JP2003236569A - Method of hydrothermal oxidation reaction - Google Patents

Method of hydrothermal oxidation reaction

Info

Publication number
JP2003236569A
JP2003236569A JP2002039344A JP2002039344A JP2003236569A JP 2003236569 A JP2003236569 A JP 2003236569A JP 2002039344 A JP2002039344 A JP 2002039344A JP 2002039344 A JP2002039344 A JP 2002039344A JP 2003236569 A JP2003236569 A JP 2003236569A
Authority
JP
Japan
Prior art keywords
oxidation reaction
liquid
hydrothermal
treated
hydrothermal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002039344A
Other languages
Japanese (ja)
Inventor
Hiroshi Obuse
洋 小布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Kurita Water Industries Ltd
General Atomics Corp
Original Assignee
Komatsu Ltd
Kurita Water Industries Ltd
General Atomics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Kurita Water Industries Ltd, General Atomics Corp filed Critical Komatsu Ltd
Priority to JP2002039344A priority Critical patent/JP2003236569A/en
Publication of JP2003236569A publication Critical patent/JP2003236569A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of a hydrothermal oxidation reaction wherein a hydrothermal reactor can be operated safely and for a long term by reducing corrosion thereof and at low cost by reducing the used amount of a neutralizing agent. <P>SOLUTION: Waste liquid A and waste liquid B are introduced through a passage 11 and a passage 12, respectively, to a mixing vessel 1 and mixed with each other in such a manner that the value Z represented by equation (1) (wherein [Na], [K],... each denotes molar concentration of each atom contained in mixed waste liquid) satisfies -0.01≤Z≤+0.01. The mixed waste liquid 13 is sent to a supplying apparatus 2a of the hydrothermal reactor 2 and mixed with an oxidizing agent there and the mixed flow thereof is supplied to the hydrothermal reactor 2 in downward flow to perform the hydrothermal oxidation reaction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水の超臨界または
亜臨界状態下で酸化反応を行う水熱酸化反応方法、特に
廃棄物の分解を行うのに好適な水熱酸化反応方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a hydrothermal oxidation reaction method for carrying out an oxidation reaction under supercritical or subcritical conditions of water, and more particularly to a hydrothermal oxidation reaction method suitable for decomposing wastes. is there.

【0002】[0002]

【従来の技術】水の超臨界または亜臨界状態下で酸化反
応を行う水熱酸化反応処理は廃液中の有機物を短時間で
高レベルまで酸化分解できる技術として注目されてい
る。水熱酸化反応を行うことにより、被処理液中の有機
成分は二酸化炭素、窒素成分は窒素ガス(条件によって
はアンモニアや硝酸性窒素も生成する)へと分解され
る。また、リンや硫黄といったヘテロ原子はそれぞれリ
ン酸イオンおよび硫酸イオンにまで酸化される。
2. Description of the Related Art Hydrothermal oxidation reaction treatment, in which an oxidation reaction is carried out under supercritical or subcritical conditions of water, has been attracting attention as a technology capable of oxidatively decomposing organic matter in waste liquid to a high level in a short time. By performing the hydrothermal oxidation reaction, the organic components in the liquid to be treated are decomposed into carbon dioxide, and the nitrogen components are decomposed into nitrogen gas (ammonia and nitrate nitrogen are also generated depending on the conditions). Heteroatoms such as phosphorus and sulfur are also oxidized to phosphate ions and sulfate ions, respectively.

【0003】水熱酸化反応実用化の大きな課題として、
処理装置材質の腐食があげられる。一般には被処理液中
に含まれる酸、あるいは水熱酸化反応によって生成する
酸による腐食が多いが、アルカリによる腐食についても
報告されている。従来の水熱酸化反応方法では、予め被
処理液の分析を行い、推定酸生成量を求め、それを中和
するのに十分な量の中和剤を反応器供給前(特表平3−
500264)、あるいは反応後の処理流体に供給する
方法で対処していた(特開平10−314770、特開
平11−156186)。また、中和剤の添加量は、反
応終了後に水熱酸化処理水を減圧・冷却してpHを求
め、そのpHが腐食の起こりにくい適正値(通常、pH
3〜11)になるように調整することで対応していた。
As a major issue for practical application of hydrothermal oxidation reaction,
Corrosion of the material of the processing equipment. Generally, corrosion by an acid contained in the liquid to be treated or an acid generated by a hydrothermal oxidation reaction is large, but corrosion by an alkali is also reported. In the conventional hydrothermal oxidation reaction method, the liquid to be treated is analyzed in advance to obtain an estimated acid production amount, and a sufficient amount of a neutralizing agent for neutralizing the estimated acid production amount is supplied before the reactor is supplied (see Table 3
500264) or a method of supplying the reaction fluid after the reaction (JP-A-10-314770, JP-A-11-156186). The amount of the neutralizing agent added is determined by decompressing and cooling the hydrothermally oxidized water after the reaction to determine the pH, and the pH is an appropriate value (usually pH
It was dealt with by adjusting so as to be 3 to 11).

【0004】一方、実際の水熱酸化反応では複数の廃液
を処理しなければならないケースが多い。このような場
合、各廃液ごとに必要な中和剤量を計算し、各廃液ごと
に必要な中和剤を添加しながら処理するとなると、ある
場合には酸の添加、ある場合にはアルカリの添加などの
対応が必要となる。このような対応は運転管理が煩雑に
なる他、複数の中和剤供給手段が必要なりコスト増を招
き、また中和剤の量が多量に必要となりコスト増を招く
など、不都合な点が多い。
On the other hand, in many cases, a plurality of waste liquids must be treated in the actual hydrothermal oxidation reaction. In such a case, the amount of neutralizing agent required for each waste liquid should be calculated, and the treatment should be performed while adding the necessary neutralizing agent for each waste liquid. It is necessary to take measures such as addition. Such measures have many inconveniences such as complicated operation management, increased cost due to the need for a plurality of neutralizer supply means, and increased cost due to the large amount of neutralizer. .

【0005】また、実用的な問題として、単純に被処理
液のpHを中性近辺になるように調整しても、水熱酸化
反応に伴って被反応物の分解により塩化物イオン、硫酸
イオン、リン酸イオン等が生成するとともに、pH値に
影響していた有機アミンやアンモニア、有機酸等が分解
するので、処理水のpHは大きく変動してしまう場合が
多く、このため水熱反応器の腐食を防止するのは難し
い。
As a practical problem, even if the pH of the liquid to be treated is simply adjusted to be near neutral, chloride ions and sulfate ions will be generated due to the decomposition of the reactant due to the hydrothermal oxidation reaction. , Phosphate ions, etc. are generated, and organic amines, ammonia, organic acids, etc. that have affected the pH value are decomposed, so that the pH of the treated water often fluctuates greatly. Therefore, the hydrothermal reactor It is difficult to prevent corrosion.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、水熱
酸化反応器の腐食を低減して安全で、かつ長期的な運転
を可能にするとともに、中和剤の使用量を少なくして低
コストで運転することができる水熱酸化反応方法を提案
することである。
The object of the present invention is to reduce corrosion of the hydrothermal oxidation reactor to enable safe and long-term operation, and to reduce the amount of the neutralizing agent used. It is to propose a hydrothermal oxidation reaction method that can be operated at low cost.

【0007】[0007]

【課題を解決するための手段】本発明者は上記の課題を
解決する方法を検討した結果、水熱酸化反応後の処理水
に含まれる元素のバランスが特定の条件を満たす状態で
廃液を水熱酸化反応に供することで、腐食を防止するこ
とができるとともに、中和剤の使用量が低減できること
を見い出した。
Means for Solving the Problems As a result of studying a method for solving the above-mentioned problems, the present inventor has conducted a waste liquid treatment under the condition that the balance of elements contained in the treated water after the hydrothermal oxidation reaction satisfies a specific condition. It was found that the thermal oxidation reaction can prevent corrosion and reduce the amount of the neutralizing agent used.

【0008】すなわち、本発明は次の水熱酸化反応方法
である。 (1) 被処理液中に含まれる被反応物を水の超臨界ま
たは亜臨界状態で酸化する水熱酸化反応方法であって、
被処理液中に含まれる各元素の含有量の関係を示す下記
数式(1)で示されるZの値が、−0.01≦Z≦+
0.01を満足する状態で水熱酸化反応を行う水熱酸化
反応方法。
That is, the present invention is the following hydrothermal oxidation reaction method. (1) A hydrothermal oxidation reaction method for oxidizing a reactant contained in a liquid to be treated in a supercritical or subcritical state of water,
The value of Z represented by the following mathematical formula (1) showing the relationship of the content of each element contained in the liquid to be treated is −0.01 ≦ Z ≦ +
A hydrothermal oxidation reaction method in which a hydrothermal oxidation reaction is carried out in a state of satisfying 0.01.

【数3】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。) (2) 被処理液中に含まれる被反応物を水の超臨界ま
たは亜臨界状態で酸化する水熱酸化反応方法であって、
被処理液中に含まれる各元素の含有量の関係を示す前記
数式(1)で示されるZの値が、−0.01≦Z≦+
0.01を満足するように2種以上の被処理液を混合し
て水熱酸化反応を行う水熱酸化反応方法。
[Equation 3] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). (2) A hydrothermal oxidation reaction method for oxidizing a substance to be reacted contained in a liquid to be treated in a supercritical or subcritical state of water,
The value of Z represented by the mathematical formula (1) showing the relationship of the content of each element contained in the liquid to be treated is −0.01 ≦ Z ≦ +
A hydrothermal oxidation reaction method in which two or more kinds of liquids to be treated are mixed so as to satisfy 0.01 and a hydrothermal oxidation reaction is performed.

【0009】本発明で処理の対象となる被反応物は水の
超臨界または亜臨界状態で水熱酸化反応の対象となる物
質であり、被処理液はこのような被反応物を含む液状物
である。被反応物の具体的なものとしては、工場等から
排出される廃液中の有機物や、余剰汚泥などがあげられ
る。被処理液の具体的なものとしては、工場等から排出
される有機物を含む廃液や、廃液の好気性処理工程など
から排出される余剰汚泥などがあげられる。
The reactant to be treated in the present invention is a substance to be subjected to a hydrothermal oxidation reaction in a supercritical or subcritical state of water, and the liquid to be treated is a liquid substance containing such a reactant. Is. Specific examples of the reactants include organic substances in waste liquid discharged from factories, surplus sludge and the like. Specific examples of the liquid to be treated include waste liquid containing organic substances discharged from factories and the like, and excess sludge discharged from the aerobic treatment process of the waste liquid.

【0010】被処理液の水熱処理後のpHを適性範囲内
に抑えて装置の腐食を防止するためには、被処理液中に
含まれるNa、K、Mg、Ca、F、Cl、Br、Pお
よびS原子の含有量の関係が、前記数式(1)で示され
るZの値を指標にして、Zの値が−0.01≦Z≦+
0.01、好ましくは−0.001≦Z≦+0.001
を満足する状態で水熱酸化反応を行う。ここでNa原子
の含有量とは、被処理液中に溶解しているNaイオンは
もちろん、水熱酸化反応により処理水中にNaイオンと
して放出される形態で被反応物に含まれているNa原子
など、あらゆる形態で被処理液に含まれているNa原子
の合計量である。K原子等の他の原子の含有量も同様で
ある。
In order to keep the pH of the liquid to be treated after the hydrothermal treatment within an appropriate range and prevent corrosion of the apparatus, Na, K, Mg, Ca, F, Cl, Br, etc. contained in the liquid to be treated are contained. The relationship between the contents of P and S atoms is such that the value of Z is −0.01 ≦ Z ≦ +, with the value of Z represented by the mathematical formula (1) as an index.
0.01, preferably −0.001 ≦ Z ≦ + 0.001
The hydrothermal oxidation reaction is performed under the condition that Here, the content of Na atoms means not only Na ions dissolved in the liquid to be treated but also Na atoms contained in the reactant in the form of being released as Na ions in the treated water by hydrothermal oxidation reaction. Etc. is the total amount of Na atoms contained in the liquid to be treated in all forms. The same applies to the contents of other atoms such as K atoms.

【0011】Zの値が前記範囲にある被処理液はそのま
ま水熱酸化反応に供することができる。一方、Zの値が
前記範囲外の被処理液はZの値が前記範囲になるように
調整した後、水熱酸化反応に供することができる。例え
ば、Zの値を前記範囲に調整するには、水熱酸化反応後
の処理水のpHが酸性になる被処理液(廃液)に、アル
カリ性になる被処理液(廃液)を混合する方法などがあ
げられる。
The liquid to be treated having the value of Z within the above range can be directly used for the hydrothermal oxidation reaction. On the other hand, the liquid to be treated having a Z value outside the above range can be subjected to a hydrothermal oxidation reaction after being adjusted so that the Z value falls within the above range. For example, in order to adjust the value of Z to the above range, a method of mixing a liquid to be treated (waste liquid) whose pH becomes acidic after the hydrothermal oxidation reaction with a liquid to be treated (waste liquid), etc. Can be given.

【0012】Zの値が−0.01≦Z≦+0.01、好
ましくは−0.001≦Z≦+0.001を満足する状
態で水熱酸化反応を行うことにより、水熱酸化反応にお
ける被処理液のpHが適正値でない場合に起こる装置の
腐食を低減することができ、水熱酸化反応装置の安全
で、かつ長期的な運転が可能となる。また水熱酸化反応
後の処理水のpHが酸性になる廃液と、アルカリ性にな
る廃液を混合する場合、お互いが中和剤の役割をするた
め、中和剤の使用量が低減でき、低コストで処理が可能
となる。
By carrying out the hydrothermal oxidation reaction in a state where the value of Z satisfies -0.01≤Z≤ + 0.01, preferably -0.001≤Z≤ + 0.001, the target of the hydrothermal oxidation reaction is Corrosion of the apparatus that occurs when the pH of the treatment liquid is not an appropriate value can be reduced, and the hydrothermal oxidation reaction apparatus can be operated safely and for a long time. In addition, when the waste liquid in which the pH of the treated water after the hydrothermal oxidation reaction is acidic and the waste liquid in which the pH is alkaline are mixed, they function as neutralizing agents, so the amount of neutralizing agent used can be reduced and the cost is low. Can be processed.

【0013】実際の処理水のpHは数式(1)に示され
ている元素以外の元素も影響して決まるが、概略のpH
値を得るにはこの式が有効である。すなわち、Z>0の
場合には処理水中にはNa+やK+といったカチオンのモ
ル数が多く、処理水はアルカリ性になると考えられる。
一方、Z<0の場合にはCl-やSO4 2-といったアニオ
ンのモル数が多く、処理水は酸性になると考えられる。
Z=0の場合が処理水中のカチオンとアニオンのバラン
スがとれている状態、すなわち中性に近い状態と考えら
れる。
The actual pH of the treated water is determined by the influence of elements other than the elements shown in equation (1).
This formula is useful for getting the value. That is, when Z> 0, it is considered that the treated water has a large number of moles of cations such as Na + and K + , and the treated water becomes alkaline.
On the other hand, when Z <0, the number of moles of anions such as Cl and SO 4 2− is large, and the treated water is considered to be acidic.
The case of Z = 0 is considered to be a state in which the cations and anions in the treated water are well balanced, that is, a state close to neutral.

【0014】例としてZ=−0.001の場合を考え
る。この場合はCl-やSO4 2-といったアニオンのモル
濃度が0.001mol/L過剰であるということで、
推定pHは水に0.001mol/Lの塩酸を添加した
程度、すなわちpH=3程度ということになる。同様に
Z=+0.001の場合は、Na+やK+といったカチオ
ンのモル濃度が0.001mol/L過剰ということ
で、推定pHは水に0.01mol/Lの水酸化ナトリ
ウムを添加した程度、すなわちpH=11ということに
なる。
As an example, consider the case of Z = -0.001. In this case, the molar concentration of anions such as Cl and SO 4 2− is 0.001 mol / L excess,
The estimated pH is about 0.001 mol / L hydrochloric acid added to water, that is, about pH = 3. Similarly, when Z = + 0.001, the molar concentration of cations such as Na + and K + is 0.001 mol / L excess, so the estimated pH is about 0.01 mol / L sodium hydroxide added to water. That is, pH = 11.

【0015】前記数式(1)に示されている元素以外
で、水熱酸化反応の処理水中に存在するイオン種として
は各種重金属イオン、炭酸イオン、含窒素イオン(NH
4 +、NO2 -、NO3 -など)があるが、これらは含まれる
可能性が少ないか、含まれていてもわずかであるか、水
熱酸化反応下では分解されるか、または処理流体の気液
分離後にガス側に移行する元素であり、中和反応に大き
く影響しない場合がほとんどである。しかし、これらの
イオン種や他の要因によりpH値が概略値と大きく異な
ってくる場合もあると考えられる。よって前記数式
(1)を活用する場合でも、処理時には処理水のpHを
モニタリングし、必要に応じて中和剤を添加する手段は
併用することが望ましい。
In addition to the elements represented by the above formula (1), various heavy metal ions, carbonate ions, nitrogen-containing ions (NH 3) are present as ion species present in the treated water of the hydrothermal oxidation reaction.
4 + , NO 2 , NO 3 −, etc.), but these are unlikely to be contained, are contained in a small amount, are decomposed under the hydrothermal oxidation reaction, or are contained in the processing fluid. Is an element that moves to the gas side after gas-liquid separation, and in most cases does not significantly affect the neutralization reaction. However, it is considered that the pH value may greatly differ from the approximate value due to these ionic species and other factors. Therefore, even when utilizing the above formula (1), it is desirable to use a means for monitoring the pH of the treated water during treatment and adding a neutralizing agent if necessary.

【0016】また、複数の被処理液をどのように混合し
ても処理水のpHが適性範囲内に入らない場合もある。
このような場合にも中和剤を添加する手段は必要であ
る。なお、複数廃液の混合は、通常一つの貯留槽内で行
えばよいが、混合することによって何らかの不都合(例
えば臭気が発生する、相分離する、固体が析出するな
ど)がある場合は、適当な場所で混合(例えば、それぞ
れを送液して反応器入口近傍で混合するなど)すればよ
い。
In some cases, the pH of the treated water may not fall within the appropriate range no matter how the plural liquids to be treated are mixed.
Even in such a case, means for adding the neutralizing agent is necessary. It should be noted that the mixing of a plurality of waste liquids may be usually performed in one storage tank, but if there is some inconvenience (for example, odor is generated, phase separation, solid precipitation, etc.) due to mixing, it is appropriate. They may be mixed at a place (for example, by sending the respective liquids and mixing near the inlet of the reactor).

【0017】水熱酸化反応は、前記被処理液を水熱反応
器に導入し、被反応物の酸化分解を行う。水熱反応器は
被反応物を酸化剤の存在下に水の超臨界または亜臨界状
態で酸化分解するように構成される。ここで水熱酸化反
応とは、超臨界または亜臨界状態の高温高圧の水および
酸化剤の存在下に被反応物を酸化反応により酸化分解す
る反応である。超臨界状態とは374℃以上、22MP
a以上の状態である。また亜臨界状態とは例えば374
℃以上、2.5MPa以上22MPa未満あるいは37
4℃未満、22MPa以上の状態、あるいは374℃以
下、22MPa未満であっても臨界点に近い高温高圧の
状態をいう。
In the hydrothermal oxidation reaction, the liquid to be treated is introduced into a hydrothermal reactor to oxidize and decompose the substance to be reacted. The hydrothermal reactor is configured to oxidatively decompose a reactant in a supercritical or subcritical state of water in the presence of an oxidant. Here, the hydrothermal oxidation reaction is a reaction of oxidatively decomposing an object to be reacted by an oxidation reaction in the presence of water at high temperature and high pressure in a supercritical or subcritical state and an oxidizing agent. Supercritical state is 374 ℃ or higher, 22MP
The state is a or more. The subcritical state is, for example, 374.
℃ or more, 2.5 MPa or more and less than 22 MPa or 37
A state of less than 4 ° C. and 22 MPa or more, or a state of 374 ° C. or less and less than 22 MPa of high temperature and high pressure close to the critical point.

【0018】このような水熱酸化反応は被反応物が酸化
剤と混合した状態で水熱反応器において行われ、これら
の混合物が反応器内部で水熱酸化反応を受ける。酸化剤
としては、空気、酸素、液体酸素、オゾン、過酸化水素
水、硝酸、亜硝酸、硝酸塩、亜硝酸塩等を用いることが
できる。酸化剤は、被処理液と混合されて供給されても
よいし、供給口を二重管ノズルにして複層流として供給
してもよい。また必要により触媒や中和剤等が添加され
る場合があるが、これらは被処理液と混合して、あるい
は別々に反応器に供給することができる。
Such a hydrothermal oxidation reaction is carried out in a hydrothermal reactor in a state where the substance to be reacted is mixed with an oxidant, and these mixtures undergo a hydrothermal oxidation reaction inside the reactor. Air, oxygen, liquid oxygen, ozone, hydrogen peroxide solution, nitric acid, nitrous acid, nitrate, nitrite and the like can be used as the oxidizing agent. The oxidant may be supplied by being mixed with the liquid to be treated, or may be supplied as a multi-layered flow by using a double-tube nozzle as a supply port. If necessary, a catalyst, a neutralizing agent and the like may be added, and these can be mixed with the liquid to be treated or supplied separately to the reactor.

【0019】本発明で用いられる水熱反応器は超臨界ま
たは亜臨界状態で水熱酸化反応を行うように、耐熱、耐
圧材料により、実質的に垂直方向に配置した筒状反応器
で形成される。反応熱だけでは超臨界または亜臨界状態
に達しない場合には外部加熱手段を設けることができ
る。反応器の形状は円筒、だ円筒、多角筒のものを用い
ることができ、下端部はコーン状とすることができる。
このような水熱酸化反応器により超臨界または亜臨界状
態で水熱酸化反応を行うと、被反応物は酸化剤により酸
化されて最終的に水と二酸化炭素に分解され、あるいは
加水分解により低分子化し、無機物は固体あるいは溶融
状態で分離する。反応生成物は固形物を分離後、冷却、
減圧され、ガス分と液分に分離される。
The hydrothermal reactor used in the present invention is made of a heat-resistant and pressure-resistant material and is formed in a cylindrical reactor arranged substantially vertically so as to carry out the hydrothermal oxidation reaction in a supercritical or subcritical state. It If the reaction heat alone does not reach the supercritical or subcritical state, an external heating means can be provided. The reactor may have a cylindrical shape, an elliptic shape, or a polygonal shape, and the lower end portion may have a cone shape.
When a hydrothermal oxidation reaction is carried out in a supercritical or subcritical state by such a hydrothermal oxidation reactor, the substance to be reacted is oxidized by an oxidant and finally decomposed into water and carbon dioxide, or is hydrolyzed to a low level. The substance is polymerized and the inorganic substance is separated in a solid or molten state. The reaction product, after separating the solid, cooled,
The pressure is reduced and the gas and liquid are separated.

【0020】上記の水熱反応器は従来より水熱酸化反応
に用いられているものをそのまま用いることができる
が、特開平11−156186号に示されているよう
に、上部に逆流を伴う混合反応域、下部に栓状流反応域
を形成する実質的に垂直な反応器に、さらに上部に設け
られた供給装置から被処理液と酸化剤の混合流を下向流
で供給して上部の混合反応域で逆流を伴う混合流を形成
して水熱酸化反応を行い、下部の栓状流反応域で平行な
下向栓流を形成して追加の水熱酸化反応を行う構造のも
のが好ましい。
As the above-mentioned hydrothermal reactor, the one conventionally used for the hydrothermal oxidation reaction can be used as it is, but as shown in JP-A-11-156186, a mixture accompanied by a backflow at the upper part is used. A mixed flow of the liquid to be treated and the oxidant is supplied in a downward flow from a supply device provided in the upper part of the reaction zone and a substantially vertical reactor forming a plug flow reaction zone in the lower part. There is a structure in which a mixed flow with backflow is formed in the mixed reaction zone to carry out the hydrothermal oxidation reaction, and a parallel downward plug flow is formed in the lower plug flow reaction area to carry out the additional hydrothermal oxidation reaction. preferable.

【0021】水熱反応器の材質は制限されないが、ハス
テロイ、インコネル、ステンレス等の耐食性の材質が好
ましい。水熱反応器には耐腐食性ライナーを設けるのが
好ましい。耐腐食性ライナーは特に限定されず、特開平
11−156186号に開示されたような耐腐食性ライ
ナーと圧力負荷壁との間に間隙が存在するような耐腐食
性ライナーを用いることができる。
The material of the hydrothermal reactor is not limited, but is preferably a corrosion resistant material such as Hastelloy, Inconel or stainless steel. The hydrothermal reactor is preferably provided with a corrosion resistant liner. The corrosion-resistant liner is not particularly limited, and a corrosion-resistant liner having a gap between the corrosion-resistant liner and the pressure load wall as disclosed in JP-A-11-156186 can be used.

【0022】水熱反応器には反応混合物を排出口から排
出する前に冷却するための冷却手段を設けることができ
る。冷却手段は特に限定されないが、反応器内に水を導
入して冷却し、無機塩を溶解してその排出を促進するこ
とができる。また、反応器内に酸やアルカリを含む水を
導入して冷却し、アルカリや酸の中和を行うことができ
る。固体の付着性が著しい場合には、反応器の内壁に付
着した固体を除去するための機械的除去装置を設けるこ
とができる。固体除去のための機械的除去装置は特に限
定されないが、特開平11−156186号で開示され
た切欠窓部分を含む実質的に円筒状のスクレーパが好適
である。
The hydrothermal reactor may be provided with cooling means for cooling the reaction mixture before it is discharged from the outlet. The cooling means is not particularly limited, but water can be introduced into the reactor to cool it, and the inorganic salt can be dissolved to accelerate its discharge. Further, water containing an acid or an alkali may be introduced into the reactor and cooled to neutralize the alkali or the acid. When the adherence of solids is significant, a mechanical removal device for removing solids adhering to the inner wall of the reactor can be provided. The mechanical removing device for removing solids is not particularly limited, but a substantially cylindrical scraper including a notched window portion disclosed in JP-A-11-156186 is suitable.

【0023】水熱反応器から排出される反応流体中の固
形物を分離する分離手段を設けることができる。特に、
超臨界状態の反応流体中では無機塩類が溶解せずに固体
として含まれているため、不溶化している無機物を分離
することにより、処理水の再利用が容易になる。固形物
分離手段は特に限定されず、水熱反応器から反応流体を
導入する流入口および固体を除去した流体を排出する流
出口を備えた容器と、容器内に配設されて前記反応流体
に含まれている前記固体を除去し、排出する手段とを備
えたものが使用できる。なお、冷却、減圧の工程で、固
体分離や気液分離の手段を含むこともできる。
Separation means may be provided for separating solids in the reaction fluid discharged from the hydrothermal reactor. In particular,
Inorganic salts are not dissolved in the reaction fluid in the supercritical state but are contained as a solid, so that the treated water can be easily reused by separating the insolubilized inorganic substances. The solid matter separating means is not particularly limited, and a container having an inlet for introducing the reaction fluid from the hydrothermal reactor and an outlet for discharging the fluid from which the solid has been removed, and the reaction fluid disposed in the container to the reaction fluid. A means provided with a means for removing and discharging the contained solid can be used. In addition, a means for solid separation or gas-liquid separation can be included in the cooling and depressurizing steps.

【0024】水熱反応器による反応開始の手段は特に制
限されない。通常、反応器は反応開始にあたって所定の
反応温度付近に予熱される。予熱は加熱装置を反応器に
設けるか、あるいは被処理液および/または酸化剤供給
路に設けて加熱された水や空気を導入して実施すること
ができる。また、通常、反応器に水や酸化剤を供給し、
通常設けられる圧力調整弁によって所定の圧力に加圧さ
れる。所定の温度、圧力に調整された後、被処理液を含
む流体を供給して水熱酸化反応を開始する。反応によっ
て被反応物が分解され、反応熱が発生する。水熱反応器
上部に逆流を伴う混合反応域を設けた場合、ここで逆流
を伴う混合作用で被反応物、酸化剤および反応器内容物
などが十分に混合されるため、流体の温度が上昇する。
これにより供給される被反応物は速やかに水熱酸化反応
を開始し、安定した反応が継続されることになる。反応
流体は反応器内を下向きに移動し、栓状流反応域で継続
反応した後、排出口から排出される。反応器の長さ:直
径の比は1:1〜100:1が好ましい。
The means for starting the reaction by the hydrothermal reactor is not particularly limited. Usually, the reactor is preheated to around a predetermined reaction temperature at the start of the reaction. Preheating can be carried out by providing a heating device in the reactor or by introducing water or air heated in the liquid to be treated and / or the oxidant supply passage. Also, normally, supplying water and an oxidant to the reactor,
It is pressurized to a predetermined pressure by a pressure adjusting valve that is usually provided. After the temperature and pressure are adjusted to predetermined values, a fluid containing the liquid to be treated is supplied to start the hydrothermal oxidation reaction. The reaction product decomposes due to the reaction, and heat of reaction is generated. When a mixing reaction zone with backflow is provided above the hydrothermal reactor, the temperature of the fluid rises because the reactant, oxidant, reactor contents, etc. are sufficiently mixed by the mixing action with backflow. To do.
The reactant to be supplied thereby rapidly starts the hydrothermal oxidation reaction, and the stable reaction is continued. The reaction fluid moves downward in the reactor, continuously reacts in the plug flow reaction region, and is then discharged from the discharge port. The length: diameter ratio of the reactor is preferably 1: 1 to 100: 1.

【0025】水熱反応器を出た反応流体は固体を分離し
た後、冷却して減圧され気液分離される。反応器内で冷
却して液体が生成している場合は反応器を出た段階で固
体とともに液体を分離し、必要によりさらに冷却および
気液分離を行うことができる。最終的に生成した水、気
体、固体は、そのまま、エネルギー回収されたり、物質
として再利用されたり、そのままあるいは追加処理され
て廃棄される。
The reaction fluid leaving the hydrothermal reactor is separated into solids, then cooled and decompressed to be separated into gas and liquid. When liquid is produced by cooling in the reactor, the liquid can be separated together with the solid at the stage of leaving the reactor, and further cooling and gas-liquid separation can be performed if necessary. The finally produced water, gas, and solid are directly recovered as energy, reused as a substance, or directly or additionally treated and disposed of.

【0026】本発明では複数の廃液を混合するなどの方
法により被処理液中に含まれる元素のバランスが前記条
件を満足するように調整しているので、中和剤の使用量
を節約して反応器の腐食を抑えた処理が行えるようにな
る。本発明は、実際の水熱酸化反応における簡便かつ安
価な腐食抑制方法として有用である。
In the present invention, the balance of the elements contained in the liquid to be treated is adjusted by a method such as mixing a plurality of waste liquids so as to satisfy the above condition, so that the amount of the neutralizing agent used can be saved. It becomes possible to perform the treatment while suppressing the corrosion of the reactor. INDUSTRIAL APPLICABILITY The present invention is useful as a simple and inexpensive corrosion inhibition method in actual hydrothermal oxidation reaction.

【0027】[0027]

【発明の効果】本発明の水熱酸化反応方法は、被処理液
中に含まれる各元素の含有量の関係が特定の状態で水熱
酸化反応を行うようにしているので、水熱反応器の腐食
を低減して安全で、かつ長期的な運転を可能にするとと
もに、中和剤の使用量を少なくして低コストで運転する
ことができる。
EFFECTS OF THE INVENTION In the hydrothermal oxidation reaction method of the present invention, since the hydrothermal oxidation reaction is carried out in a specific state in which the relationship of the content of each element contained in the liquid to be treated is specified, It is possible to reduce the amount of the neutralizing agent used and to operate at low cost, while reducing the corrosion of the steel to enable safe and long-term operation.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施形態を図面に
より説明する。図1は本発明の水熱酸化反応方法を実施
する実施形態の水熱酸化反応装置の系統図であり、1は
混合槽、2は水熱反応器、3は酸化剤槽、5は気液分離
器である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a hydrothermal oxidation reaction apparatus of an embodiment for carrying out the hydrothermal oxidation reaction method of the present invention, wherein 1 is a mixing tank, 2 is a hydrothermal reactor, 3 is an oxidizer tank, and 5 is gas-liquid. It is a separator.

【0029】図1の装置による水熱酸化反応処理は以下
のように行われる。まず混合槽1に系路11から廃液
A、系路12から廃液Bを導入して混合し、混合廃液1
3を調製する。この場合、前記数式(1)で示されるZ
の値が−0.01≦Z≦+0.01を満足するように混
合する。
The hydrothermal oxidation reaction process by the apparatus of FIG. 1 is performed as follows. First, the waste liquid A is introduced into the mixing tank 1 from the system passage 11 and the waste liquid B is introduced from the system passage 12 to mix them.
Prepare 3. In this case, Z represented by the above equation (1)
Are mixed so as to satisfy the value of −0.01 ≦ Z ≦ + 0.01.

【0030】混合廃液13は高圧ポンプP1により系路
14を通して水熱反応器2の供給装置2aに送り、ここ
で酸化剤槽3から高圧ポンプP2により系路15を通し
て送られる酸化剤(例えば空気、過酸化水素水)と混合
し、混合流を水熱反応器2に下向流で供給して水熱酸化
反応を行う。水熱反応器2では反応開始時に系路14ま
たは15に設けられる予熱器(図示せず)により、加熱
を行って超臨界または亜臨界状態に保って水熱酸化反応
を行う。
The mixed waste liquid 13 is sent by the high-pressure pump P1 through the system 14 to the supply device 2a of the hydrothermal reactor 2, where the oxidant (eg air, sent from the oxidizer tank 3 by the high-pressure pump P2 is sent through the system 15). (Hydrogen peroxide water), and the mixed flow is supplied to the hydrothermal reactor 2 in a downward flow to perform a hydrothermal oxidation reaction. In the hydrothermal reactor 2, a preheater (not shown) provided in the system passage 14 or 15 at the start of the reaction performs heating to perform a hydrothermal oxidation reaction while maintaining a supercritical or subcritical state.

【0031】供給装置2aから供給される混合流は水熱
反応器2の上部では逆流を伴う混合反応域を形成し、有
機物を含む被反応物の酸化分解が行われ、下部では乱流
は解消して栓状流反応域を形成して追加反応が行われ
る。水熱反応器2で処理する混合廃液13は、前記Zの
値が−0.01≦Z≦+0.01を満足するように調整
されているので、水熱反応器2の腐食は抑制される。
The mixed flow supplied from the supply device 2a forms a mixed reaction zone accompanied by a backflow in the upper part of the hydrothermal reactor 2, oxidative decomposition of the reaction product containing organic substances is carried out, and the turbulent flow is eliminated in the lower part. Then, a plug flow reaction zone is formed and an additional reaction is carried out. Since the mixed waste liquid 13 processed in the hydrothermal reactor 2 is adjusted so that the value of Z satisfies −0.01 ≦ Z ≦ + 0.01, corrosion of the hydrothermal reactor 2 is suppressed. .

【0032】水熱反応器2の反応流体は系路16から冷
却器19に導入して、冷却水路21から供給する冷却水
で冷却し、系路22から気液分離器5に導入して気液分
離し、気体排出路23から弁V1を通して気体を排出
し、液体排出路24から弁V2を通して処理水を排出す
る。得られる処理水は有機物、アンモニア、その他被反
応物が分解された、高水質なものであり、回収利用も可
能である。
The reaction fluid of the hydrothermal reactor 2 is introduced into the cooler 19 from the system passage 16, cooled by the cooling water supplied from the cooling water passage 21, and introduced into the gas-liquid separator 5 from the system passage 22 to be vaporized. The liquid is separated, the gas is discharged from the gas discharge path 23 through the valve V1, and the treated water is discharged from the liquid discharge path 24 through the valve V2. The treated water obtained is of high quality in which organic substances, ammonia, and other substances to be reacted are decomposed, and can be recovered and used.

【0033】図1では2種類の廃液A、Bを混合してい
るが、3種類以上の廃液を混合することもできる。また
酸、アルカリなどのpH調製剤を添加することもでき
る。またポンプP2の代わりにコンプレッサを使用する
こともできる。
Although two types of waste liquids A and B are mixed in FIG. 1, three or more types of waste liquids can be mixed. It is also possible to add a pH adjusting agent such as acid or alkali. A compressor may be used instead of the pump P2.

【0034】[0034]

【実施例】実施例1 1)複数廃液の混合比決定 表1に示す3種の廃液を例に、その混合比決定方法を説
明する。
EXAMPLES Example 1 1) Determination of Mixing Ratio of Plural Waste Liquids The method of determining the mixing ratio will be described taking three kinds of waste liquids shown in Table 1 as examples.

【表1】 表1の廃液Aと廃液Cは水熱酸化反応すると酸性に、廃
液Bはアルカリ性になると予想される。そこで、廃液A
または廃液Cに廃液Bを分配して混合することにより、
混合廃液の元素バランスが適性になるように前記数式
(1)で計算を行った。その結果、表2のような比で混
合すれば元素バランスが適性になることがわかった。
[Table 1] It is expected that the waste liquid A and the waste liquid C in Table 1 will be acidic when the hydrothermal oxidation reaction is performed, and the waste liquid B will be alkaline. Therefore, waste liquid A
Alternatively, by distributing the waste liquid B to the waste liquid C and mixing them,
The calculation was performed by the above mathematical formula (1) so that the elemental balance of the mixed waste liquid would be appropriate. As a result, it was found that the element balance becomes appropriate when mixed in the ratios shown in Table 2.

【0035】[0035]

【表2】 [Table 2]

【0036】2)混合廃液の水熱酸化反応試験 表2の混合廃液XまたはYの水熱酸化反応試験を図1の
装置で行った。300℃に予熱した混合廃液と酸化剤
(35%過酸化水素水)とを反応器手前で混合し、反応
器内にノズル(管径1mmφ)を通して供給した。反応
器には外熱式ヒーターが取り付けられており、反応条件
が650℃、24MPaになるように調整した。反応器
内には腐食評価用のテストロッド(1.6mmφ)が取
り付けられるようになっている。反応器に水と酸化剤を
供給し、反応器内が設定反応温度になるように外熱式ヒ
ーターで加熱して調整した。反応温度が設定値になった
段階で、水と混合廃液を徐々に切り替え、水の超臨界ま
たは亜臨界状態で水熱酸化反応を行った。水と混合廃液
が完全に切り替わってから4時間反応を継続し、混合廃
液を徐々に水に切り替えた後、ヒーターを切って試験を
終了させた。なお、冷却中の腐食を最小限に抑えるた
め、ヒーターを切ってからは空気のみを流して反応器を
冷却した。試験後にテストロッドを取り出し、数か所の
断面観察を行い、最大腐食深さを求めた。結果を表3に
示す。
2) Hydrothermal Oxidation Reaction Test of Mixed Waste Liquid A mixed waste liquid X or Y of Table 2 was subjected to a hydrothermal oxidation reaction test with the apparatus shown in FIG. The mixed waste liquid preheated to 300 ° C. and the oxidizer (35% hydrogen peroxide solution) were mixed in front of the reactor, and the mixture was supplied into the reactor through a nozzle (tube diameter 1 mmφ). An external heater was attached to the reactor, and the reaction conditions were adjusted to 650 ° C. and 24 MPa. A test rod (1.6 mmφ) for corrosion evaluation is attached in the reactor. Water and an oxidizing agent were supplied to the reactor, and the inside of the reactor was adjusted by heating with an external heater so that the reaction temperature was set. When the reaction temperature reached the set value, the water and the mixed waste liquid were gradually switched to carry out the hydrothermal oxidation reaction in the supercritical or subcritical state of water. The reaction was continued for 4 hours after the water and the mixed waste liquid were completely switched, the mixed waste liquid was gradually switched to water, and then the heater was turned off to end the test. In order to minimize corrosion during cooling, the reactor was cooled by flowing only air after turning off the heater. After the test, the test rod was taken out and several sections were observed to determine the maximum corrosion depth. The results are shown in Table 3.

【0037】比較例1 廃液A、B、Cの単独の水熱酸化反応による酸化分解試
験を実施例1と同じ方法で行った。結果を表3に示す。
Comparative Example 1 The oxidative decomposition test of the waste liquids A, B and C by a single hydrothermal oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】表3の結果から、元素バランスを考慮して
混合した混合廃液XまたはYの分解試験では、反応器内
のテストロッドに大きな腐食は観察されなかった。これ
に対して、処理水中の酸成分が過剰となる廃液Aおよび
廃液CではHC−276で腐食の進行が観察され、アル
カリ成分が過剰となる廃液BではHC−276とチタン
で腐食の進行が観察された。
From the results shown in Table 3, in the decomposition test of the mixed waste liquid X or Y in which the element balance was taken into consideration, no significant corrosion was observed on the test rod in the reactor. On the other hand, in the waste liquid A and the waste liquid C in which the acid component in the treated water is excessive, the progress of corrosion is observed in HC-276, and in the waste liquid B in which the alkaline component is excessive, the progress of corrosion is caused by HC-276 and titanium. Was observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水熱酸化反応方法を実施する実施形態
の水熱酸化反応装置の系統図である。
FIG. 1 is a system diagram of a hydrothermal oxidation reaction apparatus of an embodiment for carrying out the hydrothermal oxidation reaction method of the present invention.

【符号の説明】 1 混合槽 2 水熱反応器 3 酸化剤槽 5 気液分離器 11、12、14、15、16、22 系路 13 混合廃液 19 冷却器 21 冷却水路 23 気体排出路 24 液体排出路[Explanation of symbols] 1 mixing tank 2 Hydrothermal reactor 3 oxidizer tank 5 gas-liquid separator 11, 12, 14, 15, 16, 22 Route 13 Mixed waste liquid 19 Cooler 21 Cooling channel 23 Gas discharge path 24 Liquid discharge path

───────────────────────────────────────────────────── フロントページの続き (71)出願人 598124412 ジェネラル アトミックス インコーポレ イテッド アメリカ合衆国 カリフォルニア州 サン ディエゴ ジェネラル アトミックス コ ート 3550 (72)発明者 小布施 洋 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D050 AA13 AB11 BB01 BB02 BB08 BB09 BC01 BC02 BD02 BD06 CA20 4D059 AA05 BC02 BC03 BJ00 DA43 DA44 DA47 DA70 EB20    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 598124412             General Atomix Incorporated             Itted             United States of America California Sun             Diego General Atomics Co             3550 (72) Inventor Hiroshi Obuse             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. F term (reference) 4D050 AA13 AB11 BB01 BB02 BB08                       BB09 BC01 BC02 BD02 BD06                       CA20                 4D059 AA05 BC02 BC03 BJ00 DA43                       DA44 DA47 DA70 EB20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被処理液中に含まれる被反応物を水の超
臨界または亜臨界状態で酸化する水熱酸化反応方法であ
って、 被処理液中に含まれる各元素の含有量の関係を示す下記
数式(1)で示されるZの値が、−0.01≦Z≦+
0.01を満足する状態で水熱酸化反応を行う水熱酸化
反応方法。 【数1】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。)
1. A hydrothermal oxidation reaction method for oxidizing a reaction target substance contained in a liquid to be treated in a supercritical or subcritical state of water, which is a relation of contents of respective elements contained in the liquid to be treated. The value of Z represented by the following mathematical expression (1) is −0.01 ≦ Z ≦ +
A hydrothermal oxidation reaction method in which a hydrothermal oxidation reaction is carried out in a state of satisfying 0.01. [Equation 1] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). )
【請求項2】 被処理液中に含まれる被反応物を水の超
臨界または亜臨界状態で酸化する水熱酸化反応方法であ
って、 被処理液中に含まれる各元素の含有量の関係を示す下記
数式(1)で示されるZの値が、−0.01≦Z≦+
0.01を満足するように2種以上の被処理液を混合し
て水熱酸化反応を行う水熱酸化反応方法。 【数2】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。)
2. A hydrothermal oxidation reaction method for oxidizing a reaction target substance contained in a liquid to be treated in a supercritical or subcritical state of water, which is a relation of contents of respective elements contained in the liquid to be treated. The value of Z represented by the following mathematical expression (1) is −0.01 ≦ Z ≦ +
A hydrothermal oxidation reaction method in which two or more kinds of liquids to be treated are mixed so as to satisfy 0.01 and a hydrothermal oxidation reaction is performed. [Equation 2] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). )
JP2002039344A 2002-02-15 2002-02-15 Method of hydrothermal oxidation reaction Pending JP2003236569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039344A JP2003236569A (en) 2002-02-15 2002-02-15 Method of hydrothermal oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039344A JP2003236569A (en) 2002-02-15 2002-02-15 Method of hydrothermal oxidation reaction

Publications (1)

Publication Number Publication Date
JP2003236569A true JP2003236569A (en) 2003-08-26

Family

ID=27780379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039344A Pending JP2003236569A (en) 2002-02-15 2002-02-15 Method of hydrothermal oxidation reaction

Country Status (1)

Country Link
JP (1) JP2003236569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110289827A1 (en) * 2009-02-11 2011-12-01 Southern Illinois University Carbondale Process for the Dissolution of Coal, Biomass and Other Organic Solids in Superheated Water
US10023512B2 (en) 2009-02-11 2018-07-17 Southern Illinois University Carbondale Production of organic materials using oxidative hydrothermal dissolution method
US10688464B2 (en) 2017-06-05 2020-06-23 General Atomics Corrosion inhibition in hydrothermal processing
JP2020142205A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Waste water treatment control device, waste water treatment control method and program
JP2021178284A (en) * 2020-05-13 2021-11-18 Jfeスチール株式会社 Dust collection method for blast furnace gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110289827A1 (en) * 2009-02-11 2011-12-01 Southern Illinois University Carbondale Process for the Dissolution of Coal, Biomass and Other Organic Solids in Superheated Water
CN102307970A (en) * 2009-02-11 2012-01-04 南伊利诺斯州立大学 Process for the dissolution of coal, biomass and other organic solids in superheated water
AU2010213782B2 (en) * 2009-02-11 2013-08-01 Southern Illinois University Process for the dissolution of coal, biomass and other organic solids in superheated water
US8563791B2 (en) * 2009-02-11 2013-10-22 Southern Illinois University Carbondale Process for the dissolution of coal, biomass and other organic solids in superheated water
CN102307970B (en) * 2009-02-11 2015-04-29 南伊利诺斯州立大学 Process for the dissolution of coal, biomass and other organic solids in superheated water
US10023512B2 (en) 2009-02-11 2018-07-17 Southern Illinois University Carbondale Production of organic materials using oxidative hydrothermal dissolution method
US10688464B2 (en) 2017-06-05 2020-06-23 General Atomics Corrosion inhibition in hydrothermal processing
JP2020142205A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Waste water treatment control device, waste water treatment control method and program
JP7130579B2 (en) 2019-03-07 2022-09-05 オルガノ株式会社 Waste liquid treatment control device, waste liquid treatment control method and program
JP2021178284A (en) * 2020-05-13 2021-11-18 Jfeスチール株式会社 Dust collection method for blast furnace gas
JP7200977B2 (en) 2020-05-13 2023-01-10 Jfeスチール株式会社 Blast furnace gas dust collection method

Similar Documents

Publication Publication Date Title
WO2007102884A2 (en) Chlorine dioxide-based water treatment system for on-board ship applications
JPH04337089A (en) Regeneration of ferric chloride etchant
JP2003236569A (en) Method of hydrothermal oxidation reaction
US20170144908A1 (en) System and method for treatment of spent caustic wastewater
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP3896861B2 (en) Hydrothermal reaction method and apparatus
JP3462969B2 (en) How to reduce the volume of waste ion exchange resin
JP2003236363A (en) Process for hydrothermal oxidation reaction
JP2003236364A (en) Process for hydrothermal reaction
JP2003236594A (en) Apparatus for treating sludge
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
EP1101812B1 (en) Method for converting chlorine-containing waste plastic to oil
JP4399854B2 (en) Treatment method of waste water containing hydrazine
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP4142994B2 (en) Fluorine-containing water treatment method and treatment apparatus therefor
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP2001212597A (en) Method and apparatus for treating wastewater containing sulfoxide compounds
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP4852877B2 (en) Treatment of wastewater containing nitrite anticorrosive
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JP2004097997A (en) Method and equipment for treating water-soluble polymer-containing waste liquid
JP2003181272A (en) Hydrothermal reaction method
JP2007222743A (en) Method of ph adjustment and treatment apparatus for hydrogen peroxide-containing waste liquid
JP2005152804A (en) Supercritical hydration method and apparatus
JP2002159999A (en) Treatment method for organic sludge