JP2003236363A - Process for hydrothermal oxidation reaction - Google Patents

Process for hydrothermal oxidation reaction

Info

Publication number
JP2003236363A
JP2003236363A JP2002039342A JP2002039342A JP2003236363A JP 2003236363 A JP2003236363 A JP 2003236363A JP 2002039342 A JP2002039342 A JP 2002039342A JP 2002039342 A JP2002039342 A JP 2002039342A JP 2003236363 A JP2003236363 A JP 2003236363A
Authority
JP
Japan
Prior art keywords
liquid
oxidation reaction
treated
hydrothermal
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002039342A
Other languages
Japanese (ja)
Inventor
Hiroshi Obuse
洋 小布施
Kiyoyuki Kitano
清之 北野
Yasuhiko Hatake
康彦 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Kurita Water Industries Ltd
General Atomics Corp
Original Assignee
Komatsu Ltd
Kurita Water Industries Ltd
General Atomics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Kurita Water Industries Ltd, General Atomics Corp filed Critical Komatsu Ltd
Priority to JP2002039342A priority Critical patent/JP2003236363A/en
Publication of JP2003236363A publication Critical patent/JP2003236363A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a process for a hydrothermal oxidation reaction, with which a safe and long-term operation is attained by reducing corrosion of a hydrothermal reactor and a low-cost operation is attained by reducing the amount of a neutralizing agent used. <P>SOLUTION: A mixed waste liquid 13 is prepared by introducing an alkaline waste liquid through a route 11 and an organic substance through a route 12 into a mixing vessel 1 and mixing them. In this case, the organic substance is added so as to generate excessive carbon dioxide with respect to Z value expressed by an equation, Z=([Na]+[K]+[Mg]×2+[Ca]×2)-([F]+[Cl]+[Br]+[P]×3+[S]×2) (here [Na], [K]... represent molar concentrations (mol/l) of each atom contained in a liquid to be treated). The mixed waste liquid 13 is delivered to a supplying apparatus 2a of the hydrothermal reactor 2 and is mixed with an oxidizing agent. The mixed stream is supplied to the hydrothermal reactor 2 in a downward stream and the hydrothermal oxidation reaction is carried out. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水の超臨界または
亜臨界状態下で水熱反応を行う水熱酸化反応方法、特に
廃棄物の分解を行うのに好適な水熱酸化反応方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a hydrothermal oxidation reaction method for carrying out a hydrothermal reaction under supercritical or subcritical conditions of water, and more particularly to a hydrothermal oxidation reaction method suitable for decomposing wastes. Is.

【0002】[0002]

【従来の技術】水の超臨界または亜臨界状態下で酸化反
応を行う水熱酸化反応処理は廃液中の有機物を短時間で
高レベルまで酸化分解できる技術として注目されてい
る。水熱酸化反応を行うことにより、被処理液中の有機
成分は二酸化炭素、窒素成分は窒素ガス(条件によって
はアンモニアや硝酸性窒素も生成する)へと分解され
る。また、リンや硫黄といったヘテロ原子はそれぞれリ
ン酸イオンおよび硫酸イオンにまで酸化される。
2. Description of the Related Art Hydrothermal oxidation reaction treatment, in which an oxidation reaction is carried out under supercritical or subcritical conditions of water, has been attracting attention as a technology capable of oxidatively decomposing organic matter in waste liquid to a high level in a short time. By performing the hydrothermal oxidation reaction, the organic components in the liquid to be treated are decomposed into carbon dioxide, and the nitrogen components are decomposed into nitrogen gas (ammonia and nitrate nitrogen are also generated depending on the conditions). Heteroatoms such as phosphorus and sulfur are also oxidized to phosphate ions and sulfate ions, respectively.

【0003】水熱酸化反応実用化の大きな課題として、
処理装置材質の腐食があげられる。一般には被処理液中
に含まれる酸、あるいは水熱酸化反応によって生成する
酸による腐食が多いが、アルカリによる腐食についても
報告されている。従来の水熱酸化反応方法では、予め被
処理液の分析を行い、推定酸生成量を求め、それを中和
するのに十分な量の中和剤を反応器供給前(特表平3−
500264)、あるいは反応後の処理流体に供給する
方法で対処していた(特開平10−314770、特開
平11−156186)。また、中和剤の添加量は、反
応終了後に水熱反応処理水を冷却、減圧してpHを求
め、そのpHが腐食の起こりにくい適正値(通常、pH
3〜11)になるように調整することで対応していた。
As a major issue for practical application of hydrothermal oxidation reaction,
Corrosion of the material of the processing equipment. Generally, corrosion by an acid contained in the liquid to be treated or an acid generated by a hydrothermal oxidation reaction is large, but corrosion by an alkali is also reported. In the conventional hydrothermal oxidation reaction method, the liquid to be treated is analyzed in advance to obtain an estimated acid production amount, and a sufficient amount of a neutralizing agent for neutralizing the estimated acid production amount is supplied before the reactor is supplied (see Table 3
500264) or a method of supplying the reaction fluid after the reaction (JP-A-10-314770, JP-A-11-156186). The amount of the neutralizing agent added is such that after the reaction is completed, the hydrothermally treated water is cooled and decompressed to obtain a pH, and the pH is an appropriate value (usually pH
It was dealt with by adjusting so as to be 3 to 11).

【0004】アルカリによる腐食が問題となる場合、N
aOH等の水酸化物アルカリは反応器内で流体と分離し
て器壁等に付着するため、反応器供給前に中和剤と混合
することが必要となる。しかし、適切な中和剤を選択し
ないと別の問題を引き起こすことになる。例えば、塩酸
等のハロゲンを含む酸を中和剤として使用すると、生成
する塩による腐食が生じる場合がある。他の酸を使用す
れば腐食の問題は若干軽減されるかもしれないが、添加
する中和剤のコストが高くなる。
When corrosion due to alkali is a problem, N
Since hydroxide alkali such as aOH is separated from the fluid in the reactor and adheres to the wall of the reactor, it is necessary to mix it with the neutralizing agent before supplying the reactor. However, the selection of the appropriate neutralizing agent causes another problem. For example, when a halogen-containing acid such as hydrochloric acid is used as a neutralizing agent, corrosion may occur due to the salt produced. The use of other acids may alleviate the corrosion problem somewhat, but adds to the cost of the neutralizing agent added.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、水熱
反応器の腐食を低減して安全で、かつ長期的な運転を可
能にするとともに、中和剤の使用量を少なくして低コス
トで運転することができる水熱酸化反応方法を提案する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to reduce corrosion of a hydrothermal reactor to enable safe and long-term operation, and to reduce the amount of neutralizing agent used. It is to propose a hydrothermal oxidation reaction method that can be operated at a cost.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の課題を
解決できる手段を検討した結果、有機物の分解時に生じ
る二酸化炭素に中和作用があり、水熱反応器内で生成す
るアルカリに対して過剰の二酸化炭素が生成するように
被処理液の有機物濃度を調整することで、アルカリによ
る腐食を大きく低減できることを見い出した。
Means for Solving the Problems As a result of studying means for solving the above problems, the present inventor has found that carbon dioxide produced during the decomposition of organic matter has a neutralizing effect, and that the alkali generated in the hydrothermal reactor is It has been found that by adjusting the concentration of organic substances in the liquid to be treated so that excess carbon dioxide is generated, corrosion due to alkali can be greatly reduced.

【0007】すなわち、本発明は次の水熱酸化反応方法
である。 (1) 塩類と有機物を含む被処理液を、水の超臨界ま
たは亜臨界状態で水熱反応させ、有機物を酸化分解する
水熱酸化反応方法であって、被処理液中の陽イオンおよ
び陰イオンの濃度をそれぞれ1価の陽イオンおよび1価
の陰イオンの濃度に換算し、両者の差で陽イオンの含有
量が多く、その差の濃度に対して2倍モル濃度を超える
二酸化炭素が生成する状態で水熱酸化反応を行う水熱酸
化反応方法。 (2) 塩類と有機物を含む被処理液を、水の超臨界ま
たは亜臨界状態で水熱反応させ、有機物を酸化分解する
水熱酸化反応方法であって、被処理液中に含まれる各元
素の濃度の関係を示す下記数式(1)で示されるZの値
が0<Zであって、Z値に相当する陽イオンのモル濃度
に対して過剰の二酸化炭素が生成する状態で水熱酸化反
応を行う水熱酸化反応方法。
That is, the present invention is the following hydrothermal oxidation reaction method. (1) A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and an organic substance is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose the organic substance, which comprises cations and anions in the liquid to be treated. The concentration of ions is converted into the concentration of monovalent cation and the concentration of monovalent anion, respectively, and the difference in the cation content is large. A hydrothermal oxidation reaction method in which a hydrothermal oxidation reaction is carried out in the state of generation. (2) A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and organic matter is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose organic substances, and each element contained in the liquid to be treated The value of Z represented by the following mathematical formula (1) showing the relationship of the concentration of 0 is 0 <Z, and hydrothermal oxidation is performed in a state where excess carbon dioxide is generated with respect to the molar concentration of cations corresponding to the Z value. A hydrothermal oxidation reaction method for carrying out the reaction.

【数3】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。) (3) 塩類と有機物を含む被処理液を、水の超臨界ま
たは亜臨界状態で水熱反応させ、有機物を酸化分解する
水熱酸化反応方法であって、被処理液中に含まれる各元
素の含有量の関係を示す前記数式(1)で示されるZの
値が0<Zであって、Z値に相当する陽イオンのモル濃
度に対して10倍モル濃度以上の二酸化炭素が生成する
ように、被処理液中のTOC濃度を調整して水熱酸化反
応を行う水熱酸化反応方法。 (4) 被処理液に有機物または有機物含有廃液を添加
して、10倍モル濃度以上の二酸化炭素が生成するよう
に調整する上記(2)または(3)記載の水熱酸化反応
方法。
[Equation 3] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). (3) A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and an organic substance is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose the organic substance, each of which is contained in the liquid to be treated. The value of Z represented by the mathematical formula (1) showing the relation of the content of elements is 0 <Z, and 10 times or more molar concentration of carbon dioxide is generated with respect to the molar concentration of the cation corresponding to the Z value. A hydrothermal oxidation reaction method in which the TOC concentration in the liquid to be treated is adjusted to carry out the hydrothermal oxidation reaction. (4) The hydrothermal oxidation reaction method according to the above (2) or (3), wherein an organic substance or an organic substance-containing waste liquid is added to the liquid to be treated so that carbon dioxide having a molar concentration of 10 times or more is produced.

【0008】本発明で処理の対象となる被処理液の具体
的なものとしては、工場等から排出される有機物を含む
アルカリ性の廃液、工場等から排出される有機物を含む
廃液であって水熱反応の進行に伴ってアルカリ性を呈す
る廃液などがあげられる。
Specific examples of the liquid to be treated in the present invention include alkaline waste liquid containing organic substances discharged from factories, waste liquid containing organic substances discharged from factories, etc. Examples include waste liquids that become alkaline with the progress of the reaction.

【0009】本発明の方法は、アルカリの中和を二酸化
炭素により行う方法であり、この二酸化炭素の供給源と
して被処理液中の有機物を利用する。中和に使用する二
酸化炭素の量は、前記数式(1)に従って求める被処理
液中の陽イオン過剰モル濃度に対して過剰、好ましくは
大過剰のモル濃度になるように決定する。二酸化炭素を
過剰にする理由は、二酸化炭素と陽イオン(アルカリ金
属等)との反応は気相と液/固相との反応で、反応速度
が緩慢であるためである。
The method of the present invention is a method of neutralizing an alkali with carbon dioxide, and utilizes an organic substance in the liquid to be treated as a source of the carbon dioxide. The amount of carbon dioxide used for neutralization is determined so as to be an excess molar concentration, preferably a large excess concentration, with respect to the cation excess molar concentration in the liquid to be treated, which is determined according to the above mathematical formula (1). The reason for making carbon dioxide excessive is that the reaction between carbon dioxide and a cation (such as an alkali metal) is a reaction between a gas phase and a liquid / solid phase, and the reaction rate is slow.

【0010】中和に使用する二酸化炭素の具体的な量と
しては、被処理液中に含まれる各元素の濃度の関係を示
す前記数式(1)で示されるZの値が0<Zであって、
Z値に相当する陽イオンのモル濃度に対して2倍モル濃
度を越え、好ましくは10倍モル濃度以上、より好まし
くは50〜500倍モル濃度である。
As a specific amount of carbon dioxide used for neutralization, the value of Z represented by the above equation (1) showing the relationship of the concentration of each element contained in the liquid to be treated is 0 <Z. hand,
The molar concentration is more than 2-fold, preferably 10-fold or higher, and more preferably 50-500-fold the molar concentration of the cation corresponding to the Z value.

【0011】陽イオンとなる原子の具体的なものとして
は、Na、K等のアルカリ金属、Ca、Mg等アルカリ
土類金属のほか、アルミニウムや鉄等の金属原子などが
あげられる。また陽イオンの含有量を1価の陽イオンに
換算した濃度とは、イオン価が2価以上の陽イオンにお
いて実際の濃度にイオン価数を掛けた値である。例え
ば、2価の陽イオンの場合は実際の濃度を2倍した値で
ある。なお1価の陽イオンの場合は実際の濃度と換算し
た濃度とは同じ値である。
Specific examples of the atom serving as a cation include alkali metals such as Na and K, alkaline earth metals such as Ca and Mg, and metal atoms such as aluminum and iron. The concentration obtained by converting the content of cations into monovalent cations is the value obtained by multiplying the actual concentration of cations having a valence of 2 or more by the ionic valence number. For example, in the case of a divalent cation, the value is twice the actual concentration. In the case of monovalent cations, the actual concentration and the converted concentration have the same value.

【0012】陰イオンを構成する原子の具体的なものと
しては、F、Cl、Br、P、Sなどがあげられる。ま
た陰イオンの濃度を1価の陰イオンに換算した濃度と
は、イオン価が2価以上の陰イオンにおいて実際の濃度
にイオン価数を掛けた値である。例えば、2価の陰イオ
ンの場合は実際の濃度を2倍した値である。なお1価の
陰イオンの場合は実際の濃度と換算した濃度とは同じ値
である。
Specific examples of atoms constituting the anion include F, Cl, Br, P and S. The concentration obtained by converting the anion concentration into a monovalent anion is a value obtained by multiplying the actual concentration of the anion having a divalent or higher valence by the ionic valence number. For example, in the case of a divalent anion, it is a value obtained by doubling the actual concentration. In the case of monovalent anions, the actual concentration and the converted concentration have the same value.

【0013】二酸化炭素は有機物を水熱酸化反応させる
ことにより水熱反応器内で発生させる。被処理液中の有
機物含有量が十分にある場合には新たな二酸化炭素源を
添加する必要はないが、不足する場合には二酸化炭素源
となる有機物を添加する。添加する有機物は安価で無
害、かつ易分解性のものが望ましい。通常水熱酸化反応
の助燃剤として使用される炭化水素やアルコール等が二
酸化炭素源として適切であるので、これらを被処理液に
添加することができる。また別の有機廃棄物を混合して
処理することも効果がある。さらに、相対的に陽イオン
の含有量が少なく、相対的に有機物含有量の多い別の廃
液を混合することもできる。助燃剤は水熱酸化反応の温
度を維持するために必要なものであり、別の有機廃棄物
や廃液もいずれ処理するものであるから、高価な中和剤
は添加する必要はないか、添加する場合でも大きく削減
でき、低コストで処理することができる。有機物、助燃
剤、他の廃液などは予め被処理液に混合した状態で水熱
反応器に供給することもできるし、別々に水熱反応器に
供給することもできる。
Carbon dioxide is generated in the hydrothermal reactor by hydrothermally oxidizing an organic substance. When the content of the organic substance in the liquid to be treated is sufficient, it is not necessary to add a new carbon dioxide source, but when it is insufficient, the organic substance serving as the carbon dioxide source is added. It is desirable that the organic substance to be added be inexpensive, harmless, and easily decomposable. Hydrocarbons, alcohols and the like, which are usually used as a combustion improver for hydrothermal oxidation reaction, are suitable as a carbon dioxide source, and thus they can be added to the liquid to be treated. It is also effective to mix and treat another organic waste. Further, another waste liquid having a relatively low cation content and a relatively high organic matter content can be mixed. Since the combustion improver is necessary to maintain the temperature of the hydrothermal oxidation reaction and will eventually treat other organic wastes and waste liquids, it is not necessary to add an expensive neutralizing agent. Even if it does, it can be greatly reduced and can be processed at low cost. Organic substances, combustion improvers, other waste liquids, etc. can be supplied to the hydrothermal reactor in a state of being mixed with the liquid to be treated in advance, or can be supplied separately to the hydrothermal reactor.

【0014】実際の処理水のpHは前記数式(1)に示
されている元素以外の元素も影響して決まるが、概略の
pH値を得るにはこの式が有効である。すなわち、Z>
0では処理水中にはNa+やK+といったカチオンのモル
数が多く、処理水はアルカリ性になると考えられる。例
えば、Z=+0.001の場合は、Na+やK+といった
カチオンのモル濃度が0.001mol/L過剰という
ことで、推定pHは水に0.01mol/Lの水酸化ナ
トリウムを添加した程度、すなわちpH=11というこ
とになる。
The actual pH of the treated water is determined by the influence of elements other than the elements shown in the above equation (1), but this equation is effective for obtaining a rough pH value. That is, Z>
At 0, the treated water has a large number of moles of cations such as Na + and K + , and the treated water is considered to be alkaline. For example, in the case of Z = + 0.001, the molar concentration of cations such as Na + and K + is 0.001 mol / L excess, so the estimated pH is about 0.01 mol / L sodium hydroxide added to water. That is, pH = 11.

【0015】前記数式(1)に示されている元素以外
で、水熱反応の処理水中に存在するイオン種としては各
種重金属イオン、炭酸イオン、含窒素イオン(NH4 +
NO2 -、NO3 -など)があるが、これらは含まれる可能
性が少ないか、含まれていてもわずかであるか、水熱反
応下では分解されるか、または処理流体の気液分離後に
ガス側に移行する元素であり、中和反応に大きく影響し
ない場合がほとんどである。しかし、これらのイオン種
や他の要因によりpH値が概略値と大きく異なってくる
場合もあると考えられる。よって前記数式(1)を活用
する場合でも、処理時には処理水のpHをモニタリング
し、必要に応じて中和剤を添加する手段は併用すること
が望ましい。
In addition to the elements shown in the formula (1), various heavy metal ions, carbonate ions, nitrogen-containing ions (NH 4 + ,
NO 2 -, NO 3 - but the like), or they are less likely to be included, either only be included, or under hydrothermal reaction is decomposed, or a gas-liquid separation of the process fluid It is an element that migrates to the gas side later and in most cases does not significantly affect the neutralization reaction. However, it is considered that the pH value may greatly differ from the approximate value due to these ionic species and other factors. Therefore, even when utilizing the above formula (1), it is desirable to use a means for monitoring the pH of the treated water during treatment and adding a neutralizing agent if necessary.

【0016】なお、複数廃液の混合は、通常一つの貯留
槽内で行えばよいが、混合することによって何らかの不
都合(例えば臭気が発生する、相分離する、固体が析出
するなど)がある場合は、適当な場所で混合(例えば、
それぞれを送液して反応器入口近傍で混合するなど)す
ればよい。
It should be noted that mixing of a plurality of waste liquids may be normally carried out in one storage tank, but if there is some inconvenience (for example, generation of odor, phase separation, precipitation of solids, etc.) due to mixing. , Mix in suitable places (eg
Each of them may be fed and mixed near the inlet of the reactor).

【0017】アルカリを二酸化炭素で中和することによ
り水熱反応器内で中和塩としての炭酸塩が生成し、反応
器内に堆積する可能性がある。そのため、水熱反応器内
における塩の堆積防止手段や排出手段の併用が望まし
い。具体的な方法としては、水熱反応器下部に水層を設
けて塩を溶解、排出する手段(特許2726293)や
機械的に塩を掻き取る手段(USP5,100,56
0、特開平10−15566、特開平11−25378
6)、反応器表面から流体を噴出させて付着を防止する
手段(特開平9−299966)など、公知の方法を採
用することができる。
By neutralizing the alkali with carbon dioxide, a carbonate as a neutralizing salt may be produced in the hydrothermal reactor and may be deposited in the reactor. Therefore, it is desirable to use a salt accumulation preventing means and a discharging means in combination in the hydrothermal reactor. As a specific method, means for dissolving and discharging salt by providing a water layer in the lower part of the hydrothermal reactor (patent 2726293) and means for mechanically scraping salt (USP 5,100,56)
0, JP-A-10-15566, JP-A-11-25378.
6), a known method such as a means for ejecting a fluid from the surface of the reactor to prevent adhesion (Japanese Patent Laid-Open No. 9-299966) can be adopted.

【0018】水熱酸化反応は、前記被処理液を水熱反応
器に導入し、有機物の酸化分解を行う。水熱反応器は有
機物を酸化剤の存在下に水の超臨界または亜臨界状態で
水熱酸化反応により酸化分解するように構成される。こ
こで水熱酸化反応とは、超臨界または亜臨界状態の高温
高圧の水および酸化剤の存在下に有機物を酸化分解する
反応である。超臨界状態とは374℃以上、22MPa
以上の状態である。また亜臨界状態とは例えば374℃
以上、2.5MPa以上22MPa未満あるいは374
℃未満、22MPa以上の状態、あるいは374℃以
下、22MPa未満であっても臨界点に近い高温高圧の
状態をいう。
In the hydrothermal oxidation reaction, the liquid to be treated is introduced into a hydrothermal reactor to oxidize and decompose organic substances. The hydrothermal reactor is configured to oxidatively decompose organic matter by a hydrothermal oxidation reaction in the presence of an oxidant in a supercritical or subcritical state of water. Here, the hydrothermal oxidation reaction is a reaction of oxidatively decomposing an organic substance in the presence of water at high temperature and high pressure in a supercritical or subcritical state and an oxidizing agent. Supercritical state is 374 ° C or higher, 22 MPa
The above is the state. The subcritical state is, for example, 374 ° C.
Or more, 2.5 MPa or more and less than 22 MPa or 374
A state of less than 0 ° C., 22 MPa or more, or a state of 374 ° C. or less, less than 22 MPa, high temperature and high pressure close to the critical point.

【0019】このような水熱酸化反応は有機物が酸化剤
と混合した状態で水熱反応器において行われ、これらの
混合物が反応器内部で反応する。酸化剤としては、空
気、酸素、液体酸素、オゾン、過酸化水素水、硝酸、亜
硝酸、硝酸塩、亜硝酸塩等を用いることができる。酸化
剤は、被処理液と混合されて供給されてもよいし、供給
口を二重管ノズルにして複層流として供給してもよい。
また必要により触媒や中和剤等が添加される場合がある
が、これらは被処理液と混合して、あるいは別々に反応
器に供給することができる。
Such a hydrothermal oxidation reaction is carried out in a hydrothermal reactor in a state where an organic substance is mixed with an oxidant, and these mixtures react inside the reactor. Air, oxygen, liquid oxygen, ozone, hydrogen peroxide solution, nitric acid, nitrous acid, nitrate, nitrite and the like can be used as the oxidizing agent. The oxidant may be supplied by being mixed with the liquid to be treated, or may be supplied as a multi-layered flow by using a double-tube nozzle as a supply port.
If necessary, a catalyst, a neutralizing agent and the like may be added, and these can be mixed with the liquid to be treated or supplied separately to the reactor.

【0020】本発明で用いられる水熱反応器は超臨界ま
たは亜臨界状態で水熱酸化反応を行うように、耐熱性、
耐圧性、耐腐食性等の少なくとも一つを有する材料で構
成される。通常、反応に必要な温度は被処理液自体の酸
化反応熱で賄うが、反応熱が不足するような場合には助
燃剤を添加する、被処理液を予熱する、反応器を外部加
熱手段で加熱するなどの方法で反応温度を維持する。反
応器の形状は特に限定はされないが、チューブ型のよう
な内径の細い反応器では塩の閉塞が起こりやすく、本発
明への適用には適さない。反応器の内径が50mm以上
で、実質的に垂直方向に配置した筒状反応器が好まし
い。反応器の形状は円筒、楕円筒、多角筒のものを用い
ることができ、下端部はコーン状とすることができる。
The hydrothermal reactor used in the present invention has heat resistance, so that the hydrothermal oxidation reaction is performed in a supercritical or subcritical state.
It is made of a material having at least one of pressure resistance and corrosion resistance. Usually, the temperature required for the reaction is covered by the heat of oxidation reaction of the liquid to be treated itself, but when the reaction heat is insufficient, a combustion improver is added, the liquid to be treated is preheated, and the reactor is externally heated. The reaction temperature is maintained by heating or the like. The shape of the reactor is not particularly limited, but in a reactor having a small inner diameter such as a tube type, salt clogging is likely to occur, which is not suitable for application to the present invention. A tubular reactor having an inner diameter of 50 mm or more and arranged substantially vertically is preferable. The reactor may have a cylindrical shape, an elliptic cylindrical shape, or a polygonal cylindrical shape, and the lower end thereof may have a cone shape.

【0021】このような水熱反応器により超臨界または
亜臨界状態で水熱反応を行うと、有機物は酸化剤と反応
して酸化されて、最終的に少なくとも水と二酸化炭素に
分解される。被処理液に含まれるか、水熱酸化反応によ
って生成した陽イオンや陰イオンは無機塩を形成し、固
体あるいは溶融状態で分離する。この無機塩の中には有
機物の分解によって生成し、陽イオンと中和反応した炭
酸イオンも含まれる。反応生成物は冷却、気液分離、減
圧等を経て、処理ガスと処理水として放出される。な
お、反応器出口から処理水放出部までの間に、必要に応
じて固体分離手段を設けることができる。これは固体に
よる閉塞や磨耗、あるいは処理水中のSS低減など、種
々の目的に応じて使い分けることになる。
When a hydrothermal reaction is carried out in a supercritical or subcritical state by such a hydrothermal reactor, organic substances react with an oxidizing agent to be oxidized, and finally decomposed into at least water and carbon dioxide. Cations or anions contained in the liquid to be treated or generated by the hydrothermal oxidation reaction form an inorganic salt, and are separated in a solid or molten state. The inorganic salts also include carbonate ions produced by decomposition of organic substances and neutralized with cations. The reaction product is cooled, gas-liquid separated, decompressed, and the like, and then released as a treated gas and treated water. If necessary, a solid separating means can be provided between the reactor outlet and the treated water discharge part. This is properly used according to various purposes such as clogging and wear due to solids, or reduction of SS in treated water.

【0022】上記の水熱反応器は従来より水熱反応に用
いられているものをそのまま用いることができるが、特
開平11−156186号に示されているように、上部
に逆流を伴う混合反応域、下部に栓状流反応域を形成す
る実質的に垂直な反応器に、さらに上部に設けられた供
給装置から被処理液と酸化剤の混合流を下向流で供給し
て上部の混合反応域で逆流を伴う混合流を形成して水熱
反応を行い、下部の栓状流反応域で平行な下向栓流を形
成して追加の水熱反応を行う構造のものが好ましい。こ
れは、上部の逆流を伴う混合反応域が、二酸化炭素と陽
イオンとの反応を促進するためである。
As the above-mentioned hydrothermal reactor, the one conventionally used for the hydrothermal reaction can be used as it is, but as shown in JP-A-11-156186, a mixed reaction accompanied by a reverse flow in the upper part. In the upper and lower parts of the reactor, a mixed flow of the liquid to be treated and the oxidant is supplied in a downward flow from a supply device installed in the upper part to a substantially vertical reactor forming a plug flow reaction region in the upper part. A structure is preferred in which a mixed flow accompanied by backflow is formed in the reaction zone for hydrothermal reaction, and a parallel downward plug flow is formed in the lower plug flow reaction zone for additional hydrothermal reaction. This is because the mixed reaction zone with backflow promotes the reaction between carbon dioxide and cations.

【0023】水熱反応器の材質は制限されないが、ハス
テロイ、インコネル、ステンレス等の耐食性の材質が好
ましい。水熱反応器には耐腐食性ライナーを設けるのが
好ましい。耐腐食性ライナーは特に限定されず、特開平
11−156186号に開示されたような耐腐食性ライ
ナーと圧力負荷壁との間に間隙が存在するような耐腐食
性ライナーを用いることができる。
The material of the hydrothermal reactor is not limited, but is preferably a corrosion resistant material such as Hastelloy, Inconel or stainless steel. The hydrothermal reactor is preferably provided with a corrosion resistant liner. The corrosion-resistant liner is not particularly limited, and a corrosion-resistant liner having a gap between the corrosion-resistant liner and the pressure load wall as disclosed in JP-A-11-156186 can be used.

【0024】水熱反応器には反応混合物を排出口から排
出する前に無機塩を溶解するための手段を設けることが
できる。この手段は特に限定されないが、例えば反応器
下部に水を導入することで、無機塩を溶解してその排出
を促進することができる。また、反応器下部に酸やアル
カリを含む水を導入することで、アルカリや酸の中和を
行うことができる。固体の付着性が著しい場合には、反
応器の内壁に付着した固体を除去するための機械的除去
装置を設けることができる。固体除去のための機械的除
去装置は特に限定されないが、特開平11−15618
6号で開示された切欠窓部分を含む実質的に円筒状のス
クレーパが好適である。
The hydrothermal reactor may be provided with means for dissolving the inorganic salt before discharging the reaction mixture from the outlet. This means is not particularly limited, but for example, by introducing water into the lower part of the reactor, the inorganic salt can be dissolved and its discharge can be promoted. Also, by introducing water containing an acid or an alkali into the lower part of the reactor, the alkali or the acid can be neutralized. When the adherence of solids is significant, a mechanical removal device for removing solids adhering to the inner wall of the reactor can be provided. The mechanical removing device for removing solids is not particularly limited, but is disclosed in Japanese Patent Laid-Open No. 11-15618.
A substantially cylindrical scraper including a notched window portion as disclosed in No. 6 is suitable.

【0025】水熱反応器による反応開始の手段は特に制
限されない。通常、反応器は反応開始にあたって所定の
反応温度付近に予熱される。予熱は加熱装置を反応器に
設けるか、あるいは被処理液および/または酸化剤供給
路に設けて加熱された水や空気を導入して実施すること
ができる。また、通常、反応器に水や酸化剤を供給し、
通常設けられる圧力調整弁によって所定の圧力に加圧さ
れる。所定の温度、圧力に調整された後、被処理液を含
む流体を供給して水熱反応を開始する。反応によって有
機物が分解され、反応熱が発生する。水熱反応器上部に
逆流を伴う混合反応域を設けた場合、ここで逆流を伴う
混合作用で有機物、酸化剤および反応器内容物などが十
分に混合されるため、流体の温度が上昇する。これによ
り供給される有機物は速やかに水熱反応を開始し、安定
した反応が継続されることになる。反応流体は反応器内
を下向きに移動し、栓状流反応域で継続反応した後、排
出口から排出される。反応器の長さ:直径の比は1:1
〜100:1が好ましい。
The means for starting the reaction by the hydrothermal reactor is not particularly limited. Usually, the reactor is preheated to around a predetermined reaction temperature at the start of the reaction. Preheating can be carried out by providing a heating device in the reactor or by introducing water or air heated in the liquid to be treated and / or the oxidant supply passage. Also, normally, supplying water and an oxidant to the reactor,
It is pressurized to a predetermined pressure by a pressure adjusting valve that is usually provided. After the temperature and pressure are adjusted to predetermined values, a fluid containing the liquid to be treated is supplied to start the hydrothermal reaction. Organic substances are decomposed by the reaction, and heat of reaction is generated. When a mixing reaction zone involving backflow is provided in the upper part of the hydrothermal reactor, the organic substance, the oxidant, the contents of the reactor and the like are sufficiently mixed by the mixing action involving backflow, so that the temperature of the fluid rises. As a result, the supplied organic substance promptly starts the hydrothermal reaction, and the stable reaction is continued. The reaction fluid moves downward in the reactor, continuously reacts in the plug flow reaction region, and is then discharged from the discharge port. Reactor length: diameter ratio of 1: 1
~ 100: 1 is preferred.

【0026】本発明では水熱酸化反応の進行に伴って有
機物から生成される二酸化炭素によりアルカリを中和し
ているので、中和剤の使用量を節約して反応器の腐食を
抑えた処理が行えるようになる。本発明は、実際の水熱
酸化反応における簡便かつ安価な腐食抑制方法として有
用である。
In the present invention, the alkali is neutralized by the carbon dioxide produced from the organic matter as the hydrothermal oxidation reaction progresses. Therefore, the amount of the neutralizing agent used is saved to prevent the corrosion of the reactor. Will be able to. INDUSTRIAL APPLICABILITY The present invention is useful as a simple and inexpensive corrosion inhibition method in actual hydrothermal oxidation reaction.

【0027】[0027]

【発明の効果】本発明の水熱酸化反応方法は、被処理液
中の陽イオンおよび陰イオンの濃度をそれぞれ1価の陽
イオンおよび1価の陰イオンの濃度に換算し、両者の差
で陽イオンの濃度が多く、その差の濃度に対して過剰の
二酸化炭素が生成する状態で水熱酸化反応を行うことで
アルカリを中和し、水熱反応器の腐食を低減して安全
で、かつ長期的な運転を可能にするとともに、中和剤の
使用量を少なくして低コストで運転することができる。
The hydrothermal oxidation reaction method of the present invention converts the concentrations of cations and anions in the liquid to be treated into monovalent cation and monovalent anion concentrations, respectively, and calculates the difference between the two values. The concentration of cations is high, the alkali is neutralized by performing a hydrothermal oxidation reaction in a state in which excess carbon dioxide is generated with respect to the difference in concentration, the corrosion of the hydrothermal reactor is reduced, and it is safe, In addition to enabling long-term operation, it is possible to operate at low cost by reducing the amount of the neutralizing agent used.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施形態を図面に
より説明する。図1は本発明の水熱酸化反応方法を実施
する実施形態の水熱反応装置の系統図であり、1は混合
槽、2は水熱反応器、3は酸化剤槽、5は気液分離器で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a hydrothermal reaction apparatus of an embodiment for carrying out the hydrothermal oxidation reaction method of the present invention, where 1 is a mixing tank, 2 is a hydrothermal reactor, 3 is an oxidant tank, 5 is gas-liquid separation. It is a vessel.

【0029】図1の装置による水熱反応処理は以下のよ
うに行われる。まず混合槽1に系路11からアルカリ性
の廃液、系路12から有機物を導入して混合し、混合廃
液13を調製する。この場合、前記数式(1)で示され
るZの値に相当する陽イオンのモル濃度に対して過剰、
好ましくは10倍モル濃度以上の二酸化炭素が生成する
ように、有機物を添加する。
The hydrothermal reaction treatment by the apparatus of FIG. 1 is performed as follows. First, an alkaline waste liquid is introduced into the mixing tank 1 from the system path 11, and an organic substance is introduced from the system path 12 and mixed to prepare a mixed waste solution 13. In this case, an excess with respect to the molar concentration of the cation corresponding to the value of Z represented by the formula (1),
Organic substances are preferably added so that carbon dioxide of 10 times or more molar concentration is produced.

【0030】混合廃液13は高圧ポンプP1により系路
14を通して水熱反応器2の供給装置2aに送り、ここ
で酸化剤槽3から高圧ポンプP2により系路15を通し
て送られる酸化剤(例えば空気、過酸化水素水)と混合
し、混合流を水熱反応器2に下向流で供給して水熱反応
を行う。水熱反応器2では反応開始時に系路14または
15に設けられる予熱器(図示せず)により、加熱を行
って超臨界または亜臨界状態に保って水熱反応を行う。
The mixed waste liquid 13 is sent by the high-pressure pump P1 through the system 14 to the supply device 2a of the hydrothermal reactor 2, where the oxidant (eg air, sent from the oxidizer tank 3 by the high-pressure pump P2 is sent through the system 15). (Hydrogen peroxide water), and the mixed flow is supplied to the hydrothermal reactor 2 in a downward flow to perform the hydrothermal reaction. In the hydrothermal reactor 2, heating is performed by a preheater (not shown) provided in the system passage 14 or 15 at the time of starting the reaction, and the hydrothermal reaction is performed while maintaining the supercritical or subcritical state.

【0031】供給装置2aから供給される混合流は水熱
反応器2の上部では逆流を伴う混合反応域を形成し、有
機物の酸化分解が行われ、下部では乱流は解消して栓状
流反応域を形成して追加反応が行われる。このような水
熱反応により、有機物から二酸化炭素が生成する。水熱
反応器2で処理する混合廃液13は、過剰の二酸化炭素
が生成するように有機物が添加されているので、生成す
る二酸化炭素により中和され、アルカリによる水熱反応
器2の腐食は防止される。
The mixed flow supplied from the supply device 2a forms a mixed reaction zone accompanied by a reverse flow in the upper part of the hydrothermal reactor 2, oxidative decomposition of organic substances is carried out, and the turbulent flow is eliminated in the lower part to form a plug-like flow. A reaction zone is formed to carry out an additional reaction. By such a hydrothermal reaction, carbon dioxide is produced from the organic matter. The mixed waste liquid 13 processed in the hydrothermal reactor 2 is neutralized by the generated carbon dioxide because the organic substance is added so that excess carbon dioxide is generated, and corrosion of the hydrothermal reactor 2 by alkali is prevented. To be done.

【0032】水熱反応器2の反応流体は系路16から冷
却器19に導入して、冷却水路21から供給する冷却水
で冷却し、系路22から気液分離器5に導入して気液分
離し、気体排出路23から弁V1を通して気体を排出
し、液体排出路24から弁V2を通して処理水を排出す
る。得られる処理水は有機物、アンモニア、その他被反
応物が分解された、高水質なものであり、回収利用も可
能である。
The reaction fluid of the hydrothermal reactor 2 is introduced into the cooler 19 from the system passage 16, cooled by the cooling water supplied from the cooling water passage 21, and introduced into the gas-liquid separator 5 from the system passage 22 to be vaporized. The liquid is separated, the gas is discharged from the gas discharge path 23 through the valve V1, and the treated water is discharged from the liquid discharge path 24 through the valve V2. The treated water obtained is of high quality in which organic substances, ammonia, and other substances to be reacted are decomposed, and can be recovered and used.

【0033】図1では有機物を廃液に添加しているが、
有機物の代わりに他の有機廃棄物や有機物を相対的に高
濃度に含む廃液などを添加して混合廃液を調製すること
もできる。有機物や有機廃棄物が廃液と良好に混合せ
ず、分離してしまう場合は、それぞれ別個に水熱反応器
2に供給することもできる。図1では、高圧ポンプP2
の代わりにコンプレッサを使用することもできる。
Although organic substances are added to the waste liquid in FIG. 1,
It is also possible to prepare a mixed waste liquid by adding other organic waste or a waste liquid containing the organic substance in a relatively high concentration in place of the organic substance. When the organic matter and the organic waste do not mix well with the waste liquid and are separated, they can be separately supplied to the hydrothermal reactor 2. In FIG. 1, the high pressure pump P2
A compressor can be used instead of.

【0034】[0034]

【実施例】実施例1、2および比較例1 酢酸ナトリウムの0.022mol/L溶液(試料1、
比較例1)、試料1に二酸化炭素源としてメタノールを
1.40mol/Lになるように加えたもの(試料2、
実施例1)、酢酸ナトリウムの0.05mol/L溶液
にメタノールを0.40mol/Lになるように加えた
もの(試料3、実施例2)を使用し、水熱反応試験を図
1の装置で行った。
EXAMPLES Examples 1 and 2 and Comparative Example 1 0.022 mol / L solution of sodium acetate (Sample 1,
Comparative Example 1), which was prepared by adding methanol as a carbon dioxide source so as to be 1.40 mol / L (Sample 2,
In Example 1), a solution obtained by adding methanol to a 0.05 mol / L solution of sodium acetate to a concentration of 0.40 mol / L (Sample 3, Example 2) was used. I went there.

【0035】300℃に予熱した試料と酸化剤(35%
過酸化水素水を5倍希釈したもの)とを反応器手前で混
合し、反応器内にノズル(管径1mmφ)を通して供給
した。反応器には外熱式ヒーターが取り付けられてお
り、反応条件が650℃、24MPaになるように調整
した。反応器内には腐食評価用のテストロッド(1.6
mmφ)が取り付けられるようになっている。反応器に
水と酸化剤を供給し、反応器内が設定反応温度になるよ
うに外熱式ヒーターで加熱して調整した。反応温度が設
定値になった段階で、水と試料を徐々に切り替え、水の
超臨界または亜臨界状態で水熱反応を行った。水と試料
が完全に切り替わってから4時間反応を継続し、試料を
徐々に水に切り替えた後、ヒーターを切って試験を終了
させた。なお、冷却中の腐食を最小限に抑えるため、ヒ
ーターを切ってからは空気のみを流して反応器を冷却し
た。試験後にテストロッドを取り出し、数か所の断面観
察を行い、最大腐食深さを求めた。なお、実施例1は内
径5mmのチューブを、実施例2では内径50mmの縦
筒型反応器で内径1mmの供給ノズルを使用して行っ
た。結果を表1に示す。
Sample preheated to 300 ° C. and oxidizer (35%
Hydrogen peroxide solution diluted 5 times) was mixed in front of the reactor, and the mixture was supplied into the reactor through a nozzle (tube diameter 1 mmφ). An external heater was attached to the reactor, and the reaction conditions were adjusted to 650 ° C. and 24 MPa. A test rod (1.6
mmφ) can be attached. Water and an oxidizing agent were supplied to the reactor, and the inside of the reactor was adjusted by heating with an external heater so that the reaction temperature was set. When the reaction temperature reached the set value, the water and the sample were gradually switched to carry out the hydrothermal reaction in the supercritical or subcritical state of water. The reaction was continued for 4 hours after the water and the sample were completely switched, the sample was gradually switched to water, and then the heater was turned off to end the test. In order to minimize corrosion during cooling, the reactor was cooled by flowing only air after turning off the heater. After the test, the test rod was taken out and several sections were observed to determine the maximum corrosion depth. In Example 1, a tube having an inner diameter of 5 mm was used, and in Example 2, a vertical tube reactor having an inner diameter of 50 mm was used and a supply nozzle having an inner diameter of 1 mm was used. The results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1の結果からわかるように、10倍モル
濃度の二酸化炭素が生成するようにメタノールを添加し
た実施例2では、2倍モル濃度の比較例1に比べて腐食
量が大幅に低減できた。これは二酸化炭素による中和効
果が十分に発揮されたためと考えられる。
As can be seen from the results in Table 1, in Example 2 in which methanol was added so that carbon dioxide having a 10-fold molar concentration was produced, the amount of corrosion was significantly reduced as compared with Comparative Example 1 having a 2-fold molar concentration. did it. It is considered that this is because the carbon dioxide neutralization effect was sufficiently exerted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水熱酸化反応方法を実施する実施形態
の水熱反応装置の系統図である。
FIG. 1 is a system diagram of a hydrothermal reaction apparatus of an embodiment for carrying out the hydrothermal oxidation reaction method of the present invention.

【符号の説明】[Explanation of symbols]

1 混合槽 2 水熱反応器 3 酸化剤槽 5 気液分離器 11、12、14、15、16、22 系路 13 混合廃液 19 冷却器 21 冷却水路 23 気体排出路 24 液体排出路 1 mixing tank 2 Hydrothermal reactor 3 oxidizer tank 5 gas-liquid separator 11, 12, 14, 15, 16, 22 Route 13 Mixed waste liquid 19 Cooler 21 Cooling channel 23 Gas discharge path 24 Liquid discharge path

フロントページの続き (71)出願人 598124412 ジェネラル アトミックス インコーポレ イテッド アメリカ合衆国 カリフォルニア州 サン ディエゴ ジェネラル アトミックス コ ート 3550 (72)発明者 小布施 洋 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 北野 清之 神奈川県平塚市万田1200 株式会社小松製 作所中央研究所内 (72)発明者 畠 康彦 神奈川県平塚市万田1200 株式会社小松製 作所中央研究所内 Fターム(参考) 4D050 AA13 AB07 BB01 BB02 BB08 BB09 BC01 BC02 BC06 BD02 BD03 CA03 Continued front page    (71) Applicant 598124412             General Atomix Incorporated             Itted             United States of America California Sun             Diego General Atomics Co             3550 (72) Inventor Hiroshi Obuse             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. (72) Inventor Kiyoyuki Kitano             1200 Manda, Hiratsuka-shi, Kanagawa Made by Komatsu Ltd.             Sakusho Central Research Institute (72) Inventor Yasuhiko Hatake             1200 Manda, Hiratsuka-shi, Kanagawa Made by Komatsu Ltd.             Sakusho Central Research Institute F term (reference) 4D050 AA13 AB07 BB01 BB02 BB08                       BB09 BC01 BC02 BC06 BD02                       BD03 CA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩類と有機物を含む被処理液を、水の超
臨界または亜臨界状態で水熱反応させ、有機物を酸化分
解する水熱酸化反応方法であって、 被処理液中の陽イオンおよび陰イオンの濃度をそれぞれ
1価の陽イオンおよび1価の陰イオンの濃度に換算し、
両者の差で陽イオンの含有量が多く、その差の濃度に対
して2倍モル濃度を超える二酸化炭素が生成する状態で
水熱酸化反応を行う水熱酸化反応方法。
1. A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and an organic substance is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose the organic substance, wherein cations in the liquid to be treated are contained. And the concentration of anions are converted into the concentration of monovalent cations and monovalent anions, respectively,
A hydrothermal oxidation reaction method in which the hydrothermal oxidation reaction is carried out in a state in which the cation content is large due to the difference between the two and carbon dioxide in excess of twice the molar concentration with respect to the difference is produced.
【請求項2】 塩類と有機物を含む被処理液を、水の超
臨界または亜臨界状態で水熱反応させ、有機物を酸化分
解する水熱酸化反応方法であって、 被処理液中に含まれる各元素の濃度の関係を示す下記数
式(1)で示されるZの値が0<Zであって、Z値に相
当する陽イオンのモル濃度に対して過剰の二酸化炭素が
生成する状態で水熱酸化反応を行う水熱酸化反応方法。 【数1】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。)
2. A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and an organic substance is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose the organic substance, which is contained in the liquid to be treated. The value of Z represented by the following mathematical formula (1) showing the relationship of the concentration of each element is 0 <Z, and water is produced in a state where excess carbon dioxide is generated with respect to the molar concentration of cations corresponding to the Z value. A hydrothermal oxidation reaction method for performing a thermal oxidation reaction. [Equation 1] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). )
【請求項3】 塩類と有機物を含む被処理液を、水の超
臨界または亜臨界状態で水熱反応させ、有機物を酸化分
解する水熱酸化反応方法であって、 被処理液中に含まれる各元素の含有量の関係を示す下記
数式(1)で示されるZの値が0<Zであって、Z値に
相当する陽イオンのモル濃度に対して10倍モル濃度以
上の二酸化炭素が生成するように、被処理液中のTOC
濃度を調整して水熱酸化反応を行う水熱酸化反応方法。 【数2】 (式(1)中、[Na]、[K]、[Mg]、[C
a]、[F]、[Cl]、[Br]、[P]および
[S]は被処理液に含まれる各原子のモル濃度(mol
/L)である。)
3. A hydrothermal oxidation reaction method in which a liquid to be treated containing salts and an organic substance is hydrothermally reacted in a supercritical or subcritical state of water to oxidize and decompose the organic substance, which is contained in the liquid to be treated. The value of Z represented by the following mathematical formula (1) showing the relation of the content of each element is 0 <Z, and carbon dioxide in a molar concentration 10 times or more the molar concentration of the cation corresponding to the Z value is generated. TOC in the liquid to be treated so as to generate
A hydrothermal oxidation reaction method in which the concentration is adjusted to perform a hydrothermal oxidation reaction. [Equation 2] (In the formula (1), [Na], [K], [Mg], and [C]
a], [F], [Cl], [Br], [P] and [S] are molar concentrations (mol) of each atom contained in the liquid to be treated.
/ L). )
【請求項4】 被処理液に有機物または有機物含有廃液
を添加して、10倍モル濃度以上の二酸化炭素が生成す
るように調整する請求項2または3記載の水熱酸化反応
方法。
4. The hydrothermal oxidation reaction method according to claim 2, wherein an organic substance or an organic substance-containing waste liquid is added to the liquid to be treated so that carbon dioxide having a molar concentration of 10 times or more is produced.
JP2002039342A 2002-02-15 2002-02-15 Process for hydrothermal oxidation reaction Withdrawn JP2003236363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039342A JP2003236363A (en) 2002-02-15 2002-02-15 Process for hydrothermal oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039342A JP2003236363A (en) 2002-02-15 2002-02-15 Process for hydrothermal oxidation reaction

Publications (1)

Publication Number Publication Date
JP2003236363A true JP2003236363A (en) 2003-08-26

Family

ID=27780377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039342A Withdrawn JP2003236363A (en) 2002-02-15 2002-02-15 Process for hydrothermal oxidation reaction

Country Status (1)

Country Link
JP (1) JP2003236363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313155A (en) * 2004-03-31 2005-11-10 Osaka Gas Co Ltd Wastewater treatment method
US10688464B2 (en) 2017-06-05 2020-06-23 General Atomics Corrosion inhibition in hydrothermal processing
US11851354B2 (en) 2017-11-23 2023-12-26 Shell Usa, Inc. Process for the treatment of waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313155A (en) * 2004-03-31 2005-11-10 Osaka Gas Co Ltd Wastewater treatment method
JP4703227B2 (en) * 2004-03-31 2011-06-15 大阪瓦斯株式会社 Wastewater treatment method
US10688464B2 (en) 2017-06-05 2020-06-23 General Atomics Corrosion inhibition in hydrothermal processing
US11851354B2 (en) 2017-11-23 2023-12-26 Shell Usa, Inc. Process for the treatment of waste water

Similar Documents

Publication Publication Date Title
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
EP1963231A2 (en) Chlorine dioxide-based water treatment system for on-board ship applications
JPH02102788A (en) Treatment of waste solution containing caustic cyanide and metal
JPH0757910B2 (en) Regeneration of ferric chloride etching solution
Beltran et al. Ozonation of o-cresol in aqueous solutions
JP2003236363A (en) Process for hydrothermal oxidation reaction
JP2003236569A (en) Method of hydrothermal oxidation reaction
JPH11347535A (en) Method for treating drainage containing ammonia
JP2004033910A (en) Treatment method for organic acid washing waste liquid and apparatus therefor
JP2003236364A (en) Process for hydrothermal reaction
JP3462969B2 (en) How to reduce the volume of waste ion exchange resin
JP3896861B2 (en) Hydrothermal reaction method and apparatus
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
US5266287A (en) Regenerable flue gas desulfurization system
EP1101812A1 (en) Method for converting chlorine-containing waste plastic to oil
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP3423204B2 (en) How to remove scale
JP2003236568A (en) Hydrothermal reaction treatment method
JP3816218B2 (en) Method and apparatus for decomposing organic compounds containing halogen atoms and / or sulfur atoms
JP4142994B2 (en) Fluorine-containing water treatment method and treatment apparatus therefor
JPH1119636A (en) Method for transporting solid to reaction field of supercritical water atmosphere and apparatus therefor
JP2007237058A (en) Two-stage reactor and method therefor
JPH11221583A (en) Supercritical water oxidation treatment of tmah waste liquid
JP2005152804A (en) Supercritical hydration method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070411