JP2006122881A - High-pressure reaction apparatus - Google Patents

High-pressure reaction apparatus Download PDF

Info

Publication number
JP2006122881A
JP2006122881A JP2004318508A JP2004318508A JP2006122881A JP 2006122881 A JP2006122881 A JP 2006122881A JP 2004318508 A JP2004318508 A JP 2004318508A JP 2004318508 A JP2004318508 A JP 2004318508A JP 2006122881 A JP2006122881 A JP 2006122881A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
oxygen gas
storage tank
pressure
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004318508A
Other languages
Japanese (ja)
Inventor
Tsuneo Omura
恒雄 大村
Makoto Fujie
誠 藤江
Yoshie Akai
芳恵 赤井
Masahiko Osaki
正彦 大崎
Takao Takada
孝夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004318508A priority Critical patent/JP2006122881A/en
Publication of JP2006122881A publication Critical patent/JP2006122881A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-pressure reaction apparatus in which hydrogen peroxide of high concentration can stably be supplied continuously to a high pressure zone by surely restraining oxygen gas from being accumulated on the primary side of a pump without producing an air lock owing to the oxygen gas to be produced by pyrolysis. <P>SOLUTION: This high-pressure reaction apparatus is provided with: a hydrogen peroxide storage tank 2 for storing hydrogen peroxide; a hydrogen peroxide supplying pump 7 connected to the hydrogen peroxide storage tank by a hydrogen peroxide supplying pipeline; a reaction vessel 11 connected to the discharge side of the hydrogen peroxide supplying pump via a hydrogen peroxide discharging pipeline; and a pressure reducing valve 14 connected to the downstream side of the reaction vessel. An oxygen gas separating means for separating the oxygen gas to be generated from hydrogen peroxide from hydrogen peroxide is arranged on the hydrogen peroxide supplying pipeline. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば有機物を高温高圧下で酸化処理する高圧反応装置に係り、特に高圧領域である反応容器部に過酸化水素水を安定的に連続供給する手段を備えた高圧反応装置に関する。   The present invention relates to, for example, a high-pressure reactor that oxidizes organic substances under high temperature and high pressure, and more particularly, to a high-pressure reactor that includes means for stably and continuously supplying hydrogen peroxide to a reaction vessel portion that is a high-pressure region.

従来、有機物を高温高圧下で酸化処理する高圧反応装置として、過酸化水素を貯蔵する過酸化水素貯蔵タンクと、この過酸化水素貯蔵タンクに過酸化水素供給配管を介して接続された過酸化水素供給ポンプと、この過酸化水素供給ポンプの吐出側に過酸化水素吐出配管を介して接続された反応容器と、この反応容器の下流側に接続された減圧弁とを備えた高圧反応装置が知られている。   Conventionally, as a high-pressure reactor that oxidizes organic matter at high temperature and high pressure, a hydrogen peroxide storage tank that stores hydrogen peroxide, and hydrogen peroxide connected to the hydrogen peroxide storage tank via a hydrogen peroxide supply pipe There is known a high-pressure reactor comprising a supply pump, a reaction vessel connected to the discharge side of the hydrogen peroxide supply pump via a hydrogen peroxide discharge pipe, and a pressure reducing valve connected to the downstream side of the reaction vessel. It has been.

このような高圧反応装置として、例えば超臨界水雰囲気下や亜臨界水雰囲気下において、有機物と水と酸素含有流体とを混合し、水の臨界点を超える超臨界状態で、有機物を酸化分解する臨界超過水中における有機物酸化法が知られている(特許文献1参照)。   As such a high-pressure reactor, for example, in a supercritical water atmosphere or a subcritical water atmosphere, an organic substance, water and an oxygen-containing fluid are mixed, and the organic substance is oxidatively decomposed in a supercritical state exceeding the critical point of water. An organic matter oxidation method in supercritical water is known (see Patent Document 1).

この有機物酸化法のプロセスでは、酸化剤として過酸化水素を使用する場合、過酸化水素が液体であることから、ポンプを用いて供給するようにしている。このようなポンプとしては、一般的にプランジャポンプあるいはシリンジポンプ等が適用されるが、シリンジポンプは高流量や高濃度の過酸化水素の連続的な供給に不向きであるため、プランジャポンプを使用する場合が多い。   In this organic matter oxidation process, when hydrogen peroxide is used as an oxidant, hydrogen peroxide is in a liquid form and is supplied using a pump. As such a pump, a plunger pump or a syringe pump is generally applied. However, since a syringe pump is not suitable for continuous supply of high flow rate or high concentration hydrogen peroxide, a plunger pump is used. There are many cases.

なお、ポンプを使用しないで過酸化水素を供給する方法も知られている。例えば、密閉容器内に過酸化水素を上端部に空隙を残して注入しておき、密閉容器内に予め仕込んでおいた触媒を用いて、過酸化水素を水と酸素ガスに分解させ、酸素ガスが発生することにより上昇する密閉容器の内圧によって密閉容器に備えられているピストンを作動させ、水と酸素ガスとを供給できる方法が提案されている(特許文献2参照)。
特公平1−38532号公報 特開平1−22342号公報
A method of supplying hydrogen peroxide without using a pump is also known. For example, hydrogen peroxide is injected into an airtight container leaving a gap at the upper end, and hydrogen peroxide is decomposed into water and oxygen gas using a catalyst previously charged in the airtight container. There has been proposed a method in which water and oxygen gas can be supplied by operating a piston provided in the sealed container by the internal pressure of the sealed container that rises as a result of the occurrence of gas (see Patent Document 2).
Japanese Patent Publication No. 1-38532 JP-A-1-22342

上述した従来技術において、過酸化水素の連続的な供給用としてプランジャポンプを適用した場合、過酸化水素が常温でも少しずつ熱分解して酸素ガスが発生することから、発生した酸素ガスがポンプ一次側に堆積してエアロックを起し、流量が低下したり、過酸化水素の供給が行えなくなることがある。   In the above-described prior art, when a plunger pump is applied for continuous supply of hydrogen peroxide, hydrogen gas is gradually decomposed even at room temperature to generate oxygen gas. It may accumulate on the side and cause an air lock, reducing the flow rate or supplying hydrogen peroxide.

一方、ポンプを使用しない方法では、酸素ガスの流量が不安定であり、高圧領域に酸素ガスを連続的に安定供給することが困難である。   On the other hand, in a method that does not use a pump, the flow rate of oxygen gas is unstable, and it is difficult to continuously and stably supply oxygen gas to a high-pressure region.

本発明は、このような事情に鑑みてなされたものであり、ポンプの一次側に酸素ガスが堆積することを確実に抑制し、熱分解により発生する酸素ガスによるエアロックを発生させることなく、高圧領域へ高濃度の過酸化水素を安定的に連続供給することができ、一定の速度で有機物を酸化処理することができる高圧反応装置を提供することを目的とする。   The present invention has been made in view of such circumstances, reliably suppressing the accumulation of oxygen gas on the primary side of the pump, without generating an air lock due to oxygen gas generated by thermal decomposition, An object of the present invention is to provide a high-pressure reactor capable of stably and continuously supplying high-concentration hydrogen peroxide to a high-pressure region and capable of oxidizing organic substances at a constant rate.

上記の目的を達成するために、本発明の高圧反応装置は、過酸化水素を貯蔵する過酸化水素貯蔵タンクと、この過酸化水素貯蔵タンクに過酸化水素供給配管を介して接続された過酸化水素供給ポンプと、この過酸化水素供給ポンプの吐出側に過酸化水素吐出配管を介して接続された反応容器と、この反応容器の下流側に接続された減圧弁とを備えた高圧反応装置において、前記過酸化水素供給配管に、前記過酸化水素から発生する酸素ガスを前記過酸化水素から分離させる酸素ガス分離手段を設けたことを特徴とする。   In order to achieve the above object, a high-pressure reactor according to the present invention comprises a hydrogen peroxide storage tank for storing hydrogen peroxide, and a peroxidation connected to the hydrogen peroxide storage tank via a hydrogen peroxide supply pipe. In a high-pressure reactor comprising a hydrogen supply pump, a reaction vessel connected to the discharge side of the hydrogen peroxide supply pump via a hydrogen peroxide discharge pipe, and a pressure reducing valve connected to the downstream side of the reaction vessel The hydrogen peroxide supply pipe is provided with oxygen gas separation means for separating oxygen gas generated from the hydrogen peroxide from the hydrogen peroxide.

本発明において、前記酸素ガス分離手段は、前記過酸化水素供給配管に連通する酸素ガス流入用上向き配管または酸素ガス吸引装置と擦る事が望ましい。   In the present invention, it is preferable that the oxygen gas separation means rubs against an oxygen gas inflow upward pipe or an oxygen gas suction device communicating with the hydrogen peroxide supply pipe.

また、本発明において、前記過酸化水素供給配管に、その内部を流通する過酸化水素を冷却する冷却手段を設けることが望ましい。   In the present invention, it is preferable that the hydrogen peroxide supply pipe is provided with a cooling means for cooling the hydrogen peroxide flowing through the pipe.

また、前記過酸化水素貯蔵タンクは、開放型タンク、密閉型タンク、またはタンク内加圧機構を有する密閉型タンクとすることが望ましい。   The hydrogen peroxide storage tank is preferably an open tank, a sealed tank, or a sealed tank having a tank pressurizing mechanism.

本発明によれば、過酸化水素から発生する酸素ガスを過酸化水素から分離する酸素ガス分離手段を過酸化水素供給配管に設けたことにより、ポンプの一次側に酸素ガスが堆積することを確実に抑制し、熱分解により発生する酸素ガスによるエアロックを発生させることなく、高圧領域へ高濃度の過酸化水素を安定的に連続供給することができ、一定の速度で有機物を酸化処理することができる。   According to the present invention, the oxygen gas separating means for separating the oxygen gas generated from hydrogen peroxide from the hydrogen peroxide is provided in the hydrogen peroxide supply pipe, thereby ensuring that the oxygen gas is deposited on the primary side of the pump. Stable and continuous supply of high-concentration hydrogen peroxide to the high-pressure region without causing airlock due to oxygen gas generated by thermal decomposition, and oxidizing organic substances at a constant rate Can do.

特に、過酸化水素供給配管に過酸化水素を冷却する冷却手段を設けた場合には、酸素ガスの発生を抑制することによりエアロックの防止が一層確実となる。   In particular, when a cooling means for cooling hydrogen peroxide is provided in the hydrogen peroxide supply pipe, air lock can be prevented more reliably by suppressing the generation of oxygen gas.

さらに、過酸化水素貯蔵タンクを、内部に加圧機構を有する密閉型タンクとした場合には、過酸化水素貯蔵タンク内への加圧により、過酸化水素貯蔵タンクを高所に配置して水頭圧を大きくする必要性が低減し、タンク設置位置を低下することより、設備の省スペース化が図れる。   Further, when the hydrogen peroxide storage tank is a sealed tank having a pressurizing mechanism inside, the hydrogen peroxide storage tank is placed at a high place by pressurizing the hydrogen peroxide storage tank. The need for increasing the pressure is reduced and the tank installation position is lowered, so that the space of the equipment can be saved.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態](図1)
図1は、本発明の第1実施形態の高圧反応装置を示す概略構成図である。
First Embodiment (FIG. 1)
FIG. 1 is a schematic configuration diagram showing a high-pressure reactor according to a first embodiment of the present invention.

この図1に示すように、本実施形態の高圧反応装置1は、過酸化水素15を貯蔵するためのタンク2として、例えば開放型の過酸化水素貯蔵タンク2を有している。この過酸化水素貯蔵タンク2は冷却水用水槽3によって覆われており、この冷却水用水槽3に収容された冷却水aによって過酸化水素貯蔵タンク2が外面側から冷却されるようになっている。   As shown in FIG. 1, the high-pressure reactor 1 according to this embodiment includes, for example, an open hydrogen peroxide storage tank 2 as a tank 2 for storing hydrogen peroxide 15. The hydrogen peroxide storage tank 2 is covered with a cooling water tank 3, and the hydrogen peroxide storage tank 2 is cooled from the outer surface side by the cooling water a accommodated in the cooling water tank 3. Yes.

過酸化水素貯蔵タンク2には、過酸化水素供給配管4、管継手5および過酸化水素吸引配管6を介して過酸化水素供給ポンプ7が接続されている。過酸化水素供給ポンプ7の吐出側には、過酸化水素吐出配管8、管継手9および反応器用供給配管10を介して反応容器11が接続されている。   A hydrogen peroxide supply pump 7 is connected to the hydrogen peroxide storage tank 2 through a hydrogen peroxide supply pipe 4, a pipe joint 5 and a hydrogen peroxide suction pipe 6. A reaction vessel 11 is connected to the discharge side of the hydrogen peroxide supply pump 7 through a hydrogen peroxide discharge pipe 8, a pipe joint 9, and a reactor supply pipe 10.

反応容器11には外部ヒータ12が設けられており、反応容器11を昇温できるように構成されている。また、反応容器11の後段には排出配管13が接続され、この排出配管13には、減圧弁14が設けられている。   The reaction vessel 11 is provided with an external heater 12 so that the reaction vessel 11 can be heated. A discharge pipe 13 is connected to the rear stage of the reaction vessel 11, and a pressure reducing valve 14 is provided in the discharge pipe 13.

このような構成のもとで、過酸化水素供給ポンプ7と減圧弁14により、反応容器11内を高圧に保つことができる。なお、図示しないが、反応容器11内に有機物を供給するラインと有機物供給器を接続し、有機物を連続供給する構成としてもよい。   Under such a configuration, the inside of the reaction vessel 11 can be maintained at a high pressure by the hydrogen peroxide supply pump 7 and the pressure reducing valve 14. In addition, although not shown in figure, it is good also as a structure which connects the line and organic substance feeder which supply organic substance in the reaction container 11, and supplies organic substance continuously.

そして、このような本実施形態では、過酸化水素供給配管4に過酸化水素15から発生する酸素ガス18を過酸化水素15から分離する酸素ガス分離手段として、過酸化水素供給配管4に連通する酸素ガス流入用上向き配管17が設けられている。この酸素ガス流入用上向き配管17は、例えば1本の過酸化水素吸引配管6に下端を連通して、斜め上方に向って立上る構成とされている。   In this embodiment, the hydrogen peroxide supply pipe 4 communicates with the hydrogen peroxide supply pipe 4 as oxygen gas separation means for separating the oxygen gas 18 generated from the hydrogen peroxide 15 from the hydrogen peroxide 15. An upward piping 17 for inflowing oxygen gas is provided. The oxygen gas inflow upward pipe 17 is configured to rise obliquely upward, for example, with one hydrogen peroxide suction pipe 6 communicating with the lower end thereof.

このような構成において、過酸化水素貯蔵タンク2に貯蔵された過酸化水素15は、水頭圧により過酸化水素供給配管4および過酸化水素吸引配管6を介して過酸化水素供給ポンプ7に送液され、この過酸化水素供給ポンプ7により、過酸化水素吐出配管、反応容器用の供給配管を介して反応容器11に送液される。反応容器11内には、有機物を装填することで、有機物を高温高圧水中で酸化処理することができる。   In such a configuration, the hydrogen peroxide 15 stored in the hydrogen peroxide storage tank 2 is sent to the hydrogen peroxide supply pump 7 via the hydrogen peroxide supply pipe 4 and the hydrogen peroxide suction pipe 6 by the water head pressure. Then, the hydrogen peroxide supply pump 7 sends the solution to the reaction vessel 11 through the hydrogen peroxide discharge pipe and the reaction vessel supply pipe. By loading the organic substance into the reaction vessel 11, the organic substance can be oxidized in high-temperature and high-pressure water.

ところで、過酸化水素15は冷却水用水槽3に貯留した冷却水aにより冷却されるため、過酸化水素貯蔵タンク2内での酸素ガスの発生は抑制される。しかしながら、過酸化水素供給配管4では、過酸化水素供給ポンプ7の駆動熱や大気温度などにより暖められ、酸素ガスが徐々に蓄積するが、酸素ガス気泡を抜き出すための上向き配管17を過酸化水素供給配管4の途中に設けることにより、過酸化水素供給配管4で発生した酸素ガスが比重差により自発的に抜けるようになる。   By the way, since the hydrogen peroxide 15 is cooled by the cooling water a stored in the cooling water tank 3, the generation of oxygen gas in the hydrogen peroxide storage tank 2 is suppressed. However, the hydrogen peroxide supply pipe 4 is heated by the driving heat of the hydrogen peroxide supply pump 7 or the atmospheric temperature, and oxygen gas gradually accumulates. However, the upward pipe 17 for extracting oxygen gas bubbles is connected to the hydrogen peroxide supply pipe 4 with hydrogen peroxide. By providing in the middle of the supply pipe 4, the oxygen gas generated in the hydrogen peroxide supply pipe 4 spontaneously escapes due to the difference in specific gravity.

なお、酸素ガスを抜けやすくするためには、過酸化水素供給配管4の管径を過酸化水素吸引配管6の2倍以上にすることが望ましい。   In order to facilitate the escape of oxygen gas, it is desirable that the diameter of the hydrogen peroxide supply pipe 4 is at least twice that of the hydrogen peroxide suction pipe 6.

また、冷却水用水槽3により過酸化水素貯蔵タンク2と過酸化水素供給ポンプ7とを繋ぐ冷却水供給配管を10℃以下にすることが好ましい。   Moreover, it is preferable that the cooling water supply piping which connects the hydrogen peroxide storage tank 2 and the hydrogen peroxide supply pump 7 by the cooling water tank 3 to 10 ° C. or less.

下記の表1は、過酸化水素貯蔵タンク2と過酸化水素供給配管4の温度が20℃の場合と5〜10℃の場合とについて、気泡が抜けるラインの状況を観察した結果を示している。その他の条件は、圧力30MPa、過酸化水素濃度31wt%、過酸化水素の流量15mL/分とした。

Figure 2006122881
Table 1 below shows the results of observing the state of the line through which bubbles escape when the temperature of the hydrogen peroxide storage tank 2 and the hydrogen peroxide supply pipe 4 is 20 ° C. and 5 to 10 ° C. . The other conditions were a pressure of 30 MPa, a hydrogen peroxide concentration of 31 wt%, and a hydrogen peroxide flow rate of 15 mL / min.
Figure 2006122881

この表1に示すように、過酸化水素供給配管4の温度が20℃の場合では、頻繁に酸素ガスが発生し、所期の濃度に比べると低い過酸化水素濃度で反応容器11に送られてしまうが、過酸化水素供給配管4の温度が5〜10℃の場合には、5分/回の割合で酸素ガスが排出されるため、ほぼ所期の過酸化水素濃度で過酸化水素15を供給することができる。   As shown in Table 1, when the temperature of the hydrogen peroxide supply pipe 4 is 20 ° C., oxygen gas is frequently generated and sent to the reaction vessel 11 at a lower hydrogen peroxide concentration than the intended concentration. However, when the temperature of the hydrogen peroxide supply pipe 4 is 5 to 10 ° C., the oxygen gas is discharged at a rate of 5 minutes / time, so Can be supplied.

以上のように、本実施形態によれば、過酸化水素供給配管4に、過酸化水素15から発生する酸素ガスを過酸化水素15から分離する酸素ガス分離手段を設けたことにより、ポンプの一次側に酸素ガスが堆積することを確実に抑制し、熱分解により発生する酸素ガスによるエアロックを発生させることなく、高圧領域へ高濃度の過酸化水素15を安定的に連続供給することができ、一定の速度で有機物を酸化処理することができる。   As described above, according to the present embodiment, by providing the hydrogen peroxide supply pipe 4 with the oxygen gas separation means for separating the oxygen gas generated from the hydrogen peroxide 15 from the hydrogen peroxide 15, the primary of the pump It is possible to reliably and continuously supply high-concentration hydrogen peroxide 15 to the high-pressure region without causing oxygen gas accumulation on the side and reliably generating airlock due to oxygen gas generated by thermal decomposition. The organic matter can be oxidized at a constant rate.

また、本実施形態では、過酸化水素供給配管4に過酸化水素15を冷却する冷却手段を設けることにより、酸素ガスの発生を抑制することによりエアロックの防止が一層確実となる。   Further, in the present embodiment, by providing a cooling means for cooling the hydrogen peroxide 15 in the hydrogen peroxide supply pipe 4, the generation of oxygen gas is suppressed, thereby further preventing air lock.

[第2実施形態](図2)
図2は、本発明の第2実施形態による高圧反応装置を示す概略構成図である。
[Second Embodiment] (FIG. 2)
FIG. 2 is a schematic configuration diagram illustrating a high-pressure reactor according to a second embodiment of the present invention.

この図2に示すように、本実施形態が第1実施形態と異なる点は、過酸化水素供給配管4に設けられる酸素ガス分離手段を、例えば過酸化水素供給配管4から分岐した連結管19を介して接続した酸素ガス吸引装置、例えば注射器状の構成を有する酸素ガス吸引用プランジャ型吸引装置20とした点にある。その他の構成については、第1実施形態と同様であるから、これらの構成部分には、図1と同一の符号を付して説明を省略する。   As shown in FIG. 2, this embodiment is different from the first embodiment in that oxygen gas separation means provided in the hydrogen peroxide supply pipe 4 is connected to, for example, a connecting pipe 19 branched from the hydrogen peroxide supply pipe 4. The oxygen gas suction device is connected via, for example, an oxygen gas suction plunger type suction device 20 having a syringe-like configuration. Since the other configuration is the same as that of the first embodiment, the same reference numerals as those in FIG.

このように構成された本実施形態においては、酸素ガス吸引装置であるプランジャ型吸引装置20によって積極的に過酸化水素供給配管4から酸素ガスを吸引除去することができる。   In this embodiment configured as described above, oxygen gas can be positively sucked and removed from the hydrogen peroxide supply pipe 4 by the plunger-type suction device 20 which is an oxygen gas suction device.

したがって、本実施形態では第1実施形態と同様に、過酸化水素供給配管4に、過酸化水素15から発生する酸素ガスを過酸化水素15から分離させる酸素ガス吸引装置であるプランジャ型吸引装置20を設けたことにより、ポンプの一次側に酸素ガスが堆積することを確実に抑制し、熱分解により発生する酸素ガスによるエアロックを発生させることなく、高圧領域へ高濃度の過酸化水素15を安定的に連続供給することができる。特に、本実施形態では酸素ガスを積極的に排出することにより、上記効果を一層向上させることができる。   Accordingly, in the present embodiment, as in the first embodiment, the plunger-type suction device 20 that is an oxygen gas suction device that separates the oxygen gas generated from the hydrogen peroxide 15 from the hydrogen peroxide 15 in the hydrogen peroxide supply pipe 4. Therefore, it is possible to reliably suppress the accumulation of oxygen gas on the primary side of the pump, and to supply high-concentration hydrogen peroxide 15 to the high-pressure region without generating an air lock due to oxygen gas generated by thermal decomposition. Stable and continuous supply is possible. In particular, in the present embodiment, the above effect can be further improved by positively discharging oxygen gas.

なお、本実施形態では、第1実施形態の上向き配管17を併設する構成としてもよい。   In the present embodiment, the upward piping 17 of the first embodiment may be provided.

[第3実施形態](図3)
図3は、本発明の第3実施形態による高圧反応装置を示す概略構成図である。
[Third Embodiment] (FIG. 3)
FIG. 3 is a schematic configuration diagram illustrating a high-pressure reactor according to a third embodiment of the present invention.

上述した第1、第2実施形態においては、過酸化水素15の流量を増加させると、過酸化水素15が過酸化水素供給ポンプ7によってより吸引されることになり、過酸化水素貯蔵タンク2と過酸化水素供給ポンプ7とを繋ぐライン3は負圧になり、キャビテーションが起こる可能性がある。   In the first and second embodiments described above, when the flow rate of the hydrogen peroxide 15 is increased, the hydrogen peroxide 15 is more sucked by the hydrogen peroxide supply pump 7. The line 3 connecting the hydrogen peroxide supply pump 7 has a negative pressure, and cavitation may occur.

この場合、キャビテーションを防ぐためには、過酸化水素貯蔵タンク2をより高い位置に設置し、内部の過酸化水素15の水位を高くすることで水頭圧を大きくする必要性が生じる。しかし、水頭圧を大きくする場合には構成が大掛かりとなり、広い設備スペースを必要とする。   In this case, in order to prevent cavitation, it is necessary to increase the water head pressure by installing the hydrogen peroxide storage tank 2 at a higher position and increasing the water level of the hydrogen peroxide 15 inside. However, when the water head pressure is increased, the configuration becomes large and a large facility space is required.

本実施形態では、過酸化水素貯蔵タンク2を密閉型タンク、特にタンク内加圧機構を有する密閉型タンクとし、水頭圧と同様の圧力を過酸化水素貯蔵タンク2にかける構成としている。具体的には、窒素ガス源22からガス供給配管21を介して、過酸化水素貯蔵タンク2の気相側に窒素を供給して加圧を行うようにしている。これにより、水頭圧を大きくするのと同等の作用を与え、過酸化水素供給配管4に存在する過酸化水素15から酸素ガスの発生を抑制させることができる。その他の構成については、第1実施形態と同様であるから、これらの構成部分には、図1と同一の符号を付して説明を省略する。   In the present embodiment, the hydrogen peroxide storage tank 2 is a sealed tank, particularly a sealed tank having an in-tank pressurization mechanism, and a pressure similar to the water head pressure is applied to the hydrogen peroxide storage tank 2. Specifically, nitrogen is supplied from the nitrogen gas source 22 to the gas phase side of the hydrogen peroxide storage tank 2 through the gas supply pipe 21 to perform pressurization. Thereby, an action equivalent to increasing the water head pressure can be provided, and generation of oxygen gas from the hydrogen peroxide 15 existing in the hydrogen peroxide supply pipe 4 can be suppressed. Since the other configuration is the same as that of the first embodiment, the same reference numerals as those in FIG.

下記の表2に、水頭圧の影響を調べた試験結果を示す。試験条件は、圧力30MPa、過酸化水素濃度31wt%、過酸化水素の流量15mL/分、過酸化水素貯蔵タンク2と過酸化水素供給ポンプ7とを繋ぐラインの温度5〜10℃とした。

Figure 2006122881
Table 2 below shows the test results for examining the effect of water head pressure. The test conditions were a pressure of 30 MPa, a hydrogen peroxide concentration of 31 wt%, a hydrogen peroxide flow rate of 15 mL / min, and a temperature of a line connecting the hydrogen peroxide storage tank 2 and the hydrogen peroxide supply pump 7 of 5 to 10 ° C.
Figure 2006122881

この表2に示したように、水頭圧が200mmの場合に比べて水頭圧が600mmの場合の方が酸素ガスを過酸化水素供給ポンプ7が吸引する頻度は低いことがわかる。   As shown in Table 2, it can be seen that the frequency at which the hydrogen peroxide supply pump 7 sucks oxygen gas is lower when the head pressure is 600 mm than when the head pressure is 200 mm.

以上のように、水頭圧を大きくするためには、過酸化水素貯蔵タンク21を高い位置に設置する必要があり、その結果、過酸化水素供給配管4が長くなり、酸素ガスが発生し易くなるのに対し、図3に示すように、過酸化水素貯蔵タンク2を密閉型にし、窒素ガスをガス供給配管より過酸化水素貯蔵タンク2の気相側に送って加圧することにより、水頭圧を大きくするのと同様の作用を与え、これにより過酸化水素貯蔵タンク2と過酸化水素供給配管4に存在する過酸化水素15から酸素ガスが発生するのを抑えることができる。   As described above, in order to increase the water head pressure, it is necessary to install the hydrogen peroxide storage tank 21 at a high position. As a result, the hydrogen peroxide supply pipe 4 becomes long and oxygen gas is easily generated. On the other hand, as shown in FIG. 3, the hydrogen peroxide storage tank 2 is closed, and nitrogen gas is sent from the gas supply pipe to the gas phase side of the hydrogen peroxide storage tank 2 to pressurize it, thereby reducing the water head pressure. The same effect as that of increasing the pressure can be provided, whereby the generation of oxygen gas from the hydrogen peroxide 15 existing in the hydrogen peroxide storage tank 2 and the hydrogen peroxide supply pipe 4 can be suppressed.

本実施形態によれば、水頭圧を大きくするために過酸化水素貯蔵タンク2を高い位置に置く必要がなく、過酸化水素貯蔵タンク2内に圧力を加えることにより、省スペース化が図れる。   According to this embodiment, it is not necessary to place the hydrogen peroxide storage tank 2 at a high position in order to increase the water head pressure, and space can be saved by applying pressure in the hydrogen peroxide storage tank 2.

なお、本実施形態では、第1実施形態の上向き配管17および第2実施形態の吸引装置20の両方または一方を併設する構成としてもよい。   In the present embodiment, both or one of the upward piping 17 of the first embodiment and the suction device 20 of the second embodiment may be provided.

本発明に係る高圧反応装置の第1実施形態示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of a high-pressure reactor according to the present invention. 本発明に係る高圧反応装置の第2実施形態示す概略構成図。The schematic block diagram which shows 2nd Embodiment of the high-pressure reactor which concerns on this invention. 本発明に係る高圧反応装置の第3実施形態示す概略構成図。The schematic block diagram which shows 3rd Embodiment of the high-pressure reactor which concerns on this invention.

符号の説明Explanation of symbols

2 過酸化水素貯蔵タンク
4 過酸化水素供給配管
7 過酸化水素供給ポンプ
11 反応容器
14 減圧弁
2 Hydrogen peroxide storage tank 4 Hydrogen peroxide supply pipe 7 Hydrogen peroxide supply pump 11 Reaction vessel 14 Pressure reducing valve

Claims (4)

過酸化水素を貯蔵する過酸化水素貯蔵タンクと、この過酸化水素貯蔵タンクに過酸化水素供給配管を介して接続された過酸化水素供給ポンプと、この過酸化水素供給ポンプの吐出側に過酸化水素吐出配管を介して接続された反応容器と、この反応容器の下流側に接続された減圧弁とを備えた高圧反応装置において、前記過酸化水素供給配管に、前記過酸化水素から発生する酸素ガスを前記過酸化水素から分離させる酸素ガス分離手段を設けたことを特徴とする高圧反応装置。 A hydrogen peroxide storage tank for storing hydrogen peroxide, a hydrogen peroxide supply pump connected to the hydrogen peroxide storage tank via a hydrogen peroxide supply pipe, and a peroxide on the discharge side of the hydrogen peroxide supply pump In a high-pressure reactor equipped with a reaction vessel connected through a hydrogen discharge pipe and a pressure reducing valve connected to the downstream side of the reaction vessel, oxygen generated from the hydrogen peroxide is supplied to the hydrogen peroxide supply pipe. An oxygen gas separation means for separating gas from the hydrogen peroxide is provided. 前記酸素ガス分離手段は、前記過酸化水素供給配管に連通する酸素ガス流入用上向き配管または酸素ガス吸引装置である請求項1記載の高圧反応装置。 The high-pressure reactor according to claim 1, wherein the oxygen gas separation means is an upward pipe for oxygen gas inflow communicating with the hydrogen peroxide supply pipe or an oxygen gas suction device. 前記過酸化水素供給配管に、その内部を流通する過酸化水素を冷却する冷却手段を設けた請求項1記載の高圧反応装置。 The high-pressure reactor according to claim 1, wherein the hydrogen peroxide supply pipe is provided with a cooling means for cooling hydrogen peroxide flowing through the pipe. 前記過酸化水素貯蔵タンクは、開放型タンク、密閉型タンク、またはタンク内加圧機構を有する密閉型タンクである請求項1記載の高圧反応装置。 The high-pressure reactor according to claim 1, wherein the hydrogen peroxide storage tank is an open tank, a closed tank, or a closed tank having an in-tank pressurization mechanism.
JP2004318508A 2004-11-01 2004-11-01 High-pressure reaction apparatus Pending JP2006122881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318508A JP2006122881A (en) 2004-11-01 2004-11-01 High-pressure reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318508A JP2006122881A (en) 2004-11-01 2004-11-01 High-pressure reaction apparatus

Publications (1)

Publication Number Publication Date
JP2006122881A true JP2006122881A (en) 2006-05-18

Family

ID=36718115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318508A Pending JP2006122881A (en) 2004-11-01 2004-11-01 High-pressure reaction apparatus

Country Status (1)

Country Link
JP (1) JP2006122881A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04901A (en) * 1990-04-18 1992-01-06 Mitsubishi Electric Corp Method and device for feeding high frequency power for plasma apparatus
JP2001038190A (en) * 1999-08-04 2001-02-13 Kurita Water Ind Ltd Hydrothermal reaction method and device
JP2001314701A (en) * 2000-05-09 2001-11-13 Erc:Kk Defoaming equipment
JP2002045607A (en) * 2000-08-08 2002-02-12 Maezawa Ind Inc Gas separator, liquid component measuring instrument provided with gas separator, and ozone treating apparatus provided with liquid component measuring instrument
JP2004049945A (en) * 2002-07-16 2004-02-19 Kurita Water Ind Ltd Apparatus and method for supplying liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04901A (en) * 1990-04-18 1992-01-06 Mitsubishi Electric Corp Method and device for feeding high frequency power for plasma apparatus
JP2001038190A (en) * 1999-08-04 2001-02-13 Kurita Water Ind Ltd Hydrothermal reaction method and device
JP2001314701A (en) * 2000-05-09 2001-11-13 Erc:Kk Defoaming equipment
JP2002045607A (en) * 2000-08-08 2002-02-12 Maezawa Ind Inc Gas separator, liquid component measuring instrument provided with gas separator, and ozone treating apparatus provided with liquid component measuring instrument
JP2004049945A (en) * 2002-07-16 2004-02-19 Kurita Water Ind Ltd Apparatus and method for supplying liquid

Similar Documents

Publication Publication Date Title
JP5950790B2 (en) Wastewater treatment method and system
JP4907310B2 (en) Processing apparatus, processing method, and recording medium
JP2006122881A (en) High-pressure reaction apparatus
JP2011026187A (en) Ozone supplying method and ozone supplier
JP5709095B2 (en) Method for removing dissolved oxygen in liquid and apparatus for removing dissolved oxygen in liquid
JP2005138063A (en) Washing method by supercritical carbon dioxide and ozone
US20110100796A1 (en) System and method for producing supercritical ozone
JP2008142584A (en) Decompression system
JP5126938B2 (en) Removal method of organic coating
JP2007305676A (en) Processing method and processing apparatus of substrate
JPH10156175A (en) Starting method and stopping method of supercritical water oxidizing device
JP2002224681A (en) Oxidation treatment method and equipment for organic liquid to be treated
JP2003236594A (en) Apparatus for treating sludge
JP6687474B2 (en) Waste heat recovery equipment
JP6470103B2 (en) Fuel cell that separates gas from cooling water
JP2003326153A (en) Apparatus for feeding thick slurry and its starting method
JP2005270816A (en) High temperature, high pressure treatment apparatus for organic waste
JP3783398B2 (en) Method for supercritical and hydrothermal reaction treatment of organic matter and treatment plant
JP6648350B1 (en) Supercritical water reactor
JP2005061636A (en) Halogen gas or halogen containing gas supply method, cleaning method for semiconductor manufacturing device cleaning room, surface treatment method using halogen gas or halogen containing gas, semiconductor manufacturing device, and surface treatment device
JP6031705B2 (en) Environmental restoration device and environmental restoration method
JP2006043552A (en) Hydrothermal reaction process and its apparatus
JP2007033285A (en) Equipment for removing hydrogen of nuclear power plant
JP2010018859A (en) Method for dealing with the occurrence of power outage during increasing or decreasing of degree of vacuum
JP4100435B2 (en) Deaerated water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070406

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524