KR100858510B1 - Process for supercritical water oxidation of cationic exchange resin used in nuclear power - Google Patents

Process for supercritical water oxidation of cationic exchange resin used in nuclear power Download PDF

Info

Publication number
KR100858510B1
KR100858510B1 KR1020070047605A KR20070047605A KR100858510B1 KR 100858510 B1 KR100858510 B1 KR 100858510B1 KR 1020070047605 A KR1020070047605 A KR 1020070047605A KR 20070047605 A KR20070047605 A KR 20070047605A KR 100858510 B1 KR100858510 B1 KR 100858510B1
Authority
KR
South Korea
Prior art keywords
slurry
exchange resin
water
waste
supercritical
Prior art date
Application number
KR1020070047605A
Other languages
Korean (ko)
Inventor
김경숙
손순환
정양근
한주희
한기도
정은수
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020070047605A priority Critical patent/KR100858510B1/en
Application granted granted Critical
Publication of KR100858510B1 publication Critical patent/KR100858510B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/40Thermal regeneration
    • B01J49/45Thermal regeneration of amphoteric ion-exchangers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

A process for supercritical water oxidation of a cationic exchange resin used in a nuclear power plant is provided to remove additional post-processing equipment by not volatilizing a Co metal to a radioactive metal gas. A process for supercritical water oxidation of a cationic exchange resin used in a nuclear power plant includes the steps of: separating cationic exchange resin waste from ion exchange resin waste mixed with cationic and anodic exchange resins by using a fluidized bed specific gravity difference separator; manufacturing a slurry by mixing the separated cationic exchange resin waste with water and grinding the mixture; mixing additive for neutralizing sulfonic acid component with the slurry; increasing a temperature and a pressure near to a critical point of the water by quantitatively injecting the mixed slurry; oxidizing and decomposing an organic matter of the slurry in a supercritical condition of water by mixing the heated slurry with an oxidizer; heat-exchanging the slurry with processing water, cooling the slurry, and reducing the pressure to a normal pressure; and separating a gas and the processing water.

Description

원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법{Process for supercritical water oxidation of cationic exchange resin used in nuclear power}Process for supercritical water oxidation of cationic exchange resin used in nuclear power}

도 1은 본 발명에 따른 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법을 도식화한 블록도이다. 1 is a block diagram illustrating a method for treating waste cation exchange resin generated in a nuclear power plant according to the present invention with supercritical hydroxide technology.

도 2는 본 발명에 따른 폐양이온교환수지의 처리공정을 실시하는 연속식 반응설비의 개념도이다.2 is a conceptual diagram of a continuous reaction facility for carrying out the treatment process of waste cation exchange resin according to the present invention.

1 ---- 산화제 저장조 2 ---- 폐수 저장조1 ---- oxidant reservoir 2 ---- waste water reservoir

3, 4 ---- 펌프 5, 6 ---- 예열기3, 4 ---- pump 5, 6 ---- preheater

7 ---- 반응기 8 ---- 냉각기7 ---- reactor 8 ---- chiller

9 ---- BPR 10 ---- 기액 분리기9 ---- BPR 10 ---- gas-liquid separator

본 발명은 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법에 관한 것이다. The present invention relates to a method for treating waste cation exchange resin generated in a nuclear power plant with supercritical hydroxide technology.

현재 국내에는 20호기의 원자력발전소가 가동 중에 있으며, 원자력발전소 2 차 계통에서 금속 이온 및 부식성 음이온을 제거하는데 이온교환수지가 사용된다. 수명이 다한 이온교환수지는 폐기물(폐수지)로 발생하는데 발생량이 많고 수분이 다량 포함되어 있어 처리가 곤란하고, 부피가 크기 때문에 장기간 보관하는 방안도 매우 비효율적이다. 이미 국내의 원자력발전소는 장기간 운전으로 인해 다량의 폐수지를 보관 중이며, 운전과 더불어 매년 발생하고 있는 상황이다. 그러나 이들 폐수지를 처리하는 적합한 기술이 없는 관계로 현재는 원자력발전소 내의 폐기물 보관소에서 저장하고 있으나 저장 공간이 부족하여 시급히 처리해야 할 상황이므로 기술개발이 절실히 요청되고 있다. Currently, Nuclear Power Plant # 20 is in operation in Korea, and ion exchange resin is used to remove metal ions and corrosive anions from the secondary system of nuclear power plants. End-of-life ion exchange resins are generated as wastes (waste resins), and they are difficult to process due to their high volume and high water content. They are also very inefficient for long-term storage. Nuclear power plants in Korea are already storing a large amount of waste water due to long-term operation, which is occurring every year with operation. However, since there is no suitable technology for treating these waste resins, the technology is currently urgently needed because it is currently stored in a waste storage facility within a nuclear power plant, but the storage space is insufficient to be urgently disposed.

폐이온교환수지와 같은 유기성 폐기물의 처리에 가장 널리 활용되는 기술은 소각이다. 하지만 소각으로 폐기물을 처리 시 소각로 설치를 위한 부지확보가 용이하지 않을 뿐만 아니라, 유기물 분해온도가 800~1,200℃ 정도이므로 SOx, 방사성 금속기체 및 다이옥신 등의 2차 오염물질을 발생시킬 수 있다. 특히, 폐기물의 유기물 함량이 10% 이하인 경우 소각폐수를 처리하기 위해서는 다량의 에너지원(보조 연료)을 필요로 하는 단점이 있다. Incineration is the most widely used technique for the treatment of organic wastes such as waste ion exchange resins. However, it is not easy to secure the site for incinerator installation when treating wastes by incineration, and since organic decomposition temperature is about 800 ~ 1,200 ℃, secondary pollutants such as SOx, radioactive gas and dioxins can be generated. In particular, when the organic content of the waste is 10% or less, there is a disadvantage in that a large amount of energy source (auxiliary fuel) is required to treat the incineration wastewater.

발전소에서 발생되는 난분해성 유기폐기물의 대부분은 기존의 기술로는 처리가 쉽지 않아서 감용 처리를 위한 다양한 연구가 수행되었으나, 현재까지 국내에서는 현장에 적용 가능한 기술이 개발되지 않은 상태이다. Most of the non-degradable organic wastes generated in power plants have not been easily treated with conventional technologies, and various researches have been carried out for reduction treatment, but until now, domestically applicable technologies have not been developed.

종래의 폐이온교환수지에 대한 매립 및 저장기술은 대상 폐기물을 근원적으로 해결하기 어려운 단순 처리 및 처분 기술이다[한국공개특허 제1990-0000344호]. The conventional landfill and storage technology for the waste ion exchange resin is a simple treatment and disposal technology that is difficult to solve the target waste fundamentally (Korean Patent Publication No. 1990-0000344).

일본에서는 1995년에 오르가노(Organo)사의 중앙 연구시설 내에 처음으로 초 임계수산화 설비가 건설되었으며, 최근에 도시바(Toshiba)사는 미분상 이온교환수지를 '일체형 2단계 반응기'라고 하는 독특한 반응기에서 시간당 1kg을 처리할 수 있는 설비를 보유하고 있으며, 이를 이용한 폐이온교환수지의 처리가 활발히 진행되고 있다[일본특개평10-279728호, 특개평10-204206호].In Japan, the first supercritical hydroxylation facility was built in 1995 in Organo's central research facility.Toshiba Corp. recently launched a unique reactor called `` integrated two-stage reactor '' per minute. We have a facility that can handle 1kg, and the treatment of waste ion exchange resins using this is being actively carried out [Japanese Patent Laid-Open No. 10-279728, Japanese Patent Laid-Open No. 10-204206].

유럽의 초임계수산화 관련 기술은 미국에 비해 상대적으로 연구가 많이 수행되지는 않은 것으로 알려져 있으나, 독일의 경우 초임계수산화 기술의 가장 큰 문제점인 부식성 문제를 해결하기 위해 금속의 부식관련 연구를 많이 수행한 특허들이 소개되고 있다[유럽공개특허 제1 477 579호, 제0 656 321호]. It is known that European supercritical hydroxide related technology has not been studied much compared to the United States, but in Germany, many studies related to corrosion of metals have been conducted to solve the corrosive problem, which is the biggest problem of supercritical hydroxide technology. One patents have been introduced [European Patent Publication No. 1 477 579, 0 656 321].

초임계수산화 공정은 대부분의 유기성 폐기물을 산화분해로 처리하는데 매우 좋은 기술이지만 강한 산화력을 띠고 있는 만큼 재질의 부식시키는 부작용도 동반된다. 특히 고온과 고압에서 운전되기 때문에 재질 부식속도가 빠르면 심각한 안전성의 문제를 유발할 수 있다.The supercritical hydroxide process is a very good technique for the treatment of most organic wastes by oxidative decomposition, but as it has strong oxidation power, it also has side effects of corrosive material. In particular, since it is operated at high temperature and high pressure, a high corrosion rate of the material may cause serious safety problems.

본 발명은 이와 같은 종래의 문제점을 해소하기 위한 것으로, 폐양이온교환수지를 45㎛ 이하의 입자가 균일하게 분산된 슬러리로 제조하여 고압 슬러리 펌프로 반응기에 주입하여 처리할 수 있고, 폐양이온교환수지의 관능기인 술폰산(SO3H)의 탈기에 대한 중화제로 가성소다(NaOH)를 사용해도 중화제 석출에 따른 막힘(plugging)이 없으며, 초임계수 조건뿐만 아니라 근임계수 조건에서도 처리가 가능하고, 원자력발전소의 폐양이온교환수지에서 발생되는 전형적인 Co 금속이 여러 형태의 금속 산화물로 처리수에 석출되어 방사성 금속기체로 휘발되지 않으므로 별도의 후처리 설비가 필요하지 않는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법을 제공하는데 그 목적이 있다.The present invention is to solve such a conventional problem, the waste cation exchange resin can be made into a slurry in which particles of less than 45㎛ uniformly dispersed and injected into the reactor with a high-pressure slurry pump, the waste cation exchange resin Although caustic soda (NaOH) is used as a neutralizer for degassing of sulfonic acid (SO 3 H), which is a functional group of, there is no plugging due to precipitation of the neutralizer, and it can be treated in supercritical conditions as well as near critical conditions. Co-metals generated from waste cation exchange resins are various types of metal oxides, which are precipitated in the treated water and do not volatilize into radioactive metal gases. Its purpose is to provide a method for treating by counting oxidation technique.

상기 목적을 달성하기 위한 본 발명의 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법은, 유동층 비중차 분리기를 이용하여 양이온과 음이온교환수지가 혼합된 이온교환수지 폐기물로부터 양이온교환수지 폐기물을 분리하는 단계; 분리된 폐양이온교환수지를 물과 혼합한 후 분쇄하여 슬러리를 제조하는 단계; 술폰산 성분을 중화하는 첨가제를 슬러리에 혼합하는 단계; 혼합된 슬러리를 정량주입하면서 물의 임계점 이상의 온도와 압력으로 상승시키는 단계; 가열된 슬러리와 산화제를 혼합하여 슬러리의 유기물을 물의 초임계 조건에서 산화 분해시키는 단계; 산화 분해 후 처리수를 유입되는 슬러리와 열교환하고 냉각한 후 압력을 상압으로 낮추는 단계; 기체와 처리수를 분리하는 단계로 구성되는 것을 특징으로 한다. The method for treating the waste cation exchange resin generated in the nuclear power plant of the present invention to achieve the above object by the supercritical hydroxide technology, the cation from the ion exchange resin waste mixed with cation and anion exchange resin using a fluidized bed specific gravity separator Separating the exchange resin waste; Mixing the separated waste cation exchange resin with water and then grinding to prepare a slurry; Mixing in the slurry an additive that neutralizes the sulfonic acid component; Raising the temperature and pressure above the critical point of water while metering the mixed slurry; Mixing the heated slurry with an oxidant to oxidatively decompose the organics of the slurry under supercritical conditions of water; Exchanging the treated water with the introduced slurry after oxidative decomposition and cooling and lowering the pressure to atmospheric pressure; It is characterized by consisting of the step of separating the gas and the treated water.

본 발명에서, 상기 술폰산 성분을 중화하는 첨가제로는 가성소다, 가성칼리 중에서 최소한 하나 이상을 선택하여 사용하고, 그 농도는 0.4~0.7%로 할 경우 중화제 석출에 따른 막힘 현상이 없게 된다.In the present invention, at least one selected from caustic soda and caustic is used as an additive for neutralizing the sulfonic acid component, and when the concentration is 0.4 to 0.7%, there is no clogging due to precipitation of the neutralizer.

그리고, 본 발명은 상기 혼합 슬러리를 300℃ 내지 430℃까지 가열시킨 후에 산화제와 혼합하는 것과 압력을 22.1MPa 내지 30.0MPa 까지 상승시키는 것을 특징으로 한다. The present invention is characterized in that the mixture is heated to 300 ° C to 430 ° C and then mixed with an oxidant and the pressure is raised to 22.1 MPa to 30.0 MPa.

특히 상기 산화제로는 과산화수소 수용액, 산소, 공기 중에서 최소한 한 가지 이상을 선택하여 사용하며, 화학적 당량비의 20~50%를 첨가할 경우 절대 부식량을 적게하여 설비에 대한 부식의 유려가 발생하지 않는 특징이 있다. 이하 본 발명을 더욱 상세히 설명하기로 한다. In particular, the oxidizing agent is used by selecting at least one or more of hydrogen peroxide aqueous solution, oxygen, air, and when 20 to 50% of the chemical equivalence ratio is added, the absolute corrosion amount is reduced so that the corrosion of the facility does not occur. There is this. Hereinafter, the present invention will be described in more detail.

Figure 112007036071323-pat00001
Figure 112007036071323-pat00001

본 발명의 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법은, 도 1에 나타낸 바와 같이, 혼합 폐이온교환수지를 유동층(fluidized bed) 비중차 분리기를 사용하여 다음 구조식 (1)의 폐양이온수지를 분리한 다음, 볼밀로 습식 분쇄하여 45μm 이하의 입자가 균일하게 분산된 슬러리를 제조하고, 이렇게 얻은 고농도의 슬러리를 물로 희석하여 원하는 농도의 슬러리를 만든 다음에 고압 슬러리 펌프를 사용하여 시료를 예열기를 거쳐 반응기에 주입하고, 초임계수산화반응을 통해 폐양이온수지를 산화, 분해하되, 초임계수산화, 예를 들어 임계온도 374℃, 임계압력 22.1MPa 근처의 온도와 압력에서 과산화수소수, 공기 또는 산소와 같은 산화제를 이용하여 폐양이온교환수지를 물과 이산화탄 소로 산화, 분해하는 방법이다.   The method for treating the waste cation exchange resin generated in the nuclear power plant of the present invention with supercritical hydroxide technology, as shown in FIG. 1, uses a mixed bed specific gravity separator using a fluidized bed specific gravity separator as shown in FIG. The waste cation resin of 1) was separated, and then wet milled with a ball mill to prepare a slurry in which particles of 45 μm or less were uniformly dispersed. The slurry thus obtained was diluted with water to form a slurry having a desired concentration, followed by a high pressure slurry pump. The sample is injected into the reactor through a preheater and oxidized and decomposed in the cationic resin by supercritical hydroxide reaction, but supercritical hydroxide, for example, at a temperature of 374 ° C. and a pressure of 22.1 MPa near the critical pressure. It is a method of oxidizing and decomposing waste cation exchange resin into water and carbon dioxide using an oxidizing agent such as hydrogen peroxide water, air or oxygen.

본 발명의 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법은 아래와 같은 장점을 지니고 있다. The method of treating the waste cation exchange resin generated in the nuclear power plant of the present invention with supercritical hydroxide technology has the following advantages.

첫째, 폐양이온교환수지를 45㎛ 이하의 입자가 균일하게 분산된 슬러리로 제조하여 고압 슬러리 펌프로 반응기에 주입하여 처리할 수 있다는 점과,First, the waste cation exchange resin can be made into a slurry in which particles of 45 μm or less are uniformly dispersed and injected into the reactor by a high pressure slurry pump for treatment.

둘째, 폐양이온교환수지의 관능기인 술폰산(SO3H)의 탈기에 대한 중화제로 수산화나트륨(NaOH)를 사용해도 중화제 석출에 따른 막힘이 없다는 점과,Second, even if sodium hydroxide (NaOH) is used as a neutralizer for degassing of sulfonic acid (SO 3 H), which is a functional group of waste cation exchange resin, there is no blockage due to precipitation of neutralizer.

셋째, 초임계수 조건뿐만 아니라 근임계수 조건에서도 처리가 가능하다는 점과,Third, it is possible to process not only supercritical conditions but also near critical conditions.

넷째, 원자력발전소의 폐양이온교환수지에서 발생되는 전형적인 Co 금속이 여러 형태의 금속 산화물로 처리수에 석출되어 방사성 금속기체로 휘발되지 않으므로 별도의 후처리 설비가 필요하지 않다는 점이다.Fourth, the typical Co metal generated in the waste cation exchange resin of the nuclear power plant is precipitated in the treated water as various types of metal oxides and is not volatilized into the radioactive metal gas.

본 발명에서의 초임계수산화(Super Critical Water Oxidation) 기술은 물의 임계점(임계온도: 374℃, 임계압력: 22.1MPa) 근방의 온도와 압력상태에서 물에 포함된 유기물을 과산화수소 수용액, 산소 또는 공기와 같은 산화제를 이용하여 산화, 분해하는 방법이다. 초임계수산화 기술은 높은 용해력, 빠른 물질이동과 열이동, 낮은 점도, 높은 확산계수 그리고 낮은 표면장력 등의 초임계 유체의 장점을 이용하여, 기존의 상용화된 공정이 지니고 있는 기술적 어려움을 해결할 수 있는 신기술이다. 또한 초임계수산화 공정은 밀폐계이므로 모든 반응물이 외부로 노출되 지 않은 상태에서 산화 분해 반응을 수행할 수 있고, 반응 종료 후에 조절 가능한 방법으로 처리수와 가스를 외부로 배출할 수 있기 때문에 외부 노출 시 큰 문제를 발생할 수 있는 군 화학물질, 원전 폐기물 등을 분해하는데 장점이 있다.In the present invention, the super critical water oxidization technology is characterized in that the organic matter contained in the water at a temperature and pressure near the critical point of water (critical temperature: 374 ° C., critical pressure: 22.1 MPa) is combined with aqueous hydrogen peroxide solution, oxygen or air. Oxidation and decomposition using the same oxidant. Supercritical hydroxide technology can solve the technical difficulties of conventional commercial processes by taking advantage of supercritical fluids such as high dissolving power, fast mass transfer and heat transfer, low viscosity, high diffusion coefficient and low surface tension. It is a new technology. In addition, since the supercritical hydroxylation process is a closed system, it is possible to perform an oxidative decomposition reaction in which all reactants are not exposed to the outside. There is an advantage in decomposing military chemicals, nuclear power waste, etc., which can cause big problems.

소각로의 경우 유기물 분해 온도가 800~1,200℃ 정도인데 반하여 초임계수산화의 반응온도는 통상 400~600℃이기 때문에 황산산화물(SOx)을 거의 발생시키지 않고, 상대적으로 적은 에너지를 사용한다. 특히, 폐기물의 유기물 함량이 10% 이하인 경우 소각으로 폐수를 처리하기 위해서는 다량의 에너지원(보조 연료)을 필요로 하는데 비해, 초임계수산화 공정은 상대적으로 낮은 온도에서 운전되고, 반응 후 처리수의 열에너지를 충분히 회수할 수 있는 장점이 있다.In the case of incinerator, the decomposition temperature of organic matter is about 800 ~ 1,200 ℃, whereas the reaction temperature of supercritical hydroxide is usually 400 ~ 600 ℃, so it rarely generates sulfate (SOx) and uses relatively little energy. In particular, when the organic content of the waste is 10% or less, a large amount of energy source (auxiliary fuel) is required to treat the wastewater by incineration, whereas the supercritical hydration process is operated at a relatively low temperature, and There is an advantage that can fully recover the thermal energy.

본 발명에서 적용할 수 있는 폐양이온교환수지의 슬러리의 제조방법은 다음과 같다. Method for producing a slurry of waste cation exchange resin applicable to the present invention is as follows.

즉, 폐이온교환수지는 Rohm & Haas사가 생산하는 IRN-150 및 유사 제품이며, 크기는 300~1200㎛, 모양은 구형 입자이고, 양이온수지와 음이온수지가 혼합된 상태의 제품이다. 양이온교환수지는 스티렌(styrene)과 디비닐벤젠(divinyl benzene)의 공중합체에 술폰산(SO3H)을 첨가하여 제조되며, 각 이온교환수지는 50% 정도의 수분을 포함하고 있고, 평균 비중은 양이온수지가 1.26, 음이온수지는 1.11이므로 유동층 비중차 분리기로 분리하여 양이온교환수지를 확보한다. 분리한 시료는 수백 미크론의 구형 알갱이 형태이므로 초임계수산화 장치에서 고압으로 주입하기 위해서는 분쇄하여 적정 입도 이하의 입자가 균일하게 분산된 슬러리 형태로 전환시켜 야 한다. 5L 용량의 알루미나 재질의 볼밀을 사용하여 분리된 양이온수지를 45μm 이하의 입자크기로 분쇄한다. 즉, 볼밀에 20mm 크기의 세라믹 볼 2L과 함께 분쇄하고자 하는 폐수지 1L과 물 2L을 함께 채우고 밀봉한 후 약 200rpm의 회전속도로 24시간 동안 회전시켜 습식 분쇄하여 고농도 슬러리를 얻을 수 있으며, 이를 물로 희석하여 원하는 농도의 슬러리를 제조한다. That is, waste ion exchange resin is IRN-150 and similar products produced by Rohm & Haas, and its size is 300 ~ 1200㎛, shape is spherical particles, and the product is mixed with cation resin and anion resin. The cation exchange resin is prepared by adding sulfonic acid (SO 3 H) to a copolymer of styrene and divinyl benzene. Each ion exchange resin contains about 50% water. Since the cation resin is 1.26 and the anion resin is 1.11, it is separated by a fluidized bed specific gravity separator to secure a cation exchange resin. Since the separated sample is in the form of several hundred microns of spherical grains, it must be pulverized and converted into a slurry in which particles of an appropriate particle size are uniformly dispersed in order to be injected at high pressure in a supercritical hydroxide apparatus. A ball mill made of 5L alumina is used to grind the separated cationic resin to a particle size of 45 μm or less. That is, the ball mill is filled with 2L of 20mm ceramic balls and 1L of waste resin to be crushed together with water, and then sealed, and then wet milled by rotating at a rotational speed of about 200 rpm for 24 hours to obtain a high concentration slurry. Dilution yields a slurry of the desired concentration.

본 발명에 따른 원자력발전소에서 발생하는 폐양이온교환수지의 처리공정은 다음과 같다. The treatment process of the waste cation exchange resin generated in the nuclear power plant according to the present invention is as follows.

습식분쇄를 통해 얻은 폐수지 슬러리를 초임계수산화 공정으로 처리하기 위해 도 2에 나타낸 연속식 반응설비를 사용한다. 이 장치는 고압펌프(3, 4) 2기를 비롯하여 예열기(5, 6), 반응기(7) 및 냉각기(8) 등으로 구성되며, 반응기(7)는 1/4인치 튜브로 제작한 관형 반응기이고 내용적은 220mL이다. 도 2에서 미설명 부호 1은 산화제인 과산화수소 저장조이고, 부호 2는 폐수 저장조이며, 9는 BPR(Back Pressure Regulator)이고, 부호 10은 기액 분리기이다.In order to treat the waste resin slurry obtained by wet grinding in a supercritical hydroxide process, the continuous reaction facility shown in FIG. 2 is used. This unit consists of two high pressure pumps (3, 4), preheater (5, 6), reactor (7) and cooler (8), and the reactor (7) is a tubular reactor made of 1/4 inch tube. The inner volume is 220 mL. In FIG. 2, reference numeral 1 denotes a hydrogen peroxide storage tank which is an oxidant, reference numeral 2 denotes a wastewater storage tank, 9 denotes a BPR (Back Pressure Regulator), and reference numeral 10 denotes a gas-liquid separator.

먼저, 처리하고자 하는 슬러리의 화학적 산소요구량(Chemical Oxygen Demand, 이하 COD라 함)을 사전에 측정하여 필요한 산소량을 결정한 후, 반응기 체류시간에 적합하도록 각 원료 펌프의 주입유량을 결정한다. 계통 압력은 250bar로 고정하고, 산소원으로 50% 과산화수소수(H2O2), 산소 또는 공기를 사용한다. 그리고, 계통의 압력은 냉각기(8) 후단에 설치되어 있는 BPR(Back Pressure Regulator : 9)로 제어한다. 상기 슬러리와 산화제를 고압펌프(3, 4)로 각각 주입 하고 혼합한 후, 전기 가열방식의 예열기(5, 6)를 통과하여 적정온도로 승온한 다음, 반응기(7)로 도입하여 일정한 체류시간 동안 300~430℃의 온도와 22.1~30.0MPa의 압력하에서 초임계수산화 반응을 진행한다. 반응을 마친 처리수는 냉각기(8)를 거친 후 BPR(9)와 기액분리기(10)를 순차적으로 거친 후 액체와 기체로 분리된 후 배출된다. First, the chemical oxygen demand (hereinafter referred to as COD) of the slurry to be treated is determined in advance to determine the required oxygen amount, and then the injection flow rate of each raw material pump is determined to be suitable for the reactor residence time. The system pressure is fixed at 250 bar and 50% hydrogen peroxide (H 2 O 2 ), oxygen or air is used as the oxygen source. The pressure of the system is controlled by a BPR (Back Pressure Regulator) 9 installed at the rear end of the cooler 8. After injecting and mixing the slurry and the oxidant into the high pressure pumps 3 and 4, respectively, the mixture is heated to a proper temperature through the preheaters 5 and 6 of the electric heating method, and then introduced into the reactor 7 to maintain a constant residence time. During the supercritical hydroxide reaction at a temperature of 300 ~ 430 ℃ and a pressure of 22.1 ~ 30.0MPa. After the reaction, the treated water passes through the BPR (9) and the gas-liquid separator (10) after passing through the cooler (8) and is separated after the liquid and gas is discharged.

양이온수지는 술폰산 관능기를 가지므로 예열 또는 산화 분해과정에서 다음 식과 같이 황산이 발생할 가능성이 크고, 이는 심각한 시스템 부식의 원인이 될 수 있다.Since cationic resins have sulfonic acid functional groups, sulfuric acid is more likely to occur during preheating or oxidative decomposition, which can cause serious system corrosion.

4(C16H15O3S)n + 79nO2 --> 64nCO2 + 26nH2O + 4nH2SO4 (1)4 (C 16 H 15 O 3 S) n + 79nO 2- > 64nCO 2 + 26nH 2 O + 4nH 2 SO 4 (1)

따라서 반드시 발생된 황산을 중화시키는 방법이 필요하며, 가성소다와 같은 알카리를 소량 처방하여 식(2)과 같은 반응경로를 통하여 중화하는 것이 일반적이다.Therefore, it is necessary to neutralize the generated sulfuric acid, and it is common to prescribe a small amount of alkali such as caustic soda and neutralize it through the reaction path as shown in Equation (2).

2NaOH + H2SO4 --> Na2SO4 + 2H2O (2)2NaOH + H 2 SO 4- > Na 2 SO 4 + 2H 2 O (2)

이와 같은 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같다. The present invention will be described in more detail based on the following examples.

[실시예 1]Example 1

앞에서 언급한 방법으로 슬러리로 제조한 다음, 사전에 COD 농도를 측정하였다. 도 2의 초임계산화장치를 이용하여 여러 실험 조건에서 분해반응을 실시하였으며, 폐양이온교환수지에 대한 실험결과를 표 1에 나타내었다.The slurry was prepared by the aforementioned method and then the COD concentration was measured in advance. Decomposition reactions were carried out under various experimental conditions using the supercritical oxidation apparatus of FIG. 2, and the experimental results for waste cation exchange resins are shown in Table 1.

표 1에서 볼 수 있듯이 초임계(430℃) 조건에서 분해 반응 후의 처리수에는 Na의 농도가 매우 낮았다. 이는 대부분의 가성소다가 계통 내에서 석출되어 침적되었음을 의미한다. 또한 전 실험에서 검은 색의 고체입자가 발생되어 BPR의 손상이 우려되어 필터를 사용하여 처리수에 포함된 고체입자를 여과한 후 실험을 진행하였다. As shown in Table 1, the concentration of Na was very low in the treated water after the decomposition reaction under supercritical (430 ° C) conditions. This means that most of the caustic soda precipitated and deposited in the system. In addition, in the previous experiment, black solid particles were generated, which may cause damage to BPR, and the experiment was performed after filtering the solid particles contained in the treated water using a filter.

표 1. 폐양이온교환수지 실험결과Table 1. Test results of waste cation exchange resin

Figure 112007036071323-pat00002
Figure 112007036071323-pat00002

[실시예 2]Example 2

원자력발전소에서 배출되는 양이온수지를 분해하는 공정에서는 유기물 분해율 못지않게 방사성 금속성분을 배출시키지 않아야 하는 중요한 고려 요소가 있다. 원자력발전소에서 폐양이온수지에 치환될 수 있는 금속성분은 주로 Co와 Cs 등으로 알려져 있다. 따라서 임의로 비방사성 Co를 치환시킨 모의폐수를 제조하여 처리하는 실험을 실시하여 공정상에서 Co 거동을 파악하였다. 분해 반응을 실시하기 전에 제조된 모의 폐수의 COD는 25,000ppm, Co 농도는 890ppm으로 측정되었다.In the process of decomposing cationic resins discharged from nuclear power plants, there is an important consideration that must not release radioactive metals as much as organic decomposition rate. Metal components that can be substituted for waste cation resins in nuclear power plants are mainly known as Co and Cs. Therefore, experiments were carried out to prepare and treat simulated wastewater in which non-radioactive Co was substituted, and to determine Co behavior in the process. The COD of the simulated wastewater prepared before the decomposition reaction was measured to be 25,000 ppm and Co concentration of 890 ppm.

이렇게 제조된 모의폐수를 대상으로 반응온도, 체류시간, 산소투입량은 고정하고 중화제 양만을 달리하면서 실험한 결과를 표 2에 나타내었다.Table 2 shows the results of experiments on the simulated wastewater prepared by varying the reaction temperature, residence time, and oxygen input amount, and only varying the amount of neutralizing agent.

[표 2] Co를 치환시킨 모의폐수 처리결과 [Table 2] Simulated Wastewater Treatment Results with Co Substitution

Figure 112007036071323-pat00003
Figure 112007036071323-pat00003

이 결과에서 알 수 있듯이 중화제 0.5중량% 조건에서 방류기준을 만족하는 유기물 분해율을 확보할 수 있었으며, 0.2㎛ 필터로 여과한 처리수에는 1ppm 미만의 Co만이 존재함을 확인하였으며, Co 회수율을 99.9% 이상으로 확보하였다. As can be seen from this result, it was confirmed that the decomposition rate of organic matter satisfying the discharge standard under 0.5 wt% of neutralizing agent, and only less than 1 ppm of Co was present in the treated water filtered with a 0.2 μm filter, and the Co recovery was 99.9%. It secured as above.

본 발명에 따른 폐양이온교환수지를 초임계수산화기술로 처리하는 방법은 폐양이온교환수지를 45㎛ 이하의 입자가 균일하게 분산된 슬러리로 제조하여 고압 슬러리 펌프로 반응기에 주입하여 처리할 수 있고, 폐양이온교환수지의 관능기인 술폰산(SO3H)의 탈기에 대한 중화제로 가성소다(NaOH)를 사용해도 중화제 석출에 따른 막힘(plugging)이 없으며, 초임계수 조건뿐만 아니라 근임계수 조건에서도 처리가 가능하고, 원자력발전소의 폐양이온교환수지에서 발생되는 전형적인 Co 금속이 여러 형태의 금속 산화물로 처리수에 석출되어 방사성 금속기체로 휘발되지 않으므로 별도의 후처리 설비가 필요하지 않는 효과가 있다.In the method for treating the waste cation exchange resin according to the present invention by supercritical hydroxide technology, the waste cation exchange resin can be prepared into a slurry in which particles having a particle size of 45 μm or less is uniformly dispersed and injected into the reactor by a high pressure slurry pump. Although caustic soda (NaOH) is used as a neutralizer for the degassing of sulfonic acid (SO 3 H), a functional group of waste cation exchange resin, there is no plugging due to precipitation of neutralizer, and it can be processed in supercritical conditions as well as near critical conditions. In addition, the typical Co metal generated in the waste cation exchange resin of the nuclear power plant is precipitated in the treated water as various types of metal oxides, and thus does not volatilize into the radioactive metal gas.

Claims (5)

유동층 비중차 분리기를 이용하여 양이온과 음이온교환수지가 혼합된 이온교환수지 폐기물로부터 양이온교환수지 폐기물을 분리하는 단계; 분리된 양이온 교환수지 폐기물을 물과 혼합한 후 분쇄하여 슬러리를 제조하는 단계; 술폰산 성분을 중화하는 첨가제를 슬러리에 혼합하는 단계; 혼합된 슬러리를 정량주입하면서 물의 임계점 부근의 온도와 압력으로 상승시키는 단계; 가열된 슬러리와 산화제를 혼합하여 슬러리의 유기물을 물의 초임계 조건에서 산화 분해시키는 단계; 산화 분해 후 처리수를 유입되는 슬러리와 열교환하고 냉각한 후 압력을 상압으로 낮추는 단계; 기체와 처리수를 분리하는 단계로 구성되는 것을 특징으로 하는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법. Separating the cation exchange resin waste from the ion exchange resin waste in which the cation and anion exchange resin are mixed using a fluidized bed specific gravity separator; Mixing the separated cation exchange resin waste with water and then grinding to prepare a slurry; Mixing in the slurry an additive that neutralizes the sulfonic acid component; Raising the temperature and pressure near the critical point of water while metering the mixed slurry; Mixing the heated slurry with an oxidant to oxidatively decompose the organics of the slurry under supercritical conditions of water; Exchanging the treated water with the introduced slurry after oxidative decomposition and cooling and lowering the pressure to atmospheric pressure; A method for treating waste cation exchange resins generated in a nuclear power plant by supercritical hydroxide technology, comprising separating gas and treated water. 제 1항에 있어서, 상기 술폰산 성분을 중화하는 첨가제는 가성소다, 가성카리 중에서 최소한 하나 이상을 선택하여 사용하고 그 농도는 0.4~0.7%인 것을 특징으로 하는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법. The waste cation exchange resin of claim 1, wherein the additive for neutralizing the sulfonic acid component is selected from at least one of caustic soda and caustic, and the concentration thereof is 0.4 to 0.7%. Process by supercritical hydroxide technology. 제 1항에 있어서, 상기 물의 임계점 부근의 온도로 상승시키는 단계는 300℃ 내지 430℃의 온도에서 가열시키는에서 가열시키는 것을 특징으로 하는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법.The method of claim 1, wherein the step of raising the temperature near the critical point of the water is heated by heating at a temperature of 300 ℃ to 430 ℃ to treat the waste cation exchange resin generated in a nuclear power plant by supercritical hydroxide technology. How to. 제 1항에 있어서, 상기 물의 임계점 부근의 압력으로 상승시키는 단계는 22.1MPa 내지 30.0MPa 압력까지 상승시키는 것을 특징으로 하는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법.The method of claim 1, wherein the step of raising the pressure near the critical point of the water comprises raising the pressure to 22.1 MPa to 30.0 MPa pressure by using supercritical hydroxide technology. 제 1항에 있어서, 상기 산화제로는 과산화수소 수용액, 산소, 공기 중에서 최소한 하나 이상을 선택하며, 화학적 당량비의 20~50%를 첨가하는 것을 특징으로 하는 원자력발전소에서 발생하는 폐양이온교환수지를 초임계수산화기술로 처리하는 방법. The supercritical water according to claim 1, wherein the oxidant is selected from at least one of an aqueous hydrogen peroxide solution, oxygen, and air, and 20 to 50% of a chemical equivalent ratio is added. Process by oxidation technique.
KR1020070047605A 2007-05-16 2007-05-16 Process for supercritical water oxidation of cationic exchange resin used in nuclear power KR100858510B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070047605A KR100858510B1 (en) 2007-05-16 2007-05-16 Process for supercritical water oxidation of cationic exchange resin used in nuclear power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070047605A KR100858510B1 (en) 2007-05-16 2007-05-16 Process for supercritical water oxidation of cationic exchange resin used in nuclear power

Publications (1)

Publication Number Publication Date
KR100858510B1 true KR100858510B1 (en) 2008-09-12

Family

ID=40023080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070047605A KR100858510B1 (en) 2007-05-16 2007-05-16 Process for supercritical water oxidation of cationic exchange resin used in nuclear power

Country Status (1)

Country Link
KR (1) KR100858510B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958716A (en) * 2017-11-17 2018-04-24 深圳中广核工程设计有限公司 Nuclear power plant's radioactivity organic waste treatment device and method
CN109849238A (en) * 2019-03-28 2019-06-07 江苏核电有限公司 A kind of radioactive spent resin grinding system with redundant apparatus
KR102046463B1 (en) 2018-08-31 2019-11-19 한국원자력연구원 Device for Treatment of Spent Radioactive Ion Exchange Resins and Method for Treatment of Spent Radioactive Ion Exchange Resins
CN114307852A (en) * 2021-12-20 2022-04-12 湖南汉华京电清洁能源科技有限公司 Automatic radioactive resin feeding system and method
KR20220100420A (en) * 2021-01-08 2022-07-15 포항공과대학교 산학협력단 A decomposition method and a decomposition device for the spent IRN-150 resin with fenton-like treatment
DE102021004501A1 (en) 2021-09-04 2023-03-09 Westinghouse Electric Germany Gmbh Ion exchange resin treatment system and method therefor
CN109849238B (en) * 2019-03-28 2024-05-10 江苏核电有限公司 Radioactive waste resin grinding system with redundant device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170694A (en) 1996-12-11 1998-06-26 Mitsubishi Heavy Ind Ltd Method for disposing of radioactive waste
JPH10279726A (en) 1997-04-09 1998-10-20 Japan Organo Co Ltd Volume reduction of waste ion-exchange resin
JPH1123793A (en) 1997-06-27 1999-01-29 Toshiba Corp Method for treating ion exchange resin
KR20000019838A (en) * 1998-09-15 2000-04-15 황주호 Method for improving performance of radioactive waste solid material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170694A (en) 1996-12-11 1998-06-26 Mitsubishi Heavy Ind Ltd Method for disposing of radioactive waste
JPH10279726A (en) 1997-04-09 1998-10-20 Japan Organo Co Ltd Volume reduction of waste ion-exchange resin
JPH1123793A (en) 1997-06-27 1999-01-29 Toshiba Corp Method for treating ion exchange resin
KR20000019838A (en) * 1998-09-15 2000-04-15 황주호 Method for improving performance of radioactive waste solid material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958716A (en) * 2017-11-17 2018-04-24 深圳中广核工程设计有限公司 Nuclear power plant's radioactivity organic waste treatment device and method
KR102046463B1 (en) 2018-08-31 2019-11-19 한국원자력연구원 Device for Treatment of Spent Radioactive Ion Exchange Resins and Method for Treatment of Spent Radioactive Ion Exchange Resins
CN109849238A (en) * 2019-03-28 2019-06-07 江苏核电有限公司 A kind of radioactive spent resin grinding system with redundant apparatus
CN109849238B (en) * 2019-03-28 2024-05-10 江苏核电有限公司 Radioactive waste resin grinding system with redundant device
KR20220100420A (en) * 2021-01-08 2022-07-15 포항공과대학교 산학협력단 A decomposition method and a decomposition device for the spent IRN-150 resin with fenton-like treatment
KR102492222B1 (en) * 2021-01-08 2023-01-27 포항공과대학교 산학협력단 A decomposition method and a decomposition device for the spent IRN-150 resin with fenton-like treatment
DE102021004501A1 (en) 2021-09-04 2023-03-09 Westinghouse Electric Germany Gmbh Ion exchange resin treatment system and method therefor
CN114307852A (en) * 2021-12-20 2022-04-12 湖南汉华京电清洁能源科技有限公司 Automatic radioactive resin feeding system and method
CN114307852B (en) * 2021-12-20 2024-05-10 湖南汉华京电清洁能源科技有限公司 Automatic radioactive resin feeding system and feeding method

Similar Documents

Publication Publication Date Title
US9181605B2 (en) Treatment method of spent uranium catalyst
JP5661672B2 (en) Method and system for stabilizing volatile radionuclides during denitration at high temperatures
EP3450581B1 (en) Method for collecting uranium by treatment process of washing waste liquid generated in uranium hexafluoride cylinder washing process
KR100858510B1 (en) Process for supercritical water oxidation of cationic exchange resin used in nuclear power
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
CN108206066A (en) A kind of method for handling solid radiation debirs
Al-Atta et al. Supercritical water oxidation of phenol and process enhancement with in situ formed Fe 2 O 3 nano catalyst
JP3657747B2 (en) Decomposition method of ion exchange resin
KR101552083B1 (en) The treatment method and system of liquid waste containing radioactively contaminated organic compounds
JP2005181256A (en) Method for treating waste ion exchange resin
KR100662146B1 (en) Method for treating wastes from terephthalic acid process
KR102005680B1 (en) Methods for Treatment of Spent Radio- active Ion-Exchange Resin
CN112655055B (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
EP1564188B1 (en) A method for processing spent ion-exchange resins
CN111524633B (en) Volume reduction treatment method for radioactive organic waste
EP4005995A1 (en) Process for the transformation of fly ash in raw material
DE60301629T2 (en) DESTRUCTION OF PERCHLORATE IN A SOLUTION FROM IRON (III) CHLORIDE AND SALTIC ACID UNDER CONTROL OF TEMPERATURE, PRESSURE AND CHEMICAL REAGENTS
WO2021084986A1 (en) High-concentration iron-based flocculant, and method for producing same
JP4534002B2 (en) Extraction and separation of uranium compounds
KR100819092B1 (en) Process for supercritical water oxidation of anionic exchange resin
JP2005315641A (en) Treating method and treating device of decontamination waste liquid
RU2673791C1 (en) Method of processing spent ion-exchange resins
KR102314923B1 (en) a catalyst production method for removing PolyChlorinated Biphenyls and the catalyst produced by the production method
WO2002062709A1 (en) Electrochemical oxidation of matter
KR102100873B1 (en) Decontamination method with reduced radioactive waste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120903

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130902

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180831

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 12