JP2000279791A - Operation of supercritical water reaction device - Google Patents

Operation of supercritical water reaction device

Info

Publication number
JP2000279791A
JP2000279791A JP11090633A JP9063399A JP2000279791A JP 2000279791 A JP2000279791 A JP 2000279791A JP 11090633 A JP11090633 A JP 11090633A JP 9063399 A JP9063399 A JP 9063399A JP 2000279791 A JP2000279791 A JP 2000279791A
Authority
JP
Japan
Prior art keywords
reactor
liquid
treated
supercritical water
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11090633A
Other languages
Japanese (ja)
Other versions
JP3686778B2 (en
JP2000279791A5 (en
Inventor
Shinichirou Kawasaki
慎一朗 川崎
Taro Oe
太郎 大江
Osamu Takahashi
治 高橋
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP09063399A priority Critical patent/JP3686778B2/en
Publication of JP2000279791A publication Critical patent/JP2000279791A/en
Publication of JP2000279791A5 publication Critical patent/JP2000279791A5/ja
Application granted granted Critical
Publication of JP3686778B2 publication Critical patent/JP3686778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for smoothly starting and operating a supercritical water reaction device at the time of treating plural liquids to be treated having different calorific value per unit volume from each other with supercritical water. SOLUTION: At the time of starting up the supercritical water reaction device, a compressor 28 is driven to feed air to a reactor 12 to increase the pressure of the reactor to a prescribed pressure. Next, the supercritical water flows in while feeding air and the temp. of the reactor is increased to 390 deg.C. The liquid A to be treated having low oxidation calorific value per unit volume is introduced into the reactor with a pump 24A for liquid to be treated driven while passing the super-critical water to start the oxidation reaction. Next, the liquid B to be treated having higher oxidation calorific value per unit volume than the liquid A to be treated is supplied to the reactor in addition to the liquid A to be treated or by being switched from the liquid A to be treated to continue the supercritical water reaction and when the temp. of the reactor reaches 500-550 deg.C, the feed of the supercritical water is stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界水反応装置
の運転方法に関し、更に詳細には、超臨界水反応装置を
運転して、単位体積当たりの酸化発熱量が異なる複数種
の被処理液を同時に反応器に導入し、超臨界水の存在下
で超臨界水反応を行う際、超臨界水反応装置を円滑に起
動し、安定して運転する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a supercritical water reactor, and more particularly, to a method for operating a supercritical water reactor to generate a plurality of types of treated materials having different heating values for oxidation per unit volume. The present invention relates to a method for starting a supercritical water reactor smoothly and operating it stably when a liquid is simultaneously introduced into a reactor and a supercritical water reaction is performed in the presence of supercritical water.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
有機物の酸化、分解能力の高い超臨界水反応を利用し
て、環境汚染物質を分解、無害化する試みが注目されて
いる。すなわち、超臨界水の高い反応性を利用した超臨
界水反応により、従来技術では分解することが難しかっ
た有害な難分解性の有機物、例えば、PCB(ポリ塩素
化ビフェニル)、ダイオキシン、有機塩素系溶剤等を分
解して、二酸化炭素、窒素、水、無機塩などの無害な生
成物に転化する試みである。
2. Description of the Related Art With increasing awareness of environmental issues,
Attention has been paid to attempts to decompose and detoxify environmental pollutants by utilizing supercritical water reaction, which has high ability to oxidize and decompose organic substances. That is, harmful and hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorinated compounds, which were difficult to decompose in the related art by supercritical water reaction utilizing high reactivity of supercritical water. It is an attempt to decompose a solvent or the like and convert it into harmless products such as carbon dioxide, nitrogen, water, and inorganic salts.

【0003】超臨界水反応装置とは、超臨界水の高い反
応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、374.1℃以上の温度で、か
つ22.04MPa以上の圧力下にある状態の水を言
う。超臨界水は、有機物を溶解する溶解能が高く、有機
化合物に多い非極性物質をも完全に溶解することができ
る一方、逆に、金属、塩等の無機物に対する溶解能は著
しく低い。また、超臨界水は、酸素や窒素などの気体と
任意の割合で混合して単一相を構成することができる。
[0003] A supercritical water reactor is a device that decomposes organic substances by using high reactivity of supercritical water. For example, harmful organic substances that are hardly decomposable are decomposed and harmless carbon dioxide and water are decomposed. In order to convert the hard-to-decompose high-molecular compounds into useful low-molecular compounds,
Its practical application is being actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is in a state beyond the critical point of water, and specifically, at a temperature of 374.1 ° C. or more and a pressure of 22.04 MPa or more. A state of water. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. The supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図3を参照して、超臨界水反応装
置の基本的な構成を説明する。図3は超臨界水反応装置
の基本的構成を示すフローシートである。超臨界水反応
装置10は、超臨界水の存在下で超臨界水反応により有
害な有機物を含む被処理液を処理する装置であって、図
3に示すように、超臨界水反応を行う反応器として、縦
型の耐圧密閉型反応器12を備え、反応器12から処理
液を流出させる処理液管14に、順次、処理液を冷却す
る冷却器16、反応器12内の圧力を制御する圧力制御
弁18、及び、処理液をガスと液体とに気液分離する気
液分離器20を備えている。尚、縦型反応容器は、通
常、固形物の含有率が低い被処理液を処理するのに適し
ており、固形物の含有率が高い被処理液を処理する際に
は、パイプ状のチューブラー反応器を使用することが多
い。
Here, the basic configuration of the supercritical water reactor will be described with reference to FIG. FIG. 3 is a flow sheet showing the basic configuration of the supercritical water reactor. The supercritical water reactor 10 is a device for treating a liquid to be treated containing harmful organic substances by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. A vertical pressure-resistant closed type reactor 12 is provided as a vessel, and a processing solution pipe 14 through which a processing solution flows out of the reactor 12 is sequentially cooled by a cooler 16 for cooling the processing solution, and the pressure in the reactor 12 is controlled. The apparatus includes a pressure control valve 18 and a gas-liquid separator 20 that separates the processing liquid into gas and liquid. The vertical reaction vessel is usually suitable for treating a liquid to be treated having a low solid content, and when treating a liquid to be treated having a high solid content, a pipe-shaped tube is generally used. Often, a reactor is used.

【0005】超臨界水反応装置10は、超臨界水反応に
供する反応物を反応器12に供給する供給系統として、
被処理液ポンプ24と、空気圧縮機28とを備え、有機
物を含む被処理液を被処理液管22を介して反応器12
に送入し、かつ、空気送入管26及び被処理液管22を
介して酸化剤として空気を被処理液と共に反応器12に
送入する。
[0005] The supercritical water reactor 10 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 12.
The reactor 12 includes a liquid to be treated pump 24 and an air compressor 28, and supplies a liquid to be treated containing an organic substance to the reactor 12
And the air as an oxidant is sent into the reactor 12 together with the liquid to be treated via the air supply pipe 26 and the liquid pipe 22 to be treated.

【0006】更に、超臨界水反応装置10は、必要に応
じて、反応器12での超臨界水反応を維持するのに必要
な熱エネルギー源として補助燃料を反応器12に送入す
る補助燃料管(図示せず)、及び反応器12で超臨界水
反応により処理液中の有機物から発生した塩素等を中和
するアルカリ剤を反応器12に送入するアルカリ剤送入
管(図示せず)を被処理液管22に合流させている。
[0006] Further, the supercritical water reactor 10 is provided with an auxiliary fuel for feeding an auxiliary fuel to the reactor 12 as necessary as a heat energy source for maintaining the supercritical water reaction in the reactor 12. A tube (not shown) and an alkali agent feed tube (not shown) for feeding an alkali agent for neutralizing chlorine and the like generated from organic substances in the processing solution by the supercritical water reaction in the reactor 12 to the reactor 12. ) Is joined to the liquid pipe 22 to be treated.

【0007】なお、被処理液と処理液とを熱交換させて
処理液を冷却するとともに被処理液を昇温して熱回収を
図る熱交換器(図示せず)を冷却器16の上流の処理液
管14に、又は被処理液を予熱する予熱器を反応器12
の上流の被処理液管22に設けることもある。また、超
臨界水の補給水管を被処理液管22に接続することもあ
る。更には、反応器12の下部に亜臨界水領域を設け、
反応器12内で生じた無機塩類を亜臨界水領域に沈降さ
せ、除去する機構を設けることもある。
A heat exchanger (not shown) for exchanging heat between the liquid to be processed and the processing liquid to cool the processing liquid and raise the temperature of the liquid to be processed to recover heat is provided upstream of the cooler 16. A preheater for preheating the liquid to be treated is provided in the reactor 12
May be provided in the liquid pipe 22 to be processed, which is located upstream of the pipe. Also, a supercritical water supply water pipe may be connected to the liquid pipe 22 to be treated. Further, a subcritical water region is provided at the lower part of the reactor 12,
A mechanism may be provided to settle and remove inorganic salts generated in the reactor 12 in the subcritical water region.

【0008】[0008]

【発明が解決しようとする課題】ところで、超臨界水反
応による有機物処理の優れた点及び効果が評価されて行
くと共に、例えば被処理液の発生源に超臨界水反応装置
を設置し、単位体積当たりの発熱量が相互に異なる種類
の有機物をそれぞれ含む複数の被処理液を同時に超臨界
水反応装置で処理することが行われるようになってい
る。
By the way, the excellent point and effect of the organic matter treatment by the supercritical water reaction are evaluated and, for example, a supercritical water reactor is installed at the source of the liquid to be treated, and the unit volume is increased. A plurality of liquids to be treated, each containing a different kind of organic matter having a different calorific value per unit, are simultaneously treated in a supercritical water reactor.

【0009】例えば、図2に示すように、2種類の被処
理液を処理する超臨界水反応装置30では、2台の処理
液ポンプ24A、Bを設け、被処理液管22を介して処
理液ポンプ24Aと反応器12とを接続し、被処理液管
22に接続する被処理液管22Bを設け、被処理液管2
2B及び被処理液管22を介して被処理液ポンプ22B
と反応器12とを接続している。そして、処理液ポンプ
24Aと液ポンプ24Bによって、被処理液Aと被処理
液Bとを同時に処理することも多い。
For example, as shown in FIG. 2, in a supercritical water reactor 30 for treating two kinds of liquids to be treated, two treatment liquid pumps 24A and B are provided, and The liquid pump 24A is connected to the reactor 12, and a liquid pipe 22B to be connected to the liquid pipe 22 is provided.
2B and the liquid pump 22B through the liquid pipe 22
And the reactor 12 are connected. The processing liquid A and the processing liquid B are often simultaneously processed by the processing liquid pumps 24A and 24B.

【0010】しかし、被処理液Aと被処理液Bとを超臨
界水処理するために、超臨界水反応装置の起動時及び通
常運転時に、被処理液Aと被処理液Bを反応器に送液す
る際に、反応器の温度が変動して、特に反応器の温度が
上昇して処理を安定して行うことが難しいという問題が
あった。
However, in order to treat the liquid to be treated A and the liquid to be treated B with supercritical water, the liquid to be treated A and the liquid to be treated B are supplied to the reactor when the supercritical water reactor is started and during normal operation. When the liquid is sent, there has been a problem that the temperature of the reactor fluctuates, and particularly the temperature of the reactor rises, and it is difficult to stably perform the treatment.

【0011】そこで、本発明の目的は、単位体積当たり
の発熱量の異なる複数種の被処理を超臨界水処理する際
に、特にその起動時において超臨界水反応装置を円滑に
起動し、安定して運転する方法を提供することである。
Accordingly, an object of the present invention is to provide a supercritical water reactor that can smoothly start a supercritical water reactor when a plurality of types of treatments having different calorific values per unit volume are subjected to supercritical water treatment, especially at the time of startup. And provide a way to drive.

【0012】[0012]

【課題を解決するための手段】本発明者は、上述のよう
な被処理液A及びBのように、種類の異なる有機物を含
む複数種の被処理液を反応器に送入して超臨界水反応装
置を起動し、運転する際に、反応器の温度が急激に上昇
し、また圧力条件が変動する原因を調べ、次のことを見
い出した。通常、超臨界水反応装置への被処理液の送入
では、被処理液中の有機物の濃度、更に詳しく言えば被
処理液の単位体積当たりの有機物による酸化発熱量がほ
ぼ一定になるように被処理液Aおよび被処理液Bを混合
調整して反応器に送入している。
The inventor of the present invention has proposed that a plurality of kinds of liquids containing different kinds of organic substances, such as the liquids A and B to be treated as described above, are fed into a reactor, When the water reactor was started and operated, the cause of the sudden rise in the temperature of the reactor and the fluctuation of the pressure conditions were investigated, and the following was found. Normally, when the liquid to be treated is fed into the supercritical water reactor, the concentration of the organic substance in the liquid to be treated, more specifically, the amount of heat generated by the oxidation of the organic substance per unit volume of the liquid to be treated is substantially constant. The liquid to be treated A and the liquid to be treated B are mixed and adjusted before being fed into the reactor.

【0013】ところで、たとえば有機物濃度の高い被処
理液B、即ち単位体積当たりの酸化発熱量が高い被処理
液Bを送入して、次いで有機物濃度の低い被処理液A、
即ち単位体積当たりの酸化発熱量が低い被処理液Aを反
応器に送入した場合、混合部から反応器までの配管内に
満たされている被処理液Bに見かけ上の被処理液Aの流
量も加算されるので、被処理液Bが多量に反応器内に流
入する。その結果、単位時間当たりの発熱量が反応器内
で増大して、反応器の温度が上昇することを見い出し
た。
By the way, for example, a liquid B having a high organic substance concentration, ie, a liquid B having a high oxidative heat generation per unit volume is supplied, and then a liquid A having a low organic substance concentration is supplied.
That is, when the liquid A having a low calorific value of oxidation per unit volume is fed into the reactor, the liquid A to be treated apparently fills the liquid B to be treated filled in the pipe from the mixing section to the reactor. Since the flow rate is also added, a large amount of the liquid to be treated B flows into the reactor. As a result, it has been found that the calorific value per unit time increases in the reactor and the temperature of the reactor rises.

【0014】そこで、上述のような種類の異なる有機物
を異なる濃度で含む複数種の被処理液、即ち単位体積当
たりの酸化発熱量の異なる複数種の被処理液、例えば第
1の被処理液と第2の被処理液とを処理する超臨界水反
応装置を起動する際には、先ず、単位体積当たりの酸化
発熱量が低い第1の被処理液を反応器に送入して定常状
態にし、次いで第1の被処理液に加えて、単位体積当た
りの酸化発熱量が高い第2の被処理液を送入することに
より、上述の問題発生を回避することを着想し、研究の
末に、本発明方法を完成するに到った。
Therefore, a plurality of kinds of liquids to be treated containing different kinds of organic substances as described above at different concentrations, that is, a plurality of kinds of liquids having different heating values of oxidation per unit volume, for example, a first liquid to be treated. When starting the supercritical water reactor for treating the second liquid to be treated, first, the first liquid to be treated, which has a low calorific value of oxidation per unit volume, is fed into the reactor and brought into a steady state. Then, in addition to the first liquid to be treated, the second liquid to be treated having a high oxidative heat generation per unit volume is fed to avoid the above-mentioned problem, and the end of the research Thus, the present invention has been completed.

【0015】また、超臨界水反応装置の運転中に、第1
の被処理液に加えて、第2の被処理液を反応器に送入す
る際には、上述の問題発生を回避するためには、2の被
処理液の単位体積当たりの酸化発熱量が、第1の被処理
液の単位体積当たりの酸化発熱量より高いことが必要で
あると考え、研究の末に本発明方法を完成するに到っ
た。
During the operation of the supercritical water reactor, the first
When the second liquid to be treated is fed into the reactor in addition to the liquid to be treated, the amount of heat generated by oxidation per unit volume of the liquid to be treated is 2 in order to avoid the above-mentioned problem. The inventors thought that it is necessary to be higher than the calorific value of oxidation per unit volume of the first liquid to be treated, and completed the method of the present invention after research.

【0016】上記目的を達成するためには、上述の知見
に基づいて、本発明に係る超臨界水反応装置の運転方法
は、単位体積当たりの酸化発熱量が異なる複数種の被処
理液を同時に反応器に導入し、超臨界水の存在下で超臨
界水反応を行う超臨界水反応装置の運転方法であって、
超臨界水反応装置を起動する際には、空気を送入して反
応器の圧力を所定圧力に昇圧する第1のステップと、空
気の送入を継続しつつ、超臨界水を反応器に流入し、反
応器内の温度を第1の所定温度に昇温する第2のステッ
プと、超臨界水の流入を継続しつつ、第1の被処理液を
反応器に導入して、酸化反応を開始させる第3のステッ
プと、第1の被処理液に加えて、単位体積当たりの酸化
発熱量が第1の被処理液より高い第2の被処理液を反応
器に供給する第4のステップと、反応器の温度が第2の
所定温度に到達した時点で、超臨界水の流入を停止させ
る第5のステップとを有することを特徴としている。
In order to achieve the above object, based on the above findings, the method for operating a supercritical water reactor according to the present invention provides a method for simultaneously treating a plurality of types of liquids having different heating values of oxidation per unit volume. A method for operating a supercritical water reactor for introducing into a reactor and performing a supercritical water reaction in the presence of supercritical water,
When starting the supercritical water reactor, the first step of feeding air to raise the pressure of the reactor to a predetermined pressure, and, while continuing to feed air, supercritical water is fed into the reactor. A second step of flowing and raising the temperature in the reactor to a first predetermined temperature; and introducing the first liquid to be treated into the reactor while continuing the inflow of the supercritical water, thereby performing an oxidation reaction. A fourth step of supplying, to the reactor, a second processing liquid having a higher calorific value of oxidation per unit volume than the first processing liquid in addition to the first processing liquid. And a fifth step of stopping the inflow of supercritical water when the temperature of the reactor reaches the second predetermined temperature.

【0017】本発明方法で、第1の所定温度とは、通
常、約390℃である。また、第2の所定温度とは、超
臨界水反応の温度条件であって、500℃から550℃
の範囲にある。
In the method of the present invention, the first predetermined temperature is usually about 390 ° C. Further, the second predetermined temperature is a temperature condition of the supercritical water reaction, and is from 500 ° C. to 550 ° C.
In the range.

【0018】[0018]

【発明の実施の形態】以下に、実施形態例を示す図1を
参照して、本発明の実施の形態を具体的かつ詳細に説明
する。実施形態例1 本実施形態例は、本発明に係る超臨界水反応装置の運転
方法を超臨界水反応装置30の起動に適用した実施形態
の一例である。本実施形態例では、先ず、空気圧縮機2
8を起動して、高圧空気を反応器12に送入し、反応器
12の圧力を所定圧力に昇圧する。次いで、高圧空気の
送入を継続しつつ、超臨界水ライン40を経由して超臨
界水を流入し、反応器12内の温度を所定温度、例えば
390℃に昇温する。なお、超臨界水ライン40には、
ヒータや熱交換機等の加熱器41が付設され、水を加熱
器41によって加熱し、超臨界水とする。超臨界水の流
入を継続しつつ、被処理液ポンプ24Aを起動して、被
処理液のうちの単位体積当たりの酸化発熱量が低い被処
理液Aを反応器12に導入して、酸化反応を開始させ
る。
Embodiments of the present invention will be described below in detail with reference to FIG. 1 showing an embodiment. Embodiment 1 This embodiment is an example of an embodiment in which the operation method of the supercritical water reactor according to the present invention is applied to the activation of the supercritical water reactor 30. In the present embodiment, first, the air compressor 2
8, the high pressure air is fed into the reactor 12, and the pressure in the reactor 12 is increased to a predetermined pressure. Next, while continuing to supply high-pressure air, supercritical water flows in through the supercritical water line 40, and the temperature in the reactor 12 is raised to a predetermined temperature, for example, 390 ° C. The supercritical water line 40 includes:
A heater 41 such as a heater or a heat exchanger is provided, and the water is heated by the heater 41 to produce supercritical water. While continuing the inflow of the supercritical water, the liquid-to-be-treated pump 24A is started, and the liquid-to-be-processed A having a low calorific value per unit volume of the liquid to be processed is introduced into the reactor 12, and the oxidation reaction is started. To start.

【0019】次いで、被処理液Aに加えて、被処理液ポ
ンプ24Bを起動して、単位体積当たりの酸化発熱量が
被処理液Aより高い被処理液Bを反応器に供給する。反
応器12の温度が上昇した時点で、超臨界水の流入量を
徐々に低下させ、反応器12の温度が500℃〜550
℃の範囲の所定温度に到達した時点で、超臨界水の流入
を停止し、超臨界水反応を安定して継続させる。
Next, in addition to the liquid to be treated A, the liquid to be treated pump 24B is started to supply the liquid to be treated B having a higher calorific value of oxidation per unit volume than the liquid to be treated A to the reactor. When the temperature of the reactor 12 rises, the inflow amount of the supercritical water is gradually reduced, and the temperature of the reactor 12 becomes 500 ° C. to 550 ° C.
When the temperature reaches a predetermined temperature in the range of ° C., the inflow of the supercritical water is stopped, and the supercritical water reaction is stably continued.

【0020】本実施形態例では、被処理液管22に滞留
する被処理液Aの単位体積当たりの酸化発熱量が被処理
液Bの単位体積当たりの酸化発熱量より低いので、従来
のように、反応器に送入管路に滞留した、単位体積当た
りの酸化発熱量が高い被処理液が、高い流量で送入され
る単位体積当たりの酸化発熱量が低い被処理液に押し出
されて、反応器12の温度が急激に上昇するようなこと
は生じない。
In the present embodiment, the amount of heat generated by oxidation per unit volume of the liquid A to be processed staying in the liquid pipe 22 to be processed is lower than the amount of heat generated by oxidation per unit volume of the liquid B to be processed. The liquid to be treated having a high calorific value of oxidation per unit volume, which is retained in the feed line to the reactor, is extruded into a liquid to be treated having a low calorific value of oxidation per unit volume fed at a high flow rate, It does not occur that the temperature of the reactor 12 rises sharply.

【0021】本実施形態例では、被処理液管22に滞留
する被処理液Aの単位体積当たりの酸化発熱量が被処理
液Bの単位体積当たりの酸化発熱量より低いので、従来
のように、反応器に送入管路に滞留した、単位体積当た
りの酸化発熱量が高い被処理液が、高い流量で送入され
る単位体積当たりの酸化発熱量が低い被処理液に押し出
されて、反応器12の温度を急激に上昇させるようなこ
とは生じない。
In the present embodiment, the amount of heat generated by oxidation per unit volume of the liquid A to be processed staying in the liquid pipe 22 to be processed is lower than the amount of heat generated by oxidation per unit volume of the liquid B to be processed. The liquid to be treated having a high calorific value of oxidation per unit volume, which is retained in the feed line to the reactor, is extruded into a liquid to be treated having a low calorific value of oxidation per unit volume fed at a high flow rate, No sudden increase in the temperature of the reactor 12 occurs.

【0022】[0022]

【発明の効果】本発明方法によれば、単位体積当たりの
酸化発熱量が相互に異なる複数種の被処理液を処理する
超臨界水反応装置の運転では、起動の際、先ず単位体積
当たりの酸化発熱量が低い第1の被処理液を反応器に送
入して定常状態にし、次いで第1の被処理液に加えて第
1の被処理液より単位体積当たりの酸化発熱量が高い第
2の被処理液を送入する。また、被処理液の切り換え、
ないし追加送入の場合にも、先ず、第1の被処理液を送
入し、次いで第1の被処理液より単位体積当たりの酸化
発熱量が高い第2の被処理液を送入する。これにより、
従来のように、反応器に送入管路に滞留した、単位体積
当たりの酸化発熱量が高い被処理液が、高い流量で送入
される単位体積当たりの酸化発熱量が低い被処理液に押
し出されて、多量に反応器に流入することがないので、
反応器での急激な温度上昇が起きずに、安定した温度制
御を行うことができる。
According to the method of the present invention, in the operation of a supercritical water reactor for treating a plurality of kinds of liquids to be treated having different heating values for oxidation per unit volume, at the time of start-up, first, The first liquid to be treated having a low calorific value of oxidation is fed into the reactor to be in a steady state, and then the first liquid to be treated is added to the liquid to be treated and the calorific value of oxidation per unit volume is higher than that of the first liquid to be treated. 2. The liquid to be treated is fed. Also, switching of the liquid to be treated,
Also in the case of additional feeding, first, the first liquid to be processed is fed, and then the second liquid to be processed, which has a higher heating value per unit volume of oxidation than the first liquid to be processed, is fed. This allows
As in the prior art, the liquid to be treated having a high oxidative heat generation per unit volume, which is retained in the feed line in the reactor, is converted into a liquid to be processed having a low oxidative heat generation per unit volume which is supplied at a high flow rate. As it is not extruded and flows into the reactor in large quantities,
Stable temperature control can be performed without a sharp rise in temperature in the reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超臨界水反応装置の基本的構成を示すフローシ
ートである。
FIG. 1 is a flow sheet showing a basic configuration of a supercritical water reactor.

【図2】2種類の被処理液を処理する従来の超臨界水反
応装置の構成を示すフローシートである。
FIG. 2 is a flow sheet showing a configuration of a conventional supercritical water reactor for treating two types of liquids to be treated.

【図3】一種類の被処理液を処理する従来の超臨界水反
応装置の構成を示すクローシートである。
FIG. 3 is a claw sheet showing a configuration of a conventional supercritical water reactor for treating one type of liquid to be treated.

【符号の説明】[Explanation of symbols]

10 超臨界水反応装置 12 反応器 14 処理液管 16 冷却器 18 圧力制御弁 20 気液分離器 22 被処理液管 22B 被処理液管 24 被処理液ポンプ 24A、B 被処理液ポンプ 26 空気送入管 28 空気圧縮機 30 2種類の被処理液を処理する超臨界水反応装置 40 超臨界水ライン 41 加熱器 DESCRIPTION OF SYMBOLS 10 Supercritical water reactor 12 Reactor 14 Treatment liquid pipe 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Liquid liquid pipe 22B Liquid liquid pipe 24 Liquid pumps 24A, B Liquid pump 26 Air sending Inlet pipe 28 Air compressor 30 Supercritical water reactor for treating two types of liquids to be treated 40 Supercritical water line 41 Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 治 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D050 AA01 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 BD08 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Osamu Takahashi 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Akira Suzuki 1-2-8 Shinsuna, Koto-ku, Tokyo Olgano F term (reference) 4D050 AA01 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 BD08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単位体積当たりの酸化発熱量が異なる複
数種の被処理液を同時に反応器に導入し、超臨界水の存
在下で超臨界水反応を行う超臨界水反応装置の運転方法
であって、超臨界水反応装置を起動する際には、 空気を送入して反応器の圧力を所定圧力に昇圧する第1
のステップと、 空気の送入を継続しつつ、超臨界水を反応器に流入し、
反応器内の温度を第1の所定温度に昇温する第2のステ
ップと、 超臨界水の流入を継続しつつ、第1の被処理液を反応器
に導入して、酸化反応を開始させる第3のステップと、 第1の被処理液に加えて、単位体積当たりの酸化発熱量
が第1の被処理液より高い第2の被処理液を反応器に供
給する第4のステップと、 反応器の温度が第2の所定温度に到達した時点で、超臨
界水の流入を停止させる第5のステップとを有すること
を特徴とする超臨界水反応装置の運転方法。
1. A method for operating a supercritical water reactor in which a plurality of types of liquids to be treated having different heating values for oxidation per unit volume are simultaneously introduced into a reactor and a supercritical water reaction is performed in the presence of supercritical water. Therefore, when starting the supercritical water reactor, the first step is to introduce air to raise the pressure of the reactor to a predetermined pressure.
And the supercritical water flows into the reactor while continuing the air supply,
A second step of raising the temperature in the reactor to a first predetermined temperature; and introducing the first liquid to be treated into the reactor while continuing the inflow of supercritical water to start an oxidation reaction. A third step, in addition to the first liquid to be treated, a fourth step of supplying a second liquid to be treated having a higher calorific value of oxidation per unit volume than the first liquid to be treated to the reactor; A step of stopping the inflow of supercritical water when the temperature of the reactor reaches the second predetermined temperature.
JP09063399A 1999-03-31 1999-03-31 Operation method of supercritical water reactor Expired - Fee Related JP3686778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063399A JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063399A JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Publications (3)

Publication Number Publication Date
JP2000279791A true JP2000279791A (en) 2000-10-10
JP2000279791A5 JP2000279791A5 (en) 2005-03-17
JP3686778B2 JP3686778B2 (en) 2005-08-24

Family

ID=14003906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063399A Expired - Fee Related JP3686778B2 (en) 1999-03-31 1999-03-31 Operation method of supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3686778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386268C (en) * 2006-06-05 2008-05-07 西安交通大学 Super critical water treatment system of waste organic liquid pollution less discharge and resources utilization
JP2010522635A (en) * 2007-03-29 2010-07-08 エボニック デグサ ゲーエムベーハー Method for stepwise temperature control of chemicals in a heater at predetermined entry and discharge temperatures and apparatus for carrying out the method
JP2015016401A (en) * 2013-07-09 2015-01-29 株式会社リコー Waste liquid treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386268C (en) * 2006-06-05 2008-05-07 西安交通大学 Super critical water treatment system of waste organic liquid pollution less discharge and resources utilization
JP2010522635A (en) * 2007-03-29 2010-07-08 エボニック デグサ ゲーエムベーハー Method for stepwise temperature control of chemicals in a heater at predetermined entry and discharge temperatures and apparatus for carrying out the method
JP2015016401A (en) * 2013-07-09 2015-01-29 株式会社リコー Waste liquid treatment apparatus

Also Published As

Publication number Publication date
JP3686778B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
KR100805923B1 (en) Method for treating waste by hydrothermal oxidation
CN105776495A (en) Method and system for overheating near-critical water oxidation of unsymmetrical dimethylhydrazine waste liquor
JP2000279791A (en) Operation of supercritical water reaction device
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JPH10328699A (en) Supercritical hydroxylation reactor
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP3801807B2 (en) Supercritical water reactor
JP2001170664A (en) Supercritical water treating device
JPH10314768A (en) Method for oxidation of supercritical water
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2002095953A (en) Reaction device for supercritical water
CN111268783B (en) Method for oxidative degradation of material containing organic matters by circulating water
JP2006043552A (en) Hydrothermal reaction process and its apparatus
JP2003340262A (en) Method and apparatus for treating hydrothermal reaction
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof
JPH10314766A (en) Supercritical water reaction apparatus
JP2001120987A (en) Batch type supercritical water reaction apparatus
JP2000229274A (en) Wet combustion device and treatment of carbon based compound
JP2963981B2 (en) Hydrogen peroxide concentration adjustment method
KR20240132302A (en) SCWO System for High-Intensity Waste Treatment
JP2004283801A (en) Apparatus and process for hydrothermal reaction
JP2001038190A (en) Hydrothermal reaction method and device
JP2003164750A (en) Method and apparatus for treating waste liquid after analysis
JP2003326153A (en) Apparatus for feeding thick slurry and its starting method
JP2006000732A (en) Hydrothermal reaction method and its apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees