JPH10279726A - Volume reduction of waste ion-exchange resin - Google Patents

Volume reduction of waste ion-exchange resin

Info

Publication number
JPH10279726A
JPH10279726A JP9047397A JP9047397A JPH10279726A JP H10279726 A JPH10279726 A JP H10279726A JP 9047397 A JP9047397 A JP 9047397A JP 9047397 A JP9047397 A JP 9047397A JP H10279726 A JPH10279726 A JP H10279726A
Authority
JP
Japan
Prior art keywords
exchange resin
ion
volume
supercritical water
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9047397A
Other languages
Japanese (ja)
Other versions
JP3462969B2 (en
Inventor
Shinichi Ohashi
伸一 大橋
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP09047397A priority Critical patent/JP3462969B2/en
Publication of JPH10279726A publication Critical patent/JPH10279726A/en
Application granted granted Critical
Publication of JP3462969B2 publication Critical patent/JP3462969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the process that can reduce the volume of waste ion- exchange resin as much as possible. SOLUTION: This is a process that a resin mixture of cationic ion-exchange resin and anionic ion-exchange resin is reduced in its volume before its disposal. In this process, the cationic ion exchange resin and the anionic ion-exchange resin are separated from each other, the separated anionic ion-exchange resin is supercritically hydroxylated by reaction with an oxidizing agent free from any substance to form salt in the presence of supercritical water, while the separated cationic ion-exchange resin is supercritically hydroxylated by reaction with an oxidizing agent free from any substance to form salt in the presence of supercritical water and the acids formed are neutralized with an alkali agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有害物質の分離・
除去に用いられたイオン交換樹脂を廃棄処理する際に減
容化する技術に関し、詳しくは超臨界水酸化(SCW
O)法により減容化する際に適した方法を提案するもの
である。
TECHNICAL FIELD The present invention relates to a method for separating harmful substances.
Regarding the technology for reducing the volume of the ion-exchange resin used for removal when disposing of the waste, more specifically, supercritical water oxidation (SCW)
The present invention proposes a method suitable for volume reduction by the O) method.

【0002】[0002]

【従来技術】従来より、有害物質(有害金属や放射性物
質等)が水等の流体中に含まれる場合にイオン交換樹脂
で分離・除去することが行われている。また原子力発電
所の復水系では、復水を復水脱塩装置などで処理した際
に吸着・付着されるクラッド等に放射性物質が含まれ
る。これらの有害物質を吸着・付着したイオン交換樹脂
はその適切な廃棄処理が必要になり、例えば、放射性物
質を吸着しているイオン交換樹脂は一般にセメントやア
スファルトなどを用いてドラム缶内に封入し、固化体と
して保管施設で保管管理する方法が行われている。
2. Description of the Related Art Conventionally, when a harmful substance (hazardous metal, radioactive substance, etc.) is contained in a fluid such as water, separation and removal with an ion exchange resin has been performed. In the condensate system of a nuclear power plant, radioactive substances are contained in cladding and the like that are adsorbed and adhered when condensed water is treated by a condensate desalination device or the like. It is necessary to properly dispose of ion-exchange resins that have adsorbed and attached these harmful substances.For example, ion-exchange resins that have adsorbed radioactive substances are generally sealed in drums using cement or asphalt, etc. There is a method of storing and managing as a solid in a storage facility.

【0003】しかしこの方法は、セメント等の固化剤を
使用するため、もとのイオン交換樹脂容積に比べて、容
積が大幅に増加することになることが避けられないとい
う問題がある。
However, this method has a problem that, since a solidifying agent such as cement is used, the volume of the ion exchange resin is unavoidably increased as compared with the original volume.

【0004】[0004]

【発明が解決しようとする課題】上記問題の解決法とし
ては、有害物質を吸着・付着しているイオン交換樹脂の
容積自体を減容化することが、同時に固化剤の量を減ら
すことにつながるため、有効な方法と考えられる。
As a solution to the above problem, reducing the volume of the ion exchange resin itself to which harmful substances are adsorbed and adhered leads to a reduction in the amount of the solidifying agent at the same time. Therefore, it is considered to be an effective method.

【0005】しかし、イオン交換樹脂は一般に難分解性
の物質であってイオン交換樹脂の減容化技術として用い
られる技術には制約があり、また本願発明において処理
対象とする物質が有害物質を吸着・付着しているという
制約もあって、従来適当な方法が提案されていない。
[0005] However, ion exchange resins are generally hardly decomposable substances, and there are restrictions on the technology used as a technique for reducing the volume of ion exchange resins. In addition, the substances to be treated in the present invention adsorb harmful substances.・ Because of the restriction that they adhere, no suitable method has been proposed in the past.

【0006】例えば、難分解性物質を分解処理する物理
化学的な処理方法として知られる直接燃焼法、湿式酸化
法などは、前者では、イオン交換樹脂の完全分解はでき
るもののNOX 、SOX の発生があるだけでなく、燃焼
ガスを大気に放出する際に有害物質が廃ガスに含まれな
いようにする対策が必要になるという問題があり、後者
では、有害物質の大気放出はないものの、イオン交換樹
脂の分解には限界がある。
[0006] For example, direct combustion method, known as physical-chemical treatment method for decomposing a hardly decomposable substance, etc. wet oxidation method, in the former, the NO X, SO X although complete decomposition of the ion exchange resin can be In addition to the emission, there is a problem that it is necessary to take measures to prevent harmful substances from being included in the waste gas when releasing the combustion gas to the atmosphere. There is a limit to the decomposition of ion exchange resins.

【0007】上記の他、難分解性物質の分解処理技術と
しては、塩素化合物,窒素化合物あるいは硫黄化合物等
を含む難分解性物質を処理する超臨界水酸化処理技術が
注目される(例えば特公平1−38532号公報参
照)。
[0007] In addition to the above, as a decomposition treatment technique for a hardly decomposable substance, a supercritical hydroxylation treatment technique for treating a hardly decomposable substance containing a chlorine compound, a nitrogen compound, a sulfur compound, or the like has attracted attention (for example, Japanese Patent Publication No. H10-26103). 1-38532).

【0008】この超臨界水酸化による方法は、基本的に
は、装置概要をフローによって示した図3の装置で実施
される。すなわち、分解対象物貯槽200から分解対象
物を含む流体を流体供給管201を介して反応容器20
2に供給し、途中で酸素等の酸化剤流体及び超臨界水を
それぞれの供給管203,204から供給混合する。こ
れにより反応容器内において水の超臨界条件下で分解対
象物を酸化分解する。この反応で生成した水とガス(主
に炭酸ガスと一部の揮発性物質)となった生成流体(分
解生成物)を冷却し、減圧機構205で減圧したガスは
排気管206を通して大気に排出し、水は必要に応じて
これに含まれる無機物等を除去して凝縮水排水管207
を通して排出する。なお、分解対象物が酸を生成する物
質を含む場合には、アルカリ供給管208からアルカリ
を添加(注入)して酸を中和し、中和で生成した塩を、
ベッセル型反応容器202の底部に対して供給管209
で供給し排出管210で排出する塩移送水に溶解させて
排出するようにすることができる。
The method using supercritical water oxidation is basically carried out in the apparatus shown in FIG. That is, the fluid containing the decomposition target is supplied from the decomposition target storage tank 200 through the fluid supply pipe 201 to the reaction vessel 20.
2 and an oxidant fluid such as oxygen and supercritical water are supplied and mixed from respective supply pipes 203 and 204 on the way. Thus, the decomposition target is oxidatively decomposed under the supercritical condition of water in the reaction vessel. The generated fluid (decomposition product), which has become water and gas (mainly carbon dioxide gas and some volatile substances) generated by this reaction, is cooled, and the gas decompressed by the decompression mechanism 205 is discharged to the atmosphere through an exhaust pipe 206. Then, the water removes the inorganic substances and the like contained in the water as necessary to remove the condensed water drain pipe 207.
Discharge through. When the decomposition target contains a substance that generates an acid, an alkali is added (injected) from the alkali supply pipe 208 to neutralize the acid, and the salt generated by the neutralization is converted into
Supply pipe 209 is connected to the bottom of vessel type reaction vessel 202.
And then dissolved in the salt transfer water discharged through the discharge pipe 210 and discharged.

【0009】この方法によれば、水の臨界条件すなわち
臨界温度374℃及び臨界圧力22MPaを越えた条件
下の水(超臨界水)はその極性が温度と圧力で制御可能
となってパラフィン形炭化水素やベンゼン等の非極性物
質も溶解することができ、また酸素等のガスとも任意の
割合で単一相で混在するという有機物酸化分解用の反応
溶媒として極めて優れた特性を示すこと、分解対象物の
炭素含有率が数%あれば酸化熱だけで臨界温度以上に昇
温可能であるため、熱エネルギー的に非常に優れている
こと、ほとんどの難分解性有機物や有害有機廃棄物を超
臨界水中で加水分解反応や熱分解反応を適切にコントロ
ールすることにより完全に分解できること、特に処理を
閉鎖系の装置内で行えること、などの点で有害有機物の
分解処理に極めて適している。
According to this method, the polarity of water (supercritical water) under the critical conditions of water, that is, the temperature exceeding the critical temperature of 374 ° C. and the critical pressure of 22 MPa, can be controlled by the temperature and the pressure, and the paraffin-type carbonized water can be obtained. It can also dissolve non-polar substances such as hydrogen and benzene, and can be mixed with oxygen and other gases in a single phase at an arbitrary ratio. If the carbon content of the product is several percent, it can be heated to a critical temperature or higher only by the heat of oxidation, so it is extremely excellent in thermal energy, and supercritical organic and harmful organic wastes are almost supercritical. It can be completely decomposed by properly controlling the hydrolysis reaction and thermal decomposition reaction in water, and in particular, it can be processed in a closed system. It is.

【0010】しかしながら、放射性物質や有害金属等の
系外に放出できない物質を吸着・付着したイオン交換樹
脂では、生成する塩の量が問題となる。すなわち、放射
性物質等を含む反応溶液は濃縮して保管するなどの処理
を行う必要があるため、液中に含まれる無機塩が多量で
あるとその後の濃縮減容化処理が十分に行えない。した
がって中和剤の添加量は生成する酸に対して極力当量に
近似して添加することが望まれる。
[0010] However, in the case of an ion-exchange resin to which a substance that cannot be released to the outside such as a radioactive substance or a harmful metal is adsorbed and adhered, the amount of the generated salt becomes a problem. That is, since the reaction solution containing the radioactive substance or the like must be concentrated and stored, etc., if the amount of the inorganic salt contained in the solution is large, the subsequent concentration and volume reduction cannot be performed sufficiently. Therefore, it is desired that the amount of the neutralizing agent added be as close to the equivalent as possible with respect to the generated acid.

【0011】本発明は、上記の使用済みの廃棄イオン交
換樹脂を減容化する際に、超臨界水酸化処理法を用い
て、最適な処理を実現することができる方法の提供を目
的としてなされたものである。
An object of the present invention is to provide a method capable of realizing an optimum treatment by using a supercritical water oxidation treatment when reducing the volume of the used waste ion exchange resin. It is a thing.

【0012】また本発明は、上記処理のために採用する
超臨界水酸化処理法において、生成する酸の中和のため
添加する中和剤の量をできるだけ低減でき、したがって
廃棄物量をできるだけ減容できる方法を提供することを
目的とする。
Further, in the present invention, in the supercritical water oxidation treatment method adopted for the above treatment, the amount of a neutralizing agent added for neutralizing the generated acid can be reduced as much as possible, so that the amount of waste is reduced as much as possible. The aim is to provide a method that can.

【0013】本発明の別の目的は、廃棄イオン交換樹脂
の減容化のために行う超臨界水酸化の処理をできるだけ
簡素な操作で行うことができるようにするところにあ
る。
Another object of the present invention is to make it possible to carry out the supercritical water oxidation treatment for reducing the volume of the waste ion exchange resin by the operation as simple as possible.

【0014】[0014]

【課題を解決するための手段】上記目的は、本願の特許
請求の範囲の各請求項に記載した発明により達成され
る。
The above object is achieved by the invention described in each claim of the present application.

【0015】上記請求項1の廃棄イオン交換樹脂の減容
化方法の発明は、カチオン交換樹脂とアニオン交換樹脂
を含む混合状態のイオン交換樹脂を廃棄処理する前に減
容化する方法であって、少なくともカチオン交換樹脂を
除去した前記イオン交換樹脂を、超臨界水の存在下に、
塩を生成する物質を含まない酸化剤との反応により超臨
界水酸化することを特徴とする。
The invention of the method for reducing the volume of a waste ion exchange resin according to claim 1 is a method for reducing the volume of a mixed ion exchange resin containing a cation exchange resin and an anion exchange resin before disposal. The ion exchange resin from which at least the cation exchange resin has been removed, in the presence of supercritical water,
It is characterized in that supercritical water oxidation is performed by reaction with an oxidizing agent that does not contain a salt-forming substance.

【0016】上記において「カチオン交換樹脂を除去」
というのは、できるだけカチオン交換樹脂が微量にも含
まれないようにすることをいう。すなわち、カチオン樹
脂は一般に硫黄が含まれて超臨界水酸化に伴って硫酸が
生成するので、アルカリによる中和が必要になるが、ア
ニオン交換樹脂は、復水脱塩装置から排出される使用済
みのようにそのイオン形がOH型(再生型)の場合は酸
を生成する物質が含まれていないのでアルカリによる中
和が必要ない。このため、カチオン交換樹脂の除去した
残りのイオン交換樹脂は中和処理をすることなく超臨界
水酸化を行うことができる。このようなカチオン交換樹
脂の除去は、例えば、上記両樹脂を含む混合イオン交換
樹脂を逆洗・沈整して分離(いわゆる比重差分離)した
際に、分離面近傍で両樹脂が混在する部分より上側のア
ニオン交換樹脂を取出す操作により行うことができる。
したがってこの比重差分離においては、両樹脂の混在領
域とカチオン交換樹脂領域を除去することをいう。
In the above, "removing the cation exchange resin"
This means that the cation exchange resin is contained as little as possible. In other words, the cationic resin generally contains sulfur and generates sulfuric acid with supercritical water oxidation, so neutralization with an alkali is required, but the anion exchange resin is used exhausted from the condensate desalination unit. When the ionic form is the OH type (regeneration type) as described above, a substance that generates an acid is not contained, so that neutralization with an alkali is not necessary. For this reason, supercritical water oxidation can be performed on the remaining ion-exchange resin from which the cation-exchange resin has been removed without performing the neutralization treatment. Such cation exchange resin is removed, for example, when a mixed ion exchange resin containing both resins is back-washed and settled to separate (so-called specific gravity difference separation), a portion where both resins are mixed near the separation surface. It can be performed by an operation of removing the upper anion exchange resin.
Therefore, in the specific gravity difference separation, it means that the mixed region of both resins and the cation exchange resin region are removed.

【0017】また「塩を生成する物質を含まない酸化
剤」とは、分解に伴って無機塩(KCl,NaCl等)
を生成しない酸化剤、例えば酸素ガス、空気等を酸化剤
として用いることをいう。このような酸化剤を用いる理
由はKClO4 ,NaClO2のような固体状含酸素化
合物を酸化剤として用いると上記の無機塩を多量に生成
する結果となり、有害物質にこれらの塩が含まれた廃棄
物となって廃棄物の減容化が不十分となるからである。
The term "oxidizing agent not containing a salt-forming substance" refers to an inorganic salt (KCl, NaCl, etc.) associated with decomposition.
Means that an oxidizing agent that does not generate any gas, such as oxygen gas, air, etc., is used as the oxidizing agent. The reason for using such an oxidizing agent is that if a solid oxygen-containing compound such as KClO 4 or NaClO 2 is used as the oxidizing agent, a large amount of the above-mentioned inorganic salt is generated, and these salts are contained in the harmful substances. This is because it becomes waste and the volume reduction of the waste becomes insufficient.

【0018】この発明によれば、酸を生成する物質を含
まないアニオン交換樹脂を、アルカリの添加を必要とせ
ずに超臨界水酸化して減容化することができる。
According to the present invention, the volume of an anion exchange resin containing no substance that generates an acid can be reduced by supercritical water oxidation without requiring the addition of an alkali.

【0019】請求項2の廃棄イオン交換樹脂の減容化方
法の発明は、カチオン交換樹脂とアニオン交換樹脂を含
む混合状態のイオン交換樹脂を廃棄処理する前に減容化
する方法であって、少なくともアニオン交換樹脂を除去
した前記イオン交換樹脂を、超臨界水の存在下に、塩を
生成する物質を含まない酸化剤との反応により超臨界水
酸化すると共に、生成した酸をアルカリ剤で中和するこ
とを特徴とする。
A second aspect of the present invention is a method for reducing the volume of a mixed ion-exchange resin containing a cation-exchange resin and an anion-exchange resin prior to disposal. The ion-exchange resin from which at least the anion-exchange resin has been removed is supercritically hydroxylated by reaction with an oxidizing agent containing no salt-forming substance in the presence of supercritical water, and the generated acid is neutralized with an alkali agent. It is characterized by summing.

【0020】上記において「アニオン交換樹脂を除去」
というのは、できるだけアニオン交換樹脂が混在しない
ようにすることをいうが、上記請求項1の発明における
カチオン交換樹脂の除去処理とは異なり、アニオン交換
樹脂の混入を厳密に除外することを必要とするものでは
ない。すなわち、一般に用いられるAmberlite
(登録商標)200Cなどの強酸性カチオン交換樹脂は
酸を生成する物質を含むため、超臨界水酸化処理におい
て酸を生成するので、アルカリ添加による中和処理が必
要である。この場合に、中和処理の必要がないアニオン
交換樹脂が混入していても基本的には問題はない。しか
し、アニオン交換樹脂の混入量が不明の場合は、その容
量をすべてカチオン交換樹脂として計算した量のアルカ
リを添加する必要があり、そのため無駄なアルカリを添
加することになる。このような理由からアニオン交換樹
脂の混入はできるだけ少なくすることが望まれる。両樹
脂が混在する領域の樹脂の処理は、この方法により処理
することができる。したがって比重差分離においては、
両樹脂の混在領域を除くアニオン交換樹脂領域のみを除
去することをいう。
In the above, "removing the anion exchange resin"
This means that the anion exchange resin should be mixed as little as possible. However, unlike the cation exchange resin removal treatment in the invention of claim 1, it is necessary to strictly exclude the anion exchange resin from being mixed. It does not do. That is, the commonly used Amberlite
Since a strong acidic cation exchange resin such as (registered trademark) 200C contains a substance that generates an acid, it generates an acid in a supercritical water oxidation treatment, and therefore requires a neutralization treatment by addition of an alkali. In this case, there is basically no problem even if an anion exchange resin that does not require a neutralization treatment is mixed. However, when the mixing amount of the anion exchange resin is unknown, it is necessary to add an alkali in an amount calculated as a cation exchange resin for all of its capacity, and therefore, useless alkali is added. For these reasons, it is desirable to minimize the mixing of the anion exchange resin. The resin in the region where both resins are mixed can be treated by this method. Therefore, in the specific gravity difference separation,
It means that only the anion exchange resin region except the mixed region of both resins is removed.

【0021】上記において酸を中和するアルカリ剤とし
ては、水酸化ナトリウム、水酸化カリウム、水酸化カル
シウム、炭酸カリウム、炭酸カルシウム等を例示でき
る。
In the above, examples of the alkali agent for neutralizing the acid include sodium hydroxide, potassium hydroxide, calcium hydroxide, potassium carbonate, calcium carbonate and the like.

【0022】この発明によれば、塩を生成する物質を含
むカチオン交換樹脂を効率よく超臨界水酸化して減容化
することができる。
According to the present invention, the volume of a cation exchange resin containing a substance that produces a salt can be reduced by supercritical water oxidation efficiently.

【0023】請求項3の廃棄イオン交換樹脂の減容化方
法の発明は、カチオン交換樹脂とアニオン交換樹脂の混
合状態のイオン交換樹脂を廃棄処理する前に減容化する
方法であって、カチオン交換樹脂とアニオン交換樹脂を
分離し、分離したアニオン交換樹脂は、超臨界水の存在
下に塩を生成する物質を含まない酸化剤との反応により
超臨界水酸化し、分離したカチオン交換樹脂は、超臨界
水の存在下に塩を生成する物質を含まない酸化剤との反
応により超臨界水酸化すると共に、生成した酸をアルカ
リ剤で中和することを特徴とする。
A third aspect of the present invention is a method of reducing the volume of a waste ion exchange resin before disposing the ion exchange resin in a mixed state of a cation exchange resin and an anion exchange resin. The separation resin and the anion exchange resin are separated, and the separated anion exchange resin is supercritically hydroxylated by reaction with an oxidizing agent that does not contain a substance that forms a salt in the presence of supercritical water, and the separated cation exchange resin is It is characterized in that supercritical water is supercritically hydroxylated by a reaction with an oxidizing agent containing no substance that forms a salt in the presence of supercritical water, and the generated acid is neutralized with an alkali agent.

【0024】上記構成においては、両樹脂の分離は請求
項1,2で説明したのと同様に行われ、両樹脂混在部分
はカチオン交換樹脂と一緒になるように分離される。
In the above configuration, the separation of the two resins is performed in the same manner as described in the first and second aspects, and the mixed portion of the two resins is separated so as to be combined with the cation exchange resin.

【0025】この発明によれば、アニオン交換樹脂とカ
チオン交換樹脂の超臨界水酸化処理は、別々の装置で行
うこともできるし、同一の装置を用いて処理手順を変え
て行うこともでき、後者によれば、超臨界水酸化処理設
備が共用できるので設備コストの上で有利である。
According to the present invention, the supercritical hydroxylation treatment of the anion exchange resin and the cation exchange resin can be performed in separate apparatuses, or can be performed by changing the processing procedure using the same apparatus. According to the latter, supercritical water oxidation treatment equipment can be shared, which is advantageous in equipment cost.

【0026】請求項4の廃棄イオン交換樹脂の減容化方
法の発明は、カチオン交換樹脂とアニオン交換樹脂の混
合状態のイオン交換樹脂を廃棄処理する前に減容化する
方法であって、カチオン交換樹脂とアニオン交換樹脂を
分離した後、均一に混合し、超臨界水の存在下に、塩を
生成する物質を含まない酸化剤との反応で超臨界水酸化
する反応領域に供給(フィード)すると共に、生成した
酸をアルカリ剤で中和することを特徴とする。
A fourth aspect of the present invention is a method for reducing the volume of a waste ion exchange resin before disposing the ion exchange resin in a mixed state of a cation exchange resin and an anion exchange resin. After separating the anion exchange resin and the anion exchange resin, they are mixed uniformly and supplied to the reaction zone where the supercritical water is used to react with an oxidizing agent that does not contain a salt-forming substance to supercritically hydroxylate. And neutralizing the generated acid with an alkali agent.

【0027】この発明によれば、イオン交換樹脂を分離
した後、均一に混合して反応領域に供給するので、供給
流体中にカチオン交換樹脂が偏在せずに平均的濃度で混
合して存在し、生成した酸を中和するためのアルカリ剤
の添加を一定量で供給できて操作が簡素化できる。
According to the present invention, since the ion exchange resin is separated and then uniformly mixed and supplied to the reaction zone, the cation exchange resin is not unevenly distributed in the supply fluid but exists at an average concentration. Further, the addition of an alkali agent for neutralizing the generated acid can be supplied in a fixed amount, thereby simplifying the operation.

【0028】なお、上記構成における「分離」は上述し
た請求項1,2と同様であり、また「均一に混合」と
は、カチオン交換樹脂の濃度を平均化することをいう。
均一混合の方法は、混合槽等において予め均一に混合し
た後に反応領域に供給するようにしてもよいし、分離し
たアニオン交換樹脂貯槽とカチオン交換樹脂貯槽とから
の送出し量を制御して、ラインミキサー等を介して反応
領域に均一混合して供給するようにしてもよい。均一の
比率は両樹脂が1:1の場合の他、1:2、2:1等の
適宜の比率とすることができる。
The "separation" in the above configuration is the same as in the first and second aspects, and the "uniform mixing" refers to averaging the concentration of the cation exchange resin.
The method of uniform mixing may be such that the mixture is supplied to the reaction area after being uniformly mixed in a mixing tank or the like, or the amount of the separated anion exchange resin storage tank and the cation exchange resin storage tank is controlled, and A uniform mixture may be supplied to the reaction zone via a line mixer or the like. The uniform ratio may be an appropriate ratio such as 1: 2, 2: 1 or the like in addition to the case where both resins are 1: 1.

【0029】請求項5の発明は、上記請求項4の発明に
おいて、均一混合イオン交換樹脂を超臨界水酸化の反応
領域に一定供給量で連続供給することを特徴とする。
A fifth aspect of the present invention is characterized in that, in the fourth aspect of the present invention, the homogeneously mixed ion exchange resin is continuously supplied at a constant supply rate to the reaction zone of supercritical water oxidation.

【0030】上記において「一定供給量」とは単位時間
当りの供給量を一定にすることをいう。ただし、本発明
がこれに限定されるものではなく、樹脂の供給量の変化
に応じてアルカリ剤の添加量を可変制御してもよい。
In the above description, "constant supply amount" means to make the supply amount per unit time constant. However, the present invention is not limited to this, and the addition amount of the alkali agent may be variably controlled according to the change in the supply amount of the resin.

【0031】この発明によれば、中和のためのアルカリ
剤添加の制御が一層容易となる。
According to the present invention, the control of the addition of an alkali agent for neutralization is further facilitated.

【0032】請求項6の発明は、上記の各発明において
おいて、イオン交換樹脂を粉砕することを特徴とする。
According to a sixth aspect of the present invention, in each of the above-mentioned inventions, the ion exchange resin is pulverized.

【0033】この発明によれば、イオン交換樹脂の粒径
を小さくすることで、スラリー状態の流体を反応領域に
供給する操作がより円滑にできる。
According to the present invention, by reducing the particle size of the ion exchange resin, the operation of supplying the fluid in the slurry state to the reaction zone can be performed more smoothly.

【0034】請求項7の発明は、上記の各発明におい
て、廃棄処理するイオン交換樹脂が原子力発電所で使用
されたイオン交換樹脂であることを特徴とする。
According to a seventh aspect of the present invention, in each of the above-mentioned inventions, the ion exchange resin to be disposed of is an ion exchange resin used in a nuclear power plant.

【0035】この発明によれば、放射性廃棄物であるイ
オン交換樹脂を大幅に減容化できる。
According to the present invention, the volume of the ion exchange resin which is radioactive waste can be significantly reduced.

【0036】請求項8の廃棄イオン交換樹脂の減容化装
置の発明は、混合状態のカチオン交換樹脂とアニオン交
換樹脂を分離する分離装置と、分離した両イオン交換樹
脂を所定の割合で均一に混合する混合装置と、得られた
均一混合イオン交換樹脂を、超臨界水の存在下に塩を生
成する物質を含まない酸化剤との反応により前記均一混
合イオン交換樹脂を超臨界水酸化する超臨界水酸化装置
と、この超臨界水酸化装置に前記均一混合イオン交換樹
脂を一定量で連続供給する分解対象物流体の連続供給装
置とを備えたことを特徴とする。
The invention of the apparatus for reducing the volume of waste ion exchange resin according to claim 8 is a separation apparatus for separating a cation exchange resin and an anion exchange resin in a mixed state, and a method for uniformly separating both ion exchange resins at a predetermined ratio. A mixing device for mixing, and the resulting homogeneously mixed ion exchange resin is supercritically hydroxylated by reacting the homogeneously mixed ion exchange resin with an oxidizing agent not containing a substance that forms a salt in the presence of supercritical water. A supercritical water oxidation apparatus and a continuous supply apparatus of a fluid to be decomposed, which continuously supplies the homogeneous mixed ion exchange resin in a constant amount to the supercritical water oxidation apparatus.

【0037】上記構成における「分離装置」としては、
例えば逆洗し沈整することで比重差分離する装置を挙げ
ることができる。「所定の割合」とは例えばカチオン交
換樹脂とアニオン交換樹脂を1:1等の割合とすること
をいうが、一般的には混合イオン交換樹脂として使用さ
れた時の混合割合の比とするのがよい場合が多い。
As the “separation device” in the above configuration,
For example, there can be mentioned a device for performing a specific gravity difference separation by backwashing and settling. The "predetermined ratio" means, for example, that the ratio of the cation exchange resin to the anion exchange resin is 1: 1 or the like. Generally, the ratio is the ratio of the mixing ratio when used as the mixed ion exchange resin. Is often better.

【0038】上記構成における「混合装置」としては、
攪拌羽根等を備えた予め混合するための混合槽や、アニ
オン交換樹脂貯槽とカチオン交換樹脂貯槽とから両樹脂
を所定量づつ送出しながらラインミキサー等を混合する
装置等を挙げることができる。
As the “mixing device” in the above configuration,
Examples thereof include a mixing tank having stirring blades and the like for mixing in advance, and an apparatus for mixing a line mixer or the like while sending both resins by a predetermined amount from an anion exchange resin storage tank and a cation exchange resin storage tank.

【0039】この装置発明によれば、カチオン交換樹脂
が偏在せずに平均的濃度で混合する供給流体を反応領域
に供給でき、例えば、生成した酸を中和するためのアル
カリ剤の添加を一定量で供給できるという簡易な操作が
行える。
According to the present invention, the supply fluid in which the cation exchange resin is mixed at an average concentration without uneven distribution can be supplied to the reaction zone. For example, the addition of an alkali agent for neutralizing the generated acid can be kept constant. A simple operation that can be supplied in a quantity can be performed.

【0040】[0040]

【発明の実施の形態】以下、本発明を図面に示す実施形
態に基づいて更に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.

【0041】実施形態1 図1は、復水脱塩装置から排出される使用済みの混合イ
オン交換樹脂をカチオン交換樹脂とアニオン交換樹脂に
分離して超臨界水酸化処理する方法の実施に用いる装置
の概要を示したものである。
Embodiment 1 FIG. 1 shows an apparatus used for carrying out a method for separating a used mixed ion exchange resin discharged from a condensate desalination apparatus into a cation exchange resin and an anion exchange resin and performing a supercritical water oxidation treatment. This is an outline of the above.

【0042】この図1において、1は例えば原子力発電
所の復水系の使用済み混合イオン交換樹脂を受け入れる
被処理(分解対象)樹脂貯槽であり、移送管2を介して
分離装置3に混合イオン交換樹脂を不図示のフィードポ
ンプで移送できるように設けられている。
In FIG. 1, reference numeral 1 denotes a treated (decomposed) resin storage tank for receiving a used mixed ion-exchange resin in a condensate system of a nuclear power plant, for example. It is provided so that the resin can be transferred by a feed pump (not shown).

【0043】上記分離装置3に移送された被処理樹脂
は、分離装置の槽31下部から分離水供給管32を通し
て分離水が供給されかつ槽31上部の分離水排出管33
から排出することによって該槽31内に上昇流を発生さ
せ、カチオン交換樹脂とアニオン交換樹脂の比重差を利
用して樹脂を分離する操作が行われる。そして一定時間
の分離水通水の後に通水を停止し、沈整させることで、
分離装置3の槽31内には、上層部に比重の小さい樹脂
(アニオン交換樹脂層:A)、下層部に比重の大きい樹
脂(カテオン交換樹脂層K)が分離し、また中間位置に
両樹脂が混在した混在層Mの三層が分離する。
Separated water is supplied from the lower part of the tank 31 of the separation apparatus through the separation water supply pipe 32 and the separated water discharge pipe 33 of the upper part of the tank 31 is transferred to the separation apparatus 3.
An operation is performed to generate an upward flow in the tank 31 by discharging the resin, and to separate the resin using the specific gravity difference between the cation exchange resin and the anion exchange resin. And after stopping the water flow after the separation water flow for a certain period of time and allowing it to settle,
In the tank 31 of the separation device 3, a resin having a low specific gravity (anion exchange resin layer: A) and a resin having a high specific gravity (cateon exchange resin layer K) are separated in an upper layer portion, and both resins are located in an intermediate position. Are separated from each other in the mixed layer M.

【0044】分離された上層部のアニオン交換樹脂A
は、アニオン樹脂移送管34を介してアニオン交換樹脂
貯溜タンク4に移送されて貯溜され、本例では、中間の
混在層Mの樹脂は返送管35を介して被処理樹脂貯槽1
に返送され、残ったカチオン交換樹脂Kは移送管36を
介してカチオン交換樹脂貯溜タンク5に移送されて貯溜
される。21,331,321,331,341,35
1,361はそれぞれ必要時に開路される開閉切換弁で
ある。
Separated upper layer of anion exchange resin A
Is transferred to and stored in the anion exchange resin storage tank 4 via the anion resin transfer pipe 34, and in this example, the resin in the middle mixed layer M is transferred to the resin storage tank 1 via the return pipe 35.
The remaining cation exchange resin K is transferred to the cation exchange resin storage tank 5 via the transfer pipe 36 and stored therein. 21,331,321,331,341,35
Reference numerals 1 and 361 denote on-off switching valves which are opened when necessary.

【0045】なお、この例では中間の混在層Mの樹脂を
被処理樹脂貯槽1に返送するようにしているが、この混
在層Mとカチオン交換樹脂層Kの樹脂を一緒にカチオン
交換樹脂貯溜タンク5に移送するようにしてもよい。
In this example, the resin of the intermediate mixed layer M is returned to the resin storage tank 1 to be treated. However, the resin of the mixed layer M and the resin of the cation exchange resin layer K are combined together in the cation exchange resin storage tank. 5 may be transferred.

【0046】上記において説明した分離装置3の構成及
び分離の操作は、例えば、従来より発電所の復水脱塩装
置のイオン交換樹脂の再生装置で採用されている信頼性
の高いシステムに準じて構成することができる。
The structure of the separator 3 and the operation of separation described above are based on, for example, a highly reliable system conventionally used in an ion-exchange resin regeneration unit of a condensate and desalination unit of a power plant. Can be configured.

【0047】以上のようにして分離されたカチオン交換
樹脂とアニオン交換樹脂のそれぞれの樹脂は、単独に、
あるいは一定の割合に均一混合して被処理樹脂供給管7
を介し超臨界水酸化装置の反応容器8に供給され、超臨
界水酸化処理が行なわれる。以下分離されたイオン交換
樹脂について行われる超臨界水酸化処理をいくつかのパ
ターンに分けて説明する。
Each of the cation exchange resin and the anion exchange resin separated as described above,
Alternatively, the resin supply pipe 7 to be treated is uniformly mixed at a certain ratio.
Is supplied to the reaction vessel 8 of the supercritical water oxidation apparatus through the above, and the supercritical water oxidation treatment is performed. Hereinafter, the supercritical water oxidation treatment performed on the separated ion exchange resin will be described by dividing into several patterns.

【0048】(1)アニオン交換樹脂単独の超臨界水酸
化処理 本例においては、アニオン交換樹脂貯溜タンク4に貯溜
された一般に粒径0.3〜0.5mm程のアニオン交換
樹脂(カチオン交換樹脂粒径も略同様)を、所定量の水
で懸濁しスラリー化して供給管41,開閉弁42から被
処理樹脂供給管7を介して超臨界水酸化の反応を行う反
応容器8へ供給する。なお該樹脂はタンク4への貯溜前
又は貯溜後に一層微細な粒子に粉砕,破砕処理する装置
を用いて粉砕してもよい(カチオン交換樹脂においても
同じ)。
(1) Supercritical Water Treatment of Anion Exchange Resin Alone In this example, an anion exchange resin (cation exchange resin) having a particle size of generally about 0.3 to 0.5 mm stored in an anion exchange resin storage tank 4 is used. Is suspended in a predetermined amount of water to form a slurry, and is supplied from a supply pipe 41 and an on-off valve 42 to a reaction vessel 8 for performing a supercritical water oxidation reaction via a resin supply pipe 7 to be treated. The resin may be pulverized into finer particles before or after storage in the tank 4 using a device for pulverizing and crushing the same (the same applies to the cation exchange resin).

【0049】本例の超臨界水酸化反応では、被処理樹脂
がOH型のアニオン交換樹脂であるから分解しても無機
酸を生じないので酸中和のためのアルカリ剤の注入を必
要としない。また仮にアニオン交換樹脂が塩化物イオン
等の塩を吸着しているために分解処理に伴って酸を生ず
る場合であっても、復水系で使用されたアニオン交換樹
脂は塩化物イオン型のような塩型のものは極めて少ない
のが普通であるから酸の発生量も少なく、したがって酸
中和のためのアルカリ剤の注入は実質的に必要がない。
また例えば使用時の特殊状況(海水リーク等)によって
アニオン交換樹脂の吸着塩化物イオン量が異常に多い場
合には、必要に応じて下記(2)の操作と同様にして中
和適量のアルカリ剤を添加すればよい。
In the supercritical water oxidation reaction of this example, since the resin to be treated is an OH-type anion exchange resin, no inorganic acid is generated even if it is decomposed, so that injection of an alkali agent for acid neutralization is not required. . Also, even if the anion exchange resin adsorbs salts such as chloride ions and generates an acid with the decomposition treatment, the anion exchange resin used in the condensate system is of the chloride ion type. Since the salt type is usually extremely small, the amount of generated acid is also small, so that injection of an alkali agent for acid neutralization is substantially unnecessary.
If the amount of adsorbed chloride ions of the anion exchange resin is abnormally large due to, for example, a special situation at the time of use (seawater leak or the like), an appropriate amount of neutralizing alkali agent may be used in the same manner as described in (2) below, if necessary. May be added.

【0050】本例においては、酸化反応に必要な酸化剤
は酸化剤供給管81から供給される。この場合に用いら
れる酸化剤は、上述のように、塩を生成する物質を含ま
ないものであることが必須であり、例えば空気,酸素ガ
ス等が好ましいものとして挙げられる。
In this embodiment, an oxidizing agent required for the oxidation reaction is supplied from an oxidizing agent supply pipe 81. As described above, it is essential that the oxidizing agent used in this case does not include a substance that generates a salt, and for example, air, oxygen gas, and the like are preferable.

【0051】被処理樹脂流体、酸化剤は、本例において
は被処理樹脂供給管7の途中であらかじめ混合するよう
にしているが、これに限定されるものではなく、一部の
流体を別にして反応容器8に供給してもよい。なお反応
溶媒である超臨界水は、本例では樹脂を懸濁する水が超
臨界温度以上に加熱されることで得る例として説明して
おり、このために既知の超臨界水酸化処理技術を用いて
構成できる適宜必要な加熱手段や高圧化手段(いずれも
図示せず)が設けられるが、これに限定されず、別途に
調製した超臨界水を反応容器8又は被処理樹脂供給管7
に導入するようにしてもよい。42,52,71,10
1,111,811,821は、それぞれ必要時に開路
される開閉切換弁である。
In the present embodiment, the resin fluid to be treated and the oxidizing agent are previously mixed in the middle of the resin supply pipe 7 to be treated. However, the present invention is not limited to this. May be supplied to the reaction vessel 8. In this example, the supercritical water as the reaction solvent is described as an example obtained by heating the water in which the resin is suspended to a temperature higher than the supercritical temperature. Appropriate necessary heating means and high-pressure means (both not shown), which can be constituted by using, are provided, but are not limited thereto, and separately prepared supercritical water is supplied to the reaction vessel 8 or the resin supply pipe 7 to be treated.
May be introduced. 42, 52, 71, 10
Reference numerals 1,111, 811 and 821 denote on-off switching valves which are opened when necessary.

【0052】本例の反応容器8は、縦筒型形状のベッセ
ル型と称される装置構造をなしていて、反応容器8の上
部中央からノズルによって被処理樹脂,酸化剤,超臨界
水を含む流体が連続的に吹き込まれて容器内で超臨界水
酸化反応を生じ、酸化分解した生成流体を(水,ガス)
を上部側に接続した上記排出管9から反応容器8外に排
出する。
The reaction vessel 8 of this embodiment has a vertical cylinder type vessel structure called a vessel type, and contains a resin to be treated, an oxidizing agent, and supercritical water from the upper center of the reaction vessel 8 through a nozzle. The fluid is continuously blown, causing a supercritical water oxidation reaction in the vessel, and the oxidatively decomposed fluid (water, gas)
Is discharged out of the reaction vessel 8 through the discharge pipe 9 connected to the upper side.

【0053】以上により、反応容器8に供給された被処
理樹脂(分解対象物)であるアニオン交換樹脂は、超臨
界水の存在条件下で酸化分解されて水とガスに分解さ
れ、この分解生成された流体は、排出管9の途中で冷却
後に減圧機構91で減圧し、凝縮水とガスに分離し、ガ
スは排気管10より系外に排出され、凝縮水は凝縮水排
出管11より系外に排出される。
As described above, the anion exchange resin, which is the resin to be treated (substance to be decomposed), supplied to the reaction vessel 8 is oxidatively decomposed in the presence of supercritical water and decomposed into water and gas. The cooled fluid is decompressed by the decompression mechanism 91 after being cooled in the middle of the discharge pipe 9, separated into condensed water and gas, the gas is discharged out of the system through the exhaust pipe 10, and the condensed water is discharged through the condensed water discharge pipe 11 through the system. It is discharged outside.

【0054】この例の超臨界水酸化処理においては、酸
を生成する物質を含まないアニオン交換樹脂を中和剤を
添加することなく簡易な操作制御で酸化分解処理するこ
とができる。
In the supercritical water oxidation treatment of this example, an anion exchange resin containing no acid-generating substance can be oxidatively decomposed by a simple operation control without adding a neutralizing agent.

【0055】(2)カチオン交換樹脂単独の超臨界水酸
化処理 この例は、カチオン交換樹脂貯溜タンク5に貯溜された
カチオン交換樹脂を、上記例(1)の場合と同様に所定
量の水で懸濁しスラリー化して供給管51,開閉弁52
から被処理樹脂供給管7を介して上記反応容器8に供給
して超臨界水酸化処理する場合を説明する。
(2) Supercritical water oxidation treatment of cation exchange resin alone In this example, the cation exchange resin stored in the cation exchange resin storage tank 5 is treated with a predetermined amount of water in the same manner as in the above example (1). Suspended and made into slurry, supply pipe 51, on-off valve 52
The case where the supercritical water oxidation treatment is performed by supplying the reaction vessel 8 to the reaction vessel 8 through the resin supply pipe 7 to be treated will be described.

【0056】本例の場合には、被処理樹脂が分解反応に
より無機酸を生ずる物質を含むカチオン交換樹脂(例え
ばAmberlite200C(前出))であるので、
反応容器8ないしその後段の配管等における腐蝕を防止
するために、分解生成する硫酸の中和のためにアルカリ
剤をアルカリ供給管82から供給する点で上記(1)と
は異なる。またこの違いに伴って上記例(1)とは使用
する装置に必要な構成及び操作が異なる。これを除く他
の点は上記例(1)同じである。
In the case of this example, the resin to be treated is a cation exchange resin (for example, Amberlite 200C (described above)) containing a substance that generates an inorganic acid by a decomposition reaction.
This is different from the above (1) in that an alkali agent is supplied from an alkali supply pipe 82 to neutralize sulfuric acid generated by decomposition in order to prevent corrosion in the reaction vessel 8 and the subsequent pipes and the like. In addition, the configuration and operation required for the device to be used are different from the above example (1) in accordance with this difference. The other points except for this are the same as the above-mentioned example (1).

【0057】以下上記例(1)と装置に必要な構成と操
作が相違する点を説明すると、本実施形態1を示す図1
において用いられているベッセル型の反応容器8の底部
に対して、塩移送水である超臨界温度以下の水を塩移送
水供給管83より供給すると共に、塩排出管84より排
出する操作を行うようにしている構成を採用している。
すなわち、これらの構成は、カチオン交換樹脂を超臨界
水酸化するこの例(2)で生ずる無機酸を中和すること
によって、反応容器8内に析出する無機塩を該反応容器
8に供給する超臨界温度以下の水(機能的には塩移送の
ための水)に溶解させて排出するものである。本例の構
成によれば、ベッセル型反応容器8内での超臨界水酸化
反応によって生じた比重の大きな無機塩は、装置構造上
から反応容器8下部の塩移送水に落下して溶解する。こ
れにより、生成流体(水,ガス)を反応容器8から後段
に送る管路とは別に、該管路を閉塞する虞の大きい付着
性の強い塩を分離し系外に除去できるので、結果とし
て、カチオン交換樹脂の連続した分解処理を達成でき
る。
The difference between the above example (1) and the configuration and operation required for the apparatus will be described below.
The operation of supplying water below the supercritical temperature, which is salt transfer water, from the salt transfer water supply pipe 83 and discharging it from the salt discharge pipe 84 to the bottom of the vessel-type reaction vessel 8 used in the above step is performed. The configuration is adopted.
That is, these constitutions are to supply the inorganic salt precipitated in the reaction vessel 8 to the reaction vessel 8 by neutralizing the inorganic acid generated in this example (2) in which the cation exchange resin is supercritically hydroxylated. It is dissolved in water below the critical temperature (functionally water for transporting salt) and discharged. According to the configuration of the present example, the inorganic salt having a large specific gravity generated by the supercritical water oxidation reaction in the vessel-type reaction vessel 8 falls from the apparatus structure into the salt transfer water below the reaction vessel 8 and is dissolved. As a result, apart from the pipeline for sending the generated fluid (water, gas) from the reaction vessel 8 to the subsequent stage, highly adherent salts which are likely to block the pipeline can be separated and removed from the system. In addition, continuous decomposition treatment of the cation exchange resin can be achieved.

【0058】なお、超臨界水酸化反応で生成される酸を
中和するためのアルカリ剤の添加位置は、必ずしも反応
容器8に対して被処理樹脂を供給する始端側に限定され
るものではなく、反応容器8ないしその後段の配管等の
酸腐食を防止できる位置であればよい。
The addition position of the alkali agent for neutralizing the acid generated in the supercritical hydroxylation reaction is not necessarily limited to the starting end side where the resin to be treated is supplied to the reaction vessel 8. Any position may be used as long as it can prevent acid corrosion of the reaction vessel 8 or the subsequent piping.

【0059】(3)アニオン交換樹脂とカチオン交換樹
脂を均一混合して行う超臨界水酸化処理 この例の場合には、カチオン交換樹脂とアニオン交換樹
脂の樹脂は、一定の割合で均一に混合しながら被処理樹
脂供給管7を介して超臨界水酸化装置3に供給する。
(3) Supercritical water oxidation treatment in which anion exchange resin and cation exchange resin are uniformly mixed In this case, the cation exchange resin and the anion exchange resin are uniformly mixed at a fixed ratio. The water is supplied to the supercritical water oxidation apparatus 3 via the resin supply pipe 7 while being treated.

【0060】本例においては、上記例(2)と同様に、
被処理樹脂(アニオン交換樹脂とカチオン交換樹脂の混
合物)は分解して無機酸を生じる有機物を含むので、反
応容器の腐蝕を防止するため酸中和のためのアルカリ剤
をアルカリ剤供給管82から供給する。その他の装置に
必要な構成及び操作は上記(2)と同じである。
In this example, as in the above example (2),
Since the resin to be treated (a mixture of an anion exchange resin and a cation exchange resin) contains an organic substance that decomposes to generate an inorganic acid, an alkali agent for acid neutralization is supplied from the alkali agent supply pipe 82 to prevent corrosion of the reaction vessel. Supply. The configuration and operation required for the other devices are the same as in (2) above.

【0061】なお、カチオン交換樹脂に混入しているア
ニオン交換樹脂の量は既知であるから、中和剤としての
アルカリ量はカチオン交換樹脂に見合って添加すればよ
く、したがって無駄なアルカリを添加することがなくな
る。
Since the amount of the anion exchange resin mixed in the cation exchange resin is known, the amount of the alkali as a neutralizing agent may be added in accordance with the cation exchange resin. Disappears.

【0062】以上の(1)〜(3)で説明した実施形態
1によれば、アニオン交換樹脂とカチオン交換樹脂をそ
れぞれに適した超臨界水酸化処理で各独立にすることに
よって、原子力発電所で使用された結果発生するイオン
交換樹脂を適切に減容化することができ、放射性物質を
含む物質の処理においては極めて有益である。
According to the first embodiment described in the above (1) to (3), the anion exchange resin and the cation exchange resin are each made independent by supercritical water oxidation treatment suitable for each, so that the nuclear power plant The volume of the ion exchange resin generated as a result of the use can be appropriately reduced, which is extremely useful in treating a substance containing a radioactive substance.

【0063】なお本例は超臨界水酸化処理装置としてベ
ッセル型の反応容器を用いた場合を説明したが、本発明
の処理方法は反応容器の型式に限定されるものではな
く、例えばパイプ式と称される反応容器を用いた超臨界
水酸化に適用することもできる。
In this example, the case where a vessel type reaction vessel is used as the supercritical water oxidation treatment apparatus has been described. However, the treatment method of the present invention is not limited to the type of the reaction vessel, and may be, for example, a pipe type. It can also be applied to supercritical water oxidation using a so-called reaction vessel.

【0064】実施形態2 図2に示した本例は、上記実施形態1においてカチオン
交換樹脂を含むイオン交換樹脂を超臨界水酸化処理する
場合(上記(2)及び(3))に、塩の生成量を一層低
減,抑制させるのに適した例を示すものである。
Embodiment 2 In the present embodiment shown in FIG. 2, when the ion exchange resin containing the cation exchange resin is subjected to the supercritical water oxidation treatment in the above Embodiment 1 (the above (2) and (3)), This shows an example suitable for further reducing and suppressing the generation amount.

【0065】例えば、廃棄イオン交換樹脂が再生型と塩
型のカチオン交換樹脂とアニオン交換樹脂の混合物であ
る場合、これらの混合状態を正確に把握して、中和剤と
してのアルカリをあらかじめ添加することは困難であ
る。この場合、中和の不十分さによって酸による装置の
耐久性低下を招いたり、排出管等の閉塞を招く虞れを避
ける必要から、一般的には中和剤の添加量は多めにする
ことになるが、一般的難燃性有機物の酸化分解処理と異
なり、本発明が対象とする放射性物質や有害金属等を吸
着・付着したイオン交換樹脂の処理にあっては、単純に
中和剤の添加量を増すことは、廃棄物の減容化という目
的を損なう別の問題がある。
For example, when the waste ion exchange resin is a mixture of regenerated and salt type cation exchange resins and anion exchange resins, the state of the mixture is accurately grasped, and an alkali as a neutralizing agent is added in advance. It is difficult. In this case, it is generally necessary to add a large amount of the neutralizing agent because it is necessary to avoid a risk that the durability of the device may be deteriorated by acid due to insufficient neutralization, or that the discharge pipe may be blocked. However, unlike the oxidative decomposition treatment of general flame-retardant organic substances, in the treatment of ion-exchange resin to which radioactive substances and harmful metals targeted by the present invention are adsorbed and adhered, the neutralizing agent is simply used. Increasing the amount of addition has another problem that detracts from the purpose of reducing the volume of waste.

【0066】そこで本例においては、超臨界水酸化装置
の塩移送水排出管84のラインにpH計842を設置し
て、塩移送水のpHを計測し、この計測値をアルカリ供
給管82の注入ポンプ822の駆動制御にフィードバッ
クして添加量をコントロールするように構成している。
他の構成は図1と同じである。
Therefore, in the present embodiment, a pH meter 842 is installed in the line of the salt transfer water discharge pipe 84 of the supercritical water oxidation apparatus, and the pH of the salt transfer water is measured. The addition amount is controlled by feeding back to the drive control of the injection pump 822.
Other configurations are the same as those in FIG.

【0067】これによって、酸中和に必要なアルカリ剤
の量が変動してもこれに追従して添加量を追従変化させ
て、塩の発生量を抑制することができる。
Thus, even if the amount of the alkaline agent required for acid neutralization changes, the amount of addition can be changed to follow the change, thereby suppressing the amount of salt generated.

【0068】[0068]

【発明の効果】以上説明したように、本願の各発明によ
れば、放射性物質や有害金属を吸着・付着した使用済み
廃棄イオン交換樹脂を、塩の生成を極力少なくしながら
減容化することができ、最終的に固化保管する廃棄物量
を低減できるという効果を奏する。
As described above, according to the inventions of the present application, it is possible to reduce the volume of a used waste ion exchange resin to which a radioactive substance or a harmful metal is adsorbed and adhered while minimizing salt formation. Thus, there is an effect that the amount of waste finally solidified and stored can be reduced.

【0069】また本願の請求項4,5の発明によれば、
超臨界水酸化処理により生成する酸の中和のために添加
する中和剤の添加量を、一定量で添加できるので操作が
簡素化されるという効果を奏する。
According to the fourth and fifth aspects of the present invention,
Since the amount of the neutralizing agent to be added for neutralizing the acid generated by the supercritical water oxidation treatment can be added in a constant amount, the operation is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の方法発明を実施するために用いられる廃
棄イオン交換樹脂の実施形態1の減容化装置の構成概要
をフローで示した図。
FIG. 1 is a flow chart showing an outline of a configuration of a volume reduction device according to a first embodiment of a waste ion exchange resin used for carrying out the method invention of the present application.

【図2】本願の方法発明を実施するために用いられる廃
棄イオン交換樹脂の実施形態2の減容化装置の構成概要
の一部をフローで示した図。
FIG. 2 is a flow chart showing a part of a configuration outline of a volume reduction device according to a second embodiment of the waste ion exchange resin used to carry out the method invention of the present application.

【図3】従来の超臨界水酸化装置の構成概要をフローで
示した図。
FIG. 3 is a flowchart showing an outline of the configuration of a conventional supercritical water oxidation apparatus.

【符号の説明】[Explanation of symbols]

1・・・被処理樹脂貯槽 2・・・移送管 21・・・開閉切換弁 3・・・分離装置 31・・・槽 32・・・分離水供給管 321・・・開閉切換弁 33・・・分離水排出管 331・・・開閉切換弁 34・・・アニオン交換樹脂移送管 341・・・開閉切換弁 35・・・返送管 351・・・開閉切換弁 36・・・カチオン交換樹脂移送管 361・・・開閉切換弁 4・・・アニオン交換樹脂貯溜タンク 41・・・供給管 42・・・開閉切換弁 5・・・カチオン交換樹脂貯溜タンク 51・・・供給管 52・・・開閉切換弁 7・・・被処理樹脂供給管 71・・・開閉切換弁 8・・・反応容器(超臨界水酸化装置) 81・・・酸化剤供給管 811・・・開閉切換弁 82・・・アルカリ供給管 821・・・開閉切換弁 822・・・ポンプ 83・・・塩移送水供給管 831・・・開閉切換弁 84・・・塩移送水排出管 841・・・開閉切換弁 842・・・pH計 9・・・排出管 10・・・排気管 101・・・開閉切換弁 11・・・凝縮水排出管 111・・・開閉切換弁 DESCRIPTION OF SYMBOLS 1 ... Resin tank to be processed 2 ... Transfer pipe 21 ... Open / close switching valve 3 ... Separator 31 ... Tank 32 ... Separated water supply pipe 321 ... Open / close switching valve 33 ... Separated water discharge pipe 331 Open / close switching valve 34 Anion exchange resin transfer pipe 341 Open / close switching valve 35 Return pipe 351 Open / close switching valve 36 Cation exchange resin transfer pipe 361: Open / close switching valve 4 ... Anion exchange resin storage tank 41 ... Supply pipe 42 ... Open / close switching valve 5 ... Cation exchange resin storage tank 51 ... Supply pipe 52 ... Open / close switching Valve 7: Resin to be treated supply pipe 71: Open / close switching valve 8: Reaction vessel (supercritical water oxidation device) 81: Oxidant supply pipe 811: Open / close switching valve 82: Alkaline Supply pipe 821: open / close switching valve 822: pump 3 ... Salt transfer water supply pipe 831 ... Open / close switching valve 84 ... Salt transfer water discharge pipe 841 ... Open / close switching valve 842 ... pH meter 9 ... Drain pipe 10 ... Exhaust pipe 101: open / close switching valve 11: condensed water discharge pipe 111: open / close switching valve

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 カチオン交換樹脂とアニオン交換樹脂を
含む混合状態のイオン交換樹脂を廃棄処理する前に減容
化する方法であって、少なくともカチオン交換樹脂を除
去した前記イオン交換樹脂を、超臨界水の存在下に、塩
を生成する物質を含まない酸化剤との反応により超臨界
水酸化することを特徴とする廃棄イオン交換樹脂の減容
化方法。
1. A method for reducing the volume of a mixed ion-exchange resin containing a cation-exchange resin and an anion-exchange resin before disposal, wherein the ion-exchange resin from which at least the cation-exchange resin is removed is supercritical A method for reducing the volume of a waste ion exchange resin, wherein supercritical water oxidation is carried out in the presence of water by reaction with an oxidizing agent which does not contain a salt-forming substance.
【請求項2】 カチオン交換樹脂とアニオン交換樹脂を
含む混合状態のイオン交換樹脂を廃棄処理する前に減容
化する方法であって、少なくともアニオン交換樹脂を除
去した前記イオン交換樹脂を、超臨界水の存在下に、塩
を生成する物質を含まない酸化剤との反応により超臨界
水酸化すると共に、生成した酸をアルカリ剤で中和する
ことを特徴とする廃棄イオン交換樹脂の減容化方法。
2. A method for reducing the volume of an ion-exchange resin in a mixed state containing a cation-exchange resin and an anion-exchange resin before disposal, wherein the ion-exchange resin from which at least the anion-exchange resin has been removed is supercritical. Supercritical water oxidation by reaction with an oxidizing agent that does not contain a salt-forming substance in the presence of water, and neutralizing the generated acid with an alkali agent reduces the volume of waste ion exchange resin. Method.
【請求項3】 カチオン交換樹脂とアニオン交換樹脂の
混合状態のイオン交換樹脂を廃棄処理する前に減容化す
る方法であって、カチオン交換樹脂とアニオン交換樹脂
を分離し、分離したアニオン交換樹脂は、超臨界水の存
在下に塩を生成する物質を含まない酸化剤との反応によ
り超臨界水酸化し、分離したカチオン交換樹脂は、超臨
界水の存在下に塩を生成する物質を含まない酸化剤との
反応により超臨界水酸化すると共に、生成した酸をアル
カリ剤で中和することを特徴とする廃棄イオン交換樹脂
の減容化方法。
3. A method for reducing the volume of an ion-exchange resin in a mixed state of a cation-exchange resin and an anion-exchange resin before discarding the same, wherein the cation-exchange resin and the anion-exchange resin are separated, and the separated anion-exchange resin is separated. Is supercritically hydroxylated by reaction with an oxidizing agent that does not contain a substance that produces a salt in the presence of supercritical water, and the separated cation exchange resin contains a substance that produces a salt in the presence of supercritical water. A method for reducing the volume of a waste ion exchange resin, comprising supercritically hydroxylating by reaction with a non-oxidizing agent and neutralizing the generated acid with an alkali agent.
【請求項4】 カチオン交換樹脂とアニオン交換樹脂の
混合状態のイオン交換樹脂を廃棄処理する前に減容化す
る方法であって、カチオン交換樹脂とアニオン交換樹脂
を分離した後、均一に混合し、超臨界水の存在下に、塩
を生成する物質を含まない酸化剤との反応で超臨界水酸
化する反応領域に供給すると共に、生成した酸をアルカ
リ剤で中和することを特徴とする廃棄イオン交換樹脂の
減容化方法。
4. A method for reducing the volume of an ion-exchange resin in a mixed state of a cation-exchange resin and an anion-exchange resin before discarding, wherein the cation-exchange resin and the anion-exchange resin are separated and then uniformly mixed. In the presence of supercritical water, the reaction with an oxidizing agent not containing a salt-forming substance is supplied to a reaction zone for supercritical water oxidation, and the generated acid is neutralized with an alkali agent. How to reduce the volume of waste ion exchange resin.
【請求項5】 請求項4において、前記均一混合イオン
交換樹脂を超臨界水酸化の反応領域に一定供給量で連続
供給することを特徴とする廃棄イオン交換樹脂の減容化
方法。
5. The method for reducing the volume of a waste ion-exchange resin according to claim 4, wherein the homogeneously mixed ion-exchange resin is continuously supplied in a constant supply amount to a reaction zone for supercritical water oxidation.
【請求項6】 請求項1ないし5のいずれかにおいて、
イオン交換樹脂を粉砕することを特徴とする廃棄イオン
交換樹脂の減容化方法。
6. The method according to claim 1, wherein
A method for reducing the volume of waste ion-exchange resin, which comprises crushing the ion-exchange resin.
【請求項7】 請求項1ないし6のいずれかにおいて、
廃棄処理するイオン交換樹脂が原子力発電所で使用され
たイオン交換樹脂であることを特徴とする廃棄イオン交
換樹脂の減容化方法。
7. The method according to claim 1, wherein
A method for reducing the volume of a waste ion exchange resin, wherein the ion exchange resin to be disposed of is an ion exchange resin used in a nuclear power plant.
【請求項8】 混合状態のカチオン交換樹脂とアニオン
交換樹脂を分離する分離装置と、分離した両イオン交換
樹脂を所定の割合で均一に混合する混合装置と、得られ
た均一混合イオン交換樹脂を、超臨界水の存在下に塩を
生成する物質を含まない酸化剤との反応により前記均一
混合イオン交換樹脂を超臨界水酸化する超臨界水酸化装
置と、この超臨界水酸化装置に前記均一混合イオン交換
樹脂を一定量で連続供給する分解対象物流体の連続供給
装置と、を備えたことを特徴とする廃棄イオン交換樹脂
の減容化装置。
8. A separation device for separating a cation exchange resin and an anion exchange resin in a mixed state, a mixing device for uniformly mixing both separated ion exchange resins at a predetermined ratio, and a uniform ion exchange resin obtained. A supercritical water oxidation device that supercritically waters the homogeneously mixed ion exchange resin by reacting with an oxidizing agent that does not contain a substance that produces a salt in the presence of supercritical water; and A continuous supply device for a fluid to be decomposed, which continuously supplies a fixed amount of a mixed ion exchange resin, and a volume reduction device for a waste ion exchange resin.
JP09047397A 1997-04-09 1997-04-09 How to reduce the volume of waste ion exchange resin Expired - Fee Related JP3462969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09047397A JP3462969B2 (en) 1997-04-09 1997-04-09 How to reduce the volume of waste ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09047397A JP3462969B2 (en) 1997-04-09 1997-04-09 How to reduce the volume of waste ion exchange resin

Publications (2)

Publication Number Publication Date
JPH10279726A true JPH10279726A (en) 1998-10-20
JP3462969B2 JP3462969B2 (en) 2003-11-05

Family

ID=13999568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09047397A Expired - Fee Related JP3462969B2 (en) 1997-04-09 1997-04-09 How to reduce the volume of waste ion exchange resin

Country Status (1)

Country Link
JP (1) JP3462969B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083834A1 (en) * 2000-04-28 2001-11-08 Johnson Matthey Public Limited Company Precious metal recovery from organics-precious metal compositions with supercritical water reactant
KR100764904B1 (en) 2004-06-18 2007-10-09 한국원자력연구원 METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
KR100858510B1 (en) 2007-05-16 2008-09-12 한국전력공사 Process for supercritical water oxidation of cationic exchange resin used in nuclear power
JP2018028442A (en) * 2016-08-15 2018-02-22 太平電業株式会社 Separation method and device of high dose waste
JP2019082343A (en) * 2017-10-29 2019-05-30 Hkテクノロジー株式会社 Radioactive waste disposal system and disposal method
CN114259971A (en) * 2021-12-03 2022-04-01 哈尔滨工程大学 Device for treating cation exchange resin through carbonate oxidation and application thereof
DE102021004501A1 (en) 2021-09-04 2023-03-09 Westinghouse Electric Germany Gmbh Ion exchange resin treatment system and method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083834A1 (en) * 2000-04-28 2001-11-08 Johnson Matthey Public Limited Company Precious metal recovery from organics-precious metal compositions with supercritical water reactant
US7122167B2 (en) 2000-04-28 2006-10-17 Johnson Matthey Public Limited Company Precious metal recovery from organics-precious metal compositions with supercritical water reactant
KR100764904B1 (en) 2004-06-18 2007-10-09 한국원자력연구원 METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
KR100858510B1 (en) 2007-05-16 2008-09-12 한국전력공사 Process for supercritical water oxidation of cationic exchange resin used in nuclear power
JP2018028442A (en) * 2016-08-15 2018-02-22 太平電業株式会社 Separation method and device of high dose waste
JP2019082343A (en) * 2017-10-29 2019-05-30 Hkテクノロジー株式会社 Radioactive waste disposal system and disposal method
DE102021004501A1 (en) 2021-09-04 2023-03-09 Westinghouse Electric Germany Gmbh Ion exchange resin treatment system and method therefor
CN114259971A (en) * 2021-12-03 2022-04-01 哈尔滨工程大学 Device for treating cation exchange resin through carbonate oxidation and application thereof
CN114259971B (en) * 2021-12-03 2023-11-28 哈尔滨工程大学 Device for oxidizing and treating cation exchange resin by carbonate and application thereof

Also Published As

Publication number Publication date
JP3462969B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JPH10279726A (en) Volume reduction of waste ion-exchange resin
KR101278231B1 (en) Method and system for suppressing adhesion of radioactive substance
JPH08506514A (en) Method and apparatus for treating and utilizing waste by converting it into non-polluting and reusable substances
JPH06501644A (en) Apparatus and method for hydrolysis of cyanide-containing liquids
JPH1199394A (en) Method for removing organic matter in water
JP2002102672A (en) Method and apparatus for hydrothermal reaction
JP3699367B2 (en) Waste liquid treatment method
CN112655055B (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
JP4675521B2 (en) Method and apparatus for treating radioactive organic waste
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP2004105820A (en) Method and apparatus for hydrothermal reaction
JP3426110B2 (en) Method and apparatus for transporting solids to a reaction field in a supercritical water atmosphere
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2003236569A (en) Method of hydrothermal oxidation reaction
JP2003236594A (en) Apparatus for treating sludge
JP2005326361A (en) Treating method and treating device of anticorrosive
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JPH10314768A (en) Method for oxidation of supercritical water
JP2003236363A (en) Process for hydrothermal oxidation reaction
JP2001038190A (en) Hydrothermal reaction method and device
JP2003236364A (en) Process for hydrothermal reaction
JP2003236568A (en) Hydrothermal reaction treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees