1 and 11, supplied by pumps 3 and 13, preheated by preheaters 7 and 17 and supplied to a reactor 8 to conduct a hydrothermal reaction in a supercritical or subcritical state. When a gas is generated in the lines 2 and 12 to disturb the liq. supply by the pumps 3 and 13, three-way valves 4 and 14 are switched to discharge the gas into the tanks 1 and 11 from discharge lines 5 and 15, and then the three- way valves 4 and 14 are switched to resume the liq. supply.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物分解、エネ
ルギー生成または化学物質製造を行うための水熱反応方
法および装置、特に水の超臨界または亜臨界状態下で水
熱反応を行うのに好適な水熱反応方法および装置に関す
るものである。
The present invention relates to a method and an apparatus for hydrothermal reaction for decomposing waste, producing energy or producing chemical substances, and more particularly to performing a hydrothermal reaction under supercritical or subcritical conditions of water. The present invention relates to a suitable hydrothermal reaction method and apparatus.

【0002】水の超臨界または亜臨界状態で、被反応物
を酸化反応や加水分解反応させて廃棄物を分解したり、
エネルギーを生成したり、化学物質を製造したりする水
熱処理は30年以上に亘って研究され、利用されてきて
いる。特に近年、水の超臨界または亜臨界状態で有機物
を含む被反応物と、酸化剤を反応させることにより酸化
反応を生じさせ、被反応物中の有機物を短時間で、ほぼ
完全に分解する水熱処理が注目されている。
[0002] In a supercritical or subcritical state of water, a reactant is oxidized or hydrolyzed to decompose waste,
Hydrothermal treatments that produce energy and produce chemicals have been studied and used for over 30 years. In particular, in recent years, water that causes an oxidation reaction by reacting an oxidizing agent with a reactant containing organic matter in a supercritical or subcritical state of water, and almost completely decomposes the organic matter in the reactant in a short time. Heat treatment has attracted attention.

【0003】このように水熱処理して被反応物中の有機
物を酸化分解する場合、被反応物、酸化剤、水を加圧、
加熱し反応容器へ供給し、反応させる。この場合、被反
応物に、予め適性量の水を含む場合は、水を供給する必
要はない。反応の結果、有機物は酸化分解され、水と二
酸化炭素からなる高温高圧の流体と、乾燥またはスラリ
ー状態の灰分や塩類等の固体を含む反応生成物が得られ
る。反応生成物のうち固体は後段の減圧弁やエネルギー
回収設備等の障害になるため固体分離装置によって分離
される。固体を分離した流体はエネルギー回収される
か、冷却、減圧され、ガス分と液分とに分離される。
[0003] When the hydrothermal treatment is performed to oxidatively decompose the organic matter in the reactant, the reactant, the oxidizing agent, and water are pressurized.
The mixture is heated, supplied to the reaction vessel, and reacted. In this case, when the reactant contains an appropriate amount of water in advance, it is not necessary to supply water. As a result of the reaction, the organic matter is oxidatively decomposed to obtain a reaction product containing a high-temperature and high-pressure fluid composed of water and carbon dioxide and a solid such as ash and salts in a dry or slurry state. Among the reaction products, solids are separated by a solid separation device because they become obstacles for a pressure reducing valve, an energy recovery facility, and the like at the subsequent stage. The fluid from which the solids have been separated is recovered for energy, or cooled and decompressed, and separated into gas and liquid components.

【0004】このような水熱反応のプロセスにおいて
は、分解対象の有機廃液や酸化剤として過酸化水素水等
の溶液を送るために、高圧ポンプが使用される。この場
合、溶液内で、過酸化水素の自己分解や有機廃液中の有
機物の醗酵などで、酸素等の気体が生成することがあ
る。これらの溶液を送液する高圧ポンプが、これら気体
を内部に含んでしまうと、高圧の反応装置へ送液できな
くなることがある。
[0004] In such a hydrothermal reaction process, a high-pressure pump is used to send an organic waste liquid to be decomposed or a solution such as aqueous hydrogen peroxide as an oxidizing agent. In this case, a gas such as oxygen may be generated in the solution due to the self-decomposition of hydrogen peroxide or the fermentation of organic substances in the organic waste liquid. If the high-pressure pump for sending these solutions contains these gases inside, it may not be possible to send them to the high-pressure reactor.

【0005】このような場合、水熱反応は進行しなくな
るので、処理が中断するが、高温高圧状態の装置を停止
するためには、装置の温度が常温付近にまで下がるのを
待たなければならず、処理の効率が悪い。またこれらの
供給路から気体を抜き出すことは、これらの供給路が高
温高圧の反応器に接続していること、ならびに被処理物
および酸化剤は有害または危険物質を含む場合があるこ
とから困難である。
In such a case, the hydrothermal reaction does not proceed, so that the processing is interrupted. However, in order to stop the apparatus in the high-temperature and high-pressure state, it is necessary to wait until the temperature of the apparatus has dropped to near normal temperature. And processing efficiency is poor. Also, it is difficult to extract gas from these supply paths because these supply paths are connected to a high-temperature and high-pressure reactor, and the material to be treated and the oxidizing agent may contain harmful or dangerous substances. is there.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、被反
応物中に気体が発生してポンプによる送液が困難になっ
たときに、反応を停止することなく、また気体を環境に
排出することなく、容易に気体を除去して、効率よく反
応を行うことができる水熱反応方法および装置を提供す
ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for discharging a gas to the environment without stopping a reaction when a gas is generated in a reactant and it becomes difficult to feed a solution by a pump. It is an object of the present invention to provide a hydrothermal reaction method and apparatus capable of efficiently performing a reaction by easily removing a gas without performing the reaction.

【0007】[0007]

【課題を解決するための手段】本発明は次の水熱反応方
法および装置である。 (1) 被反応物貯槽から被反応物を被反応物ポンプで
反応器に供給する被反応物供給工程と、反応器において
水の超臨界または亜臨界状態で水熱反応を行う反応工程
とを含み、被反応物供給工程において、被反応物中に気
体が含まれるときに、被反応物ポンプの吐出側から被処
理物貯槽に切り換えて気体を排出し、気体排出後に被処
理物の供給を再開するようにした水熱反応方法。 (2) 酸化剤貯槽から酸化剤を酸化剤ポンプで反応器
に供給する酸化剤供給工程を含み、酸化剤供給工程にお
いて酸化剤中に気体が含まれるときに、酸化剤ポンプの
吐出側から酸化剤貯槽に流路を切り換えて気体を排出
し、気体の排出後酸化剤の供給を再開する上記(1)記
載の方法。 (3) 水の超臨界または亜臨界状態で水熱反応を行う
反応器と、被反応物を貯留する被反応物貯槽と、被反応
物貯槽から反応器に被反応物を供給する被酸化物ポンプ
を含む被反応物供給路と、被酸化物ポンプの吐出側から
気体を被反応物貯槽に排出する気体排出路と、被反応物
供給路において被反応物に気体が含まれている場合に、
被酸化物ポンプの吐出側の流路を被反応物供給路から気
体排出路に切り換える切換手段とを含む水熱反応装置。 (4) 酸化剤を貯留する酸化剤貯槽と、酸化剤貯槽か
ら反応器に酸化剤を供給する酸化剤ポンプを含む酸化剤
供給路と、酸化剤ポンプの吐出側から気体を酸化剤貯槽
に排出する気体排出路と、酸化剤供給路において酸化剤
に気体が含まれている場合に、酸化剤ポンプの吐出側の
流路を酸化剤供給路から気体排出路に切り換える切換手
段とを含む上記(3)記載の装置。
The present invention is the following hydrothermal reaction method and apparatus. (1) A reactant supplying step of supplying a reactant from a reactant storage tank to a reactor by a reactant pump, and a reaction step of performing a hydrothermal reaction in a supercritical or subcritical state of water in the reactor. In the reactant supply step, when gas is contained in the reactant, the gas is discharged by switching from the discharge side of the reactant pump to the treatment tank, and the supply of the substance is performed after the gas is discharged. Hydrothermal reaction method to be restarted. (2) An oxidizing agent supply step of supplying the oxidizing agent from the oxidizing agent storage tank to the reactor by an oxidizing agent pump. The method according to (1), wherein the gas is discharged by switching the flow path to the agent storage tank, and the supply of the oxidant is restarted after the gas is discharged. (3) A reactor that performs a hydrothermal reaction in a supercritical or subcritical state of water, a reactant storage tank that stores the reactant, and an oxide that supplies the reactant from the reactant storage tank to the reactor A reactant supply passage including a pump, a gas discharge passage for discharging gas from a discharge side of the oxide pump to the reactant storage tank, and a reactant supply passage in which gas is contained in the reactant supply passage. ,
Switching means for switching a flow path on the discharge side of the oxidized pump from a reactant supply path to a gas discharge path. (4) An oxidizing agent storage tank for storing the oxidizing agent, an oxidizing agent supply path including an oxidizing agent pump for supplying the oxidizing agent from the oxidizing agent storage to the reactor, and discharging gas from the discharge side of the oxidizing agent pump to the oxidizing agent storage tank And a switching means for switching the flow path on the discharge side of the oxidant pump from the oxidant supply path to the gas discharge path when the oxidant contains gas in the oxidant supply path. 3) The apparatus according to the above.

【0008】本発明において水熱反応とは超臨界または
亜臨界状態の高温高圧の水の存在下に被反応物を酸化反
応等させることを意味する。ここで超臨界状態とは37
4℃以上、22MPa以上の状態である。また亜臨界状
態とは例えば374℃以上、2.5MPa以上22MP
a未満あるいは374℃以下、22MPa以上の状態、
あるいは374℃以下、22MPa未満であっても臨界
点に近い高温高圧状態をいう。
In the present invention, the term "hydrothermal reaction" means that the reactant is oxidized in the presence of high-temperature, high-pressure water in a supercritical or subcritical state. Here, the supercritical state is 37
The temperature is 4 ° C. or higher and 22 MPa or higher. The subcritical state is, for example, 374 ° C. or more, 2.5 MPa or more and 22MPa.
a or less than 374 ° C., 22 MPa or more,
Alternatively, it refers to a high-temperature and high-pressure state close to the critical point even at 374 ° C. or less and less than 22 MPa.

【0009】被反応物は水の超臨界または亜臨界状態で
酸化反応、加水分解反応等の水熱反応の対象となる物質
を含むものである。具体的な被反応物としては、工場等
から排出される廃液中の有機物や、活性汚泥からの余剰
汚泥などがあげられる。このような被反応物は酸化剤と
混合した状態で反応器に導入され、水熱反応を受ける。
酸化剤としては、過酸化水素等の過酸化物、空気等の酸
素含有ガスなどがあげられる。
The reactant contains a substance to be subjected to a hydrothermal reaction such as an oxidation reaction or a hydrolysis reaction in a supercritical or subcritical state of water. Specific examples of the reactant include organic matter in waste liquid discharged from factories and the like, and excess sludge from activated sludge. Such a reactant is introduced into the reactor in a state of being mixed with the oxidizing agent, and undergoes a hydrothermal reaction.
Examples of the oxidizing agent include a peroxide such as hydrogen peroxide and an oxygen-containing gas such as air.

【0010】被反応物が有機物と酸化剤を含む場合、こ
れらは別々にあるいは混合して反応器に供給して水熱反
応が行われる。このような水熱反応系は被反応物のほか
水が存在し、さらに必要により触媒や中和剤等が添加さ
れるが、これらも被反応物と混合して、あるいは別々に
反応器に供給することができる。
When the reactants contain an organic substance and an oxidizing agent, these are supplied separately or mixed to a reactor to carry out a hydrothermal reaction. In such a hydrothermal reaction system, water is present in addition to the reactant, and if necessary, a catalyst and a neutralizing agent are added. These may be mixed with the reactant or supplied separately to the reactor. can do.

【0011】本発明で用いられる反応器は超臨界または
亜臨界状態で水熱反応を行うように、耐熱、耐圧容器で
形成され、加熱加圧手段を有する。このような反応器に
より超臨界または亜臨界状態で水熱反応を行うと、被反
応物の有機物は酸化剤によって酸化され、あるいは加水
分解により低分子化して最終的に水と二酸化炭素に分解
され、エネルギーが回収される。反応生成物は冷却、減
圧され、ガス分と液分に分離される。
The reactor used in the present invention is formed of a heat-resistant and pressure-resistant vessel so as to carry out a hydrothermal reaction in a supercritical or subcritical state, and has heating and pressurizing means. When a hydrothermal reaction is performed in a supercritical or subcritical state in such a reactor, the organic substance to be reacted is oxidized by an oxidizing agent, or is decomposed into water and carbon dioxide by hydrolysis to be finally decomposed into water and carbon dioxide. , Energy is recovered. The reaction product is cooled and decompressed and separated into a gas component and a liquid component.

【0012】このような超臨界または亜臨界状態で水熱
反応を行う反応器に被反応物および酸化剤を供給するに
は、それぞれの貯槽から高圧ポンプを使用して供する必
要がある。ところが被処理物に含まれる有機物の分解、
発酵や酸化剤の分解等により気体が発生すると、これら
の気体が供給路からポンプに流入し、ポンプを空廻りさ
せ、被反応物や酸化剤の供給ができなくなる。
In order to supply a reactant and an oxidizing agent to such a reactor that performs a hydrothermal reaction in a supercritical or subcritical state, it is necessary to use a high-pressure pump from each storage tank. However, decomposition of organic substances contained in the object to be treated,
When gas is generated due to fermentation, decomposition of the oxidizing agent, or the like, these gases flow into the pump from the supply path, cause the pump to idle, and supply of the reactants and the oxidizing agent becomes impossible.

【0013】このような気体を抜き出すことは、前述の
ように一般的には困難であるが、ポンプの吐出側から流
路を貯槽側に切り換えるだけで、ポンプの送液作用によ
り気体が排出されることがわかった。すなわち、この場
合流路の切換により反応器への流路を遮断することによ
り、反応器からの圧力は遮断される。そしてポンプの吐
出側はそれぞれの貯槽に接続することになり、これによ
りポンプの吐出側の圧力は解放されるため、ポンプの送
液作用により流路の気体が貯槽に排出される。
Although it is generally difficult to extract such a gas as described above, simply by switching the flow path from the discharge side of the pump to the storage tank side, the gas is discharged by the pumping action of the pump. I found out. That is, in this case, the pressure from the reactor is shut off by shutting off the flow channel to the reactor by switching the channel. Then, the discharge side of the pump is connected to each storage tank, whereby the pressure on the discharge side of the pump is released, and the gas in the flow path is discharged to the storage tank by the pumping action of the pump.

【0014】気体の排出後は再びポンプの吐出側の流路
を反応器側に切り換えて水熱反応を再開する。気体の排
出は短時間で終了するのでその間反応器における水熱反
応を継続しても問題はない。また気体は被反応物貯槽ま
たは酸化剤貯槽に排出され、系外には排出されないの
で、環境を汚染することはない。
After the gas is discharged, the flow path on the discharge side of the pump is switched to the reactor side again to restart the hydrothermal reaction. Since the gas discharge is completed in a short time, there is no problem if the hydrothermal reaction in the reactor is continued during that time. In addition, the gas is discharged to the reactant storage tank or the oxidant storage tank and is not discharged to the outside of the system, and therefore does not pollute the environment.

【0015】被反応物貯槽および酸化剤貯槽からそれぞ
れ反応器に連絡する被反応物供給路および酸化剤供給路
は被反応物および酸化剤を高圧の反応器へ供給できるよ
うにそれぞれ高圧の被反応物ポンプおよび酸化剤ポンプ
を有する流路とし、反応器から背圧がかからないように
逆止弁を設けるのが好ましい。
The reactant supply passage and the oxidant supply passage communicating with the reactor from the reactant storage tank and the oxidant storage tank respectively have high pressure reactant so that the reactant and the oxidant can be supplied to the high pressure reactor. It is preferable to provide a flow path having a substance pump and an oxidant pump, and to provide a check valve so that back pressure is not applied from the reactor.

【0016】気体排出路はそれぞれの供給路の被反応物
ポンプおよび酸化剤ポンプの吐出側から被反応物貯槽お
よび酸化剤貯槽へ連絡する分岐流路とする。これらの流
路の切換手段は、流路の分岐点に三方弁を設けるか、あ
るいはそれぞれの流路に二方弁を設けることにより構成
される。後者の場合、被反応物供給路および酸化剤供給
路の二方弁は逆止弁を兼用することができる。
The gas discharge path is a branch flow path from the discharge side of the reactant pump and the oxidant pump of each supply path to the reactant storage tank and the oxidant storage tank. The switching means of these flow paths is configured by providing a three-way valve at a branch point of the flow path, or by providing a two-way valve in each flow path. In the latter case, the two-way valve for the reactant supply path and the oxidant supply path can also serve as a check valve.

【0017】気体の発生および排出を検出するために
は、それぞれの流路に圧力計、流量計あるいはポンプに
排出量等を調べる検出手段を設置して圧力、流量等の低
下あるいは上昇等を検出し、これにより流路を切り換
え、ポンプの送液作用により気体の排出を行うことがで
きる。これらの流路は被反応物と酸化剤を混合状態で供
給する場合は単一の流路とすることができる。
In order to detect the generation and discharge of gas, a pressure gauge, a flow meter, or a pump is provided with a detecting means for checking the discharge amount or the like in each flow path to detect a decrease or an increase in pressure or flow rate. Thus, the flow path is switched, and the gas can be discharged by the liquid sending action of the pump. These flow paths may be a single flow path when the reactant and the oxidizing agent are supplied in a mixed state.

【0018】[0018]

【発明の効果】本発明によれば、被反応物供給路または
酸化剤供給路に気体が含まれる際、流路を切り換えるだ
けで気体を被反応物貯槽または酸化剤貯槽に排出するこ
とができ、反応を停止することなく、また気体を環境に
排出することなく、容易に気体を除去して効率よく水熱
反応を行うことができる。
According to the present invention, when a gas is contained in the reactant supply path or the oxidant supply path, the gas can be discharged to the reactant storage tank or the oxidant storage tank simply by switching the flow path. The gas can be easily removed and the hydrothermal reaction can be efficiently performed without stopping the reaction and without discharging the gas to the environment.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態の水熱反応装置の系統
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of the hydrothermal reactor of the embodiment.

【0020】図1において、1は被反応物貯槽であっ
て、被反応物供給路2により被反応物ポンプ3、三方弁
4、逆止弁6および予熱器7を介して反応器8に連絡し
ている。反応器8は超臨界または亜臨界状態で水熱反応
を行うように耐熱、耐圧容器で構成され、加熱器8a、
8bが近接して設けられている。反応器8から冷却器9
および圧力調整弁10を有する反応物取出路18が系外
に連絡している。
In FIG. 1, reference numeral 1 denotes a reactant storage tank, which is connected to a reactor 8 via a reactant supply path 2 via a reactant pump 3, a three-way valve 4, a check valve 6, and a preheater 7. are doing. The reactor 8 is formed of a heat-resistant, pressure-resistant container so as to perform a hydrothermal reaction in a supercritical or subcritical state, and includes a heater 8a,
8b are provided adjacent to each other. Cooler 9 from reactor 8
A reactant discharge passage 18 having a pressure control valve 10 communicates with the outside of the system.

【0021】11は酸化剤貯槽であって、酸化剤供給路
12により酸化剤ポンプ13、三方弁14、逆止弁16
および予熱器17を介して反応器8に連絡している。ポ
ンプ3、13の吐出側に設けられた三方弁4、14から
気体排出路5、15がそれぞれ被反応物貯槽1および酸
化剤貯槽11に連絡している。ポンプ3、13の制御装
置3a、13aはポンプ3、13の吐出量を検出し、吐
出量の変化により三方弁4、14を切り換えるように接
続している。
Reference numeral 11 denotes an oxidizing agent storage tank, which includes an oxidizing agent pump 13, a three-way valve 14, a check valve 16
And the reactor 8 via a preheater 17. Gas discharge paths 5 and 15 are connected to the reactant storage tank 1 and the oxidant storage tank 11 from three-way valves 4 and 14 provided on the discharge sides of the pumps 3 and 13, respectively. The control devices 3a and 13a of the pumps 3 and 13 detect the discharge amounts of the pumps 3 and 13, and are connected to switch the three-way valves 4 and 14 according to the change of the discharge amounts.

【0022】上記の装置による水熱反応方法は、次のよ
うに行われる。まず被反応物貯槽1および酸化剤貯槽1
1から被反応物および酸化剤をそれぞれ被反応物供給路
2および酸化剤供給路12を通して被反応物ポンプ3お
よび酸化剤ポンプ13により供給し、三方弁4、14を
経由し、逆止弁6、16を経由して予熱器7、17で予
熱して反応器8に供給する。
The hydrothermal reaction method using the above apparatus is performed as follows. First, the reactant storage tank 1 and the oxidant storage tank 1
The reactant and the oxidant are supplied from the reactant pump 3 and the oxidant pump 13 through the reactant supply passage 2 and the oxidant supply passage 12, respectively. , 16 and preheated by the preheaters 7 and 17 and supplied to the reactor 8.

【0023】反応器8では加熱器8a、8bにより加熱
し、圧力調整弁9で圧力調整して超臨界または亜臨界状
態に保ち、水熱反応を行う。反応により被反応物中の有
機物等は酸化剤により酸化される。反応物は反応物取出
路18から取り出され、冷却器9で冷却され、圧力調整
弁10を通過して減圧して放流される。
In the reactor 8, heating is performed by the heaters 8a and 8b, and the pressure is adjusted by the pressure adjusting valve 9 to maintain the supercritical or subcritical state, thereby performing the hydrothermal reaction. By the reaction, organic substances and the like in the reactant are oxidized by the oxidizing agent. The reactant is taken out from the reactant take-out passage 18, cooled by the cooler 9, passed through the pressure regulating valve 10, and discharged under reduced pressure.

【0024】被反応物供給路2または酸化剤供給路12
において気体が含まれポンプ3、13による送液ができ
なくなると、制御装置3a、13aにおいてポンプ吐出
量の低下を検出し、三方弁4、14を気体排出路5、1
5側に切り換える。これにより反応器8側の流路は遮断
され、被反応物供給路2および酸化剤供給路12内の気
体はポンプ3、13の送液作用により気体排出路5、1
5から被反応物貯槽1および酸化剤貯槽11に排出され
る。
The reactant supply passage 2 or the oxidant supply passage 12
When the gas is contained in the pump 3 and the liquid cannot be sent by the pumps 3 and 13, the control devices 3 a and 13 a detect a decrease in the pump discharge amount, and connect the three-way valves 4 and 14 to the gas discharge passages 5 and 1.
Switch to 5 side. As a result, the flow path on the side of the reactor 8 is shut off, and the gas in the reactant supply path 2 and the oxidant supply path 12 is supplied by the pumps 3 and 13 to the gas discharge paths 5 and 1.
5 is discharged to the reactant storage tank 1 and the oxidant storage tank 11.

【0025】この場合被反応物貯槽1および酸化剤貯槽
11は実質的に大気圧に維持されるのでポンプ3、13
に負荷がかからないため、単に流路を切り換えるだけで
気体の排出が可能である。気体の排出によりポンプ3、
13の吐出量が上昇すると、制御装置3a、13aはこ
れを検出して三方弁4、14を切り換える。これにより
被反応物および酸化剤の反応器8への供給が再開され
る。
In this case, since the reactant storage tank 1 and the oxidant storage tank 11 are maintained substantially at atmospheric pressure, the pumps 3 and 13
Since no load is applied to the gas, gas can be discharged simply by switching the flow path. Pump 3 by discharging gas,
When the discharge amount of 13 increases, the control devices 3a and 13a detect this and switch the three-way valves 4 and 14. Thus, the supply of the reactant and the oxidant to the reactor 8 is restarted.

【0026】上記の例では、三方弁4、14の切換によ
り流路は切り換わるので、逆止弁6、16はなくてもよ
いが、安全のためには設けるのが好ましい。また切換手
段として三方弁4、14の代りに気体排出路5、15に
二方弁を設けてこれを開閉することにより流路を切り換
えることができる。この場合は逆止弁6、16は必要で
あるが、他の三方弁を用いてもよい。
In the above example, since the flow path is switched by switching the three-way valves 4 and 14, the check valves 6 and 16 may be omitted, but it is preferable to provide them for safety. In addition, two-way valves may be provided in the gas discharge paths 5, 15 instead of the three-way valves 4, 14 as switching means, and the flow paths may be switched by opening and closing the two-way valves. In this case, the check valves 6 and 16 are necessary, but another three-way valve may be used.

【0027】上記の水熱反応方法および装置によれば、
被反応物供給路または酸化剤供給路に気体が含まれる
際、流路を切り換えるだけで気体を被反応物貯槽または
酸化剤貯槽に排出することができ、反応を停止すること
なく、また気体を環境に排出することなく、容易に気体
を除去して効率よく水熱反応を行うことができる。
According to the above-described hydrothermal reaction method and apparatus,
When a gas is contained in the reactant supply path or the oxidant supply path, the gas can be discharged to the reactant storage tank or the oxidant storage tank simply by switching the flow path, without stopping the reaction, and without removing the gas. The gas can be easily removed and the hydrothermal reaction can be efficiently performed without discharging to the environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の水熱反応装置の系統図である。FIG. 1 is a system diagram of a hydrothermal reactor of an embodiment.

【符号の説明】[Explanation of symbols]

1 被反応物貯槽 2 被反応物供給路 3 被反応物ポンプ 3a、13a 制御装置 4、14 三方弁 5、15 気体排出路 6、16 逆止弁 7、17 予熱器 8 反応器 8a、8b 加熱器 9 冷却器 10 圧力調整弁 11 酸化剤貯槽 12 酸化剤供給路 13 酸化剤ポンプ DESCRIPTION OF SYMBOLS 1 Reactant storage tank 2 Reactant supply path 3 Reactant pump 3a, 13a Control device 4, 14 Three-way valve 5, 15 Gas discharge path 6, 16 Check valve 7, 17 Preheater 8 Reactor 8a, 8b Heating Refrigerator 9 Cooler 10 Pressure control valve 11 Oxidant storage tank 12 Oxidant supply path 13 Oxidant pump

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年11月17日(2000.11.
17)
[Submission date] November 17, 2000 (200.11.
17)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】 [0002]

【従来の技術】 水の超臨界または亜臨界状態で、被反応
物を酸化反応や加水分解反応させて廃棄物を分解した
り、エネルギーを生成したり、化学物質を製造したりす
る水熱処理は30年以上に亘って研究され、利用されて
きている。特に近年、水の超臨界または亜臨界状態で有
機物を含む被反応物と、酸化剤を反応させることにより
酸化反応を生じさせ、被反応物中の有機物を短時間で、
ほぼ完全に分解する水熱処理が注目されている。
2. Description of the Related Art In a supercritical or subcritical state of water, a hydrothermal treatment for oxidizing or hydrolyzing a reactant to decompose waste, generate energy, or produce a chemical substance is performed. It has been studied and used for over 30 years. In recent years, in particular, a reactant containing an organic substance in a supercritical or subcritical state of water causes an oxidation reaction by reacting the oxidizing agent, and the organic substance in the reactant is reduced in a short time.
Attention has been paid to hydrothermal treatment that almost completely decomposes.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D050 AA12 AB11 BB01 BB09 BC01 BC02 BD03 BD06 CA03 4D059 AA05 BC01 BC02 BC03 BK30 CB01 CB12 CB30 DA44 DA47 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D050 AA12 AB11 BB01 BB09 BC01 BC02 BD03 BD06 CA03 4D059 AA05 BC01 BC02 BC03 BK30 CB01 CB12 CB30 DA44 DA47

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被反応物貯槽から被反応物を被反応物ポ
ンプで反応器に供給する被反応物供給工程と、 反応器において水の超臨界または亜臨界状態で水熱反応
を行う反応工程とを含み、 被反応物供給工程において、被反応物中に気体が含まれ
るときに、被反応物ポンプの吐出側から被処理物貯槽に
切り換えて気体を排出し、気体排出後に被処理物の供給
を再開するようにした水熱反応方法。
1. A reactant supply step of supplying a reactant from a reactant storage tank to a reactor by a reactant pump, and a reaction step of performing a hydrothermal reaction in a supercritical or subcritical state of water in the reactor. In the reactant supply step, when gas is contained in the reactant, the gas is discharged by switching from the discharge side of the reactant pump to the treatment tank and discharging the gas after discharging the gas. A hydrothermal reaction method in which the supply is restarted.
【請求項2】 酸化剤貯槽から酸化剤を酸化剤ポンプで
反応器に供給する酸化剤供給工程を含み、 酸化剤供給工程において酸化剤中に気体が含まれるとき
に、酸化剤ポンプの吐出側から酸化剤貯槽に流路を切り
換えて気体を排出し、気体の排出後酸化剤の供給を再開
する請求項1記載の方法。
2. An oxidizing agent supply step of supplying an oxidizing agent from an oxidizing agent storage tank to a reactor by an oxidizing agent pump, wherein when a gas is contained in the oxidizing agent in the oxidizing agent supplying step, a discharge side of the oxidizing agent pump is provided. 2. The method according to claim 1, wherein the gas is discharged by switching the flow path from the gas to the oxidant storage tank, and the supply of the oxidant is resumed after the gas is discharged.
【請求項3】 水の超臨界または亜臨界状態で水熱反応
を行う反応器と、 被反応物を貯留する被反応物貯槽と、 被反応物貯槽から反応器に被反応物を供給する被酸化物
ポンプを含む被反応物供給路と、 被酸化物ポンプの吐出側から気体を被反応物貯槽に排出
する気体排出路と、 被反応物供給路において被反応物に気体が含まれている
場合に、被酸化物ポンプの吐出側の流路を被反応物供給
路から気体排出路に切り換える切換手段とを含む水熱反
応装置。
3. A reactor for performing a hydrothermal reaction in a supercritical or subcritical state of water, a reactant storage tank for storing a reactant, and a reactant for supplying a reactant from the reactant storage tank to the reactor. A reactant supply path including an oxide pump; a gas discharge path for discharging gas from a discharge side of the oxide pump to a reactant storage tank; and a reactant supply gas in the reactant supply path. Switching means for switching a flow path on the discharge side of the oxidized pump from the reactant supply path to the gas discharge path.
【請求項4】 酸化剤を貯留する酸化剤貯槽と、 酸化剤貯槽から反応器に酸化剤を供給する酸化剤ポンプ
を含む酸化剤供給路と、 酸化剤ポンプの吐出側から気体を酸化剤貯槽に排出する
気体排出路と、 酸化剤供給路において酸化剤に気体が含まれている場合
に、酸化剤ポンプの吐出側の流路を酸化剤供給路から気
体排出路に切り換える切換手段とを含む請求項3記載の
装置。
4. An oxidizing agent storage tank for storing an oxidizing agent, an oxidizing agent supply path including an oxidizing agent pump for supplying an oxidizing agent from the oxidizing agent storage tank to the reactor, and an oxidizing agent storage tank for discharging gas from a discharge side of the oxidizing agent pump. And a switching means for switching the flow path on the discharge side of the oxidant pump from the oxidant supply path to the gas discharge path when the oxidant contains gas in the oxidant supply path. An apparatus according to claim 3.
JP11220831A 1999-08-04 1999-08-04 Hydrothermal reaction method and device Pending JP2001038190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11220831A JP2001038190A (en) 1999-08-04 1999-08-04 Hydrothermal reaction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11220831A JP2001038190A (en) 1999-08-04 1999-08-04 Hydrothermal reaction method and device

Publications (1)

Publication Number Publication Date
JP2001038190A true JP2001038190A (en) 2001-02-13

Family

ID=16757239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11220831A Pending JP2001038190A (en) 1999-08-04 1999-08-04 Hydrothermal reaction method and device

Country Status (1)

Country Link
JP (1) JP2001038190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161159A (en) * 2003-12-01 2005-06-23 Ngk Insulators Ltd Method for treating organic waste at high temperature under high pressure
JP2006122881A (en) * 2004-11-01 2006-05-18 Toshiba Corp High-pressure reaction apparatus
CN111760543A (en) * 2020-07-01 2020-10-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161159A (en) * 2003-12-01 2005-06-23 Ngk Insulators Ltd Method for treating organic waste at high temperature under high pressure
JP4502633B2 (en) * 2003-12-01 2010-07-14 メタウォーター株式会社 High temperature and high pressure treatment method for organic waste
JP2006122881A (en) * 2004-11-01 2006-05-18 Toshiba Corp High-pressure reaction apparatus
CN111760543A (en) * 2020-07-01 2020-10-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled
CN111760543B (en) * 2020-07-01 2021-08-13 西安交通大学 Supercritical hydrothermal synthesis reaction system capable of being precisely regulated and controlled

Similar Documents

Publication Publication Date Title
EP1390302A1 (en) Process for hydrothermal treatment of materials
JPH07313987A (en) High pressure reaction container apparatus
JP2001038190A (en) Hydrothermal reaction method and device
JP2002102672A (en) Method and apparatus for hydrothermal reaction
JP2003299941A (en) Hydrothermal oxidative reaction treatment apparatus and method using the same
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP2003236594A (en) Apparatus for treating sludge
JP3836270B2 (en) Method for shutting down supercritical water reactor
JPH10279726A (en) Volume reduction of waste ion-exchange resin
JP2001121167A (en) Batchwise supercritical water reaction apparatus
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
CN216337102U (en) Isopropyl alcohol effluent disposal system
JPH11276879A (en) High pressure reactor
JP3969040B2 (en) Critical water treatment apparatus and method
JP2004105820A (en) Method and apparatus for hydrothermal reaction
JP2006239541A (en) Wet type oxidative decomposition treatment apparatus and method of washing its catalyst
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP3686778B2 (en) Operation method of supercritical water reactor
JP2003326150A (en) Hydrothermal reaction method and apparatus thereof
TWM624493U (en) Isopropyl Alcohol Wastewater Treatment System
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JPH1180419A (en) Process and apparatus for supercritical hydroxylation decomposition of polyurethane waste
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof
JP2004033912A (en) Hydrothermal reaction apparatus
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms