JP2002095953A - Reaction device for supercritical water - Google Patents

Reaction device for supercritical water

Info

Publication number
JP2002095953A
JP2002095953A JP2000286401A JP2000286401A JP2002095953A JP 2002095953 A JP2002095953 A JP 2002095953A JP 2000286401 A JP2000286401 A JP 2000286401A JP 2000286401 A JP2000286401 A JP 2000286401A JP 2002095953 A JP2002095953 A JP 2002095953A
Authority
JP
Japan
Prior art keywords
reactor
water
supercritical water
organic substance
hydrophobic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000286401A
Other languages
Japanese (ja)
Other versions
JP2002095953A5 (en
Inventor
Tomonori Fujii
智範 藤井
Tomoyuki Iwamori
智之 岩森
Taro Kuramochi
太郎 倉持
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000286401A priority Critical patent/JP2002095953A/en
Publication of JP2002095953A publication Critical patent/JP2002095953A/en
Publication of JP2002095953A5 publication Critical patent/JP2002095953A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a reaction device for supercritical water, in which in the case of treating a hydrophobic organic substance such as PCB, a reaction of supercritical water is continued at a stable reaction temperature. SOLUTION: The reaction device 10 for supercritical water is a device, in which PCB is fed into a reactor together with water and subjected to oxidative reaction with supercritical water, is equipped with a reactor 12, a system for supplying PCB, water for producing supercritical water and a surfactant, an emulsification device 14 for emulsifying both PCB and water by the surfactant, a feed system for feeding air and an outflow system after the reactor 12. In this device, a neutralization quenching part 48, in which an alkali aqueous solution is poured to the treated liquid and the same is neutralized and quenched, is provided just after the outlet of the reactor 12 and a particle diameter detection device 52 for detecting the average particle diameter of the micell of an emulsion is provided just after the outlet of the emulsification device. In the case of PCB treatment, the surfactant is added so that the average particle diameter of the micell of the emulsion becomes <=2 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、疎水性有機物と
水、特にPCB等の有害な疎水性有機物と水とを反応器
に送入し、超臨界水の存在下で超臨界水反応させる超臨
界水反応装置に関し、更に詳細には、疎水性有機物と水
との混合流体を安定して反応器に送入し、安定した反応
温度で超臨界水反応を持続させるようにした超臨界水反
応装置に関するものである。
[0001] The present invention relates to a supercritical water reaction in which a hydrophobic organic substance and water, particularly a harmful hydrophobic organic substance such as PCB, and water are fed into a reactor and a supercritical water reaction is performed in the presence of supercritical water. More specifically, the present invention relates to a supercritical water reactor, in which a mixed fluid of a hydrophobic organic substance and water is stably fed into a reactor, and the supercritical water reaction is maintained at a stable reaction temperature. It concerns the device.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
有機物の酸化/分解能力の高い超臨界水反応を利用し
て、環境汚染物質を分解、無害化する試みが注目されて
いる。すなわち、超臨界水の高い反応性を利用した超臨
界水反応により、従来技術では分解することが難しかっ
た有害な難分解性の有機物、例えば、PCB(ポリ塩素
化ビフェニル)、ダイオキシン、有機塩素系有機物等を
分解して、二酸化炭素、窒素、水、無機塩などの無害な
生成物に転化する試みである。
2. Description of the Related Art With increasing awareness of environmental issues,
Attention has been paid to attempts to decompose and detoxify environmental pollutants using a supercritical water reaction having a high ability to oxidize / decompose organic substances. That is, harmful and hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorinated compounds, which were difficult to decompose in the related art by supercritical water reaction utilizing high reactivity of supercritical water. This is an attempt to decompose organic substances and convert them to harmless products such as carbon dioxide, nitrogen, water and inorganic salts.

【0003】超臨界水反応装置とは、超臨界水の高い反
応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、374.1℃以上の温度で、か
つ22.04MPa以上の圧力下にある状態の水を言
う。超臨界水は、有機物を溶解する溶解能が高く、有機
化合物に多い非極性物質をも完全に溶解することができ
る一方、逆に、金属、塩等の無機物に対する溶解能は著
しく低い。また、超臨界水は、酸素や窒素などの気体と
任意の割合で混合して単一相を構成することができる。
[0003] A supercritical water reactor is a device that decomposes organic substances by using high reactivity of supercritical water. For example, harmless carbon dioxide and water are decomposed by decomposing hard-to-decompose harmful organic substances. In order to decompose hard-to-decompose high-molecular compounds and convert them into useful low-molecular compounds,
Its practical application is being actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is in a state beyond the critical point of water, and specifically, at a temperature of 374.1 ° C. or more and a pressure of 22.04 MPa or more. A state of water. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. Further, the supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図4を参照して、超臨界水反応装
置の基本的な構成を説明する。図4は従来の超臨界水反
応装置の構成を示すフローシートである。従来の超臨界
水反応装置70は、有機物を含む被処理液を超臨界水の
存在下で超臨界水反応により処理する装置であって、図
4に示すように、超臨界水反応を行う反応器として、縦
型の耐圧密閉型反応器72を備え、反応器72から処理
液を流出させる処理液管74に、順次、処理液を冷却す
る冷却器76、反応器72内の圧力を制御する圧力制御
弁78、及び、処理液をガスと液体とに気液分離する気
液分離器80を備えている。尚、縦型反応容器に代え
て、パイプ状のチューブラー反応器が使用されることも
ある。
Here, a basic configuration of a supercritical water reactor will be described with reference to FIG. FIG. 4 is a flow sheet showing the configuration of a conventional supercritical water reactor. The conventional supercritical water reactor 70 is a device for treating a liquid to be treated containing an organic substance by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. A vertical pressure-resistant closed reactor 72 is provided as a vessel, and a processing solution pipe 74 through which the processing solution flows out of the reactor 72 is sequentially cooled by a cooler 76 for cooling the processing solution, and the pressure in the reactor 72 is controlled. A pressure control valve 78 and a gas-liquid separator 80 that separates the processing liquid into gas and liquid are provided. In addition, a tubular tubular reactor may be used instead of the vertical reaction vessel.

【0005】超臨界水反応装置70は、超臨界水反応に
供する反応物を反応器72に供給する供給系統として、
被処理液ポンプ84と、空気圧縮機86とを備え、被処
理液管88を介して有機物を含む被処理液を反応器72
に送入し、かつ、被処理液管88に接続された空気送入
管90を介して酸化剤として空気を被処理液と共に反応
器72に送入する。更に、被処理液中の有機物の酸化熱
のみでは超臨界水温度以上に維持できないような場合
は、反応器72での超臨界水反応を維持するのに必要な
熱エネルギー源として石油系炭化水素油等の補助燃料を
反応器72に送入する補助燃料管92を被処理液管88
に合流させ、更に、必要に応じて、反応器72で超臨界
水反応により処理液中の有機物から発生した塩素等を中
和するアルカリ剤を反応器72に送入するアルカリ剤送
入管94を被処理液管88に合流させている。なお、被
処理液中の水分が不足し、超臨界水反応が維持できない
場合は、補給水管96を介して被処理液管88に補給水
を加えることもある。
[0005] The supercritical water reactor 70 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 72.
A processing liquid pump 84 and an air compressor 86 are provided.
, And air as an oxidant is fed into the reactor 72 together with the liquid to be treated via an air supply pipe 90 connected to the liquid pipe 88 to be treated. Further, when the temperature of supercritical water cannot be maintained at a temperature higher than the supercritical water temperature only by the heat of oxidation of organic substances in the liquid to be treated, petroleum hydrocarbon is used as a heat energy source necessary for maintaining the supercritical water reaction in the reactor 72. An auxiliary fuel pipe 92 for feeding auxiliary fuel such as oil into the reactor 72 is connected to a liquid pipe 88 to be treated.
And, if necessary, an alkali agent inlet pipe 94 for feeding an alkali agent for neutralizing chlorine and the like generated from organic matter in the processing solution by the supercritical water reaction in the reactor 72 to the reactor 72. Are joined to the liquid pipe 88 to be treated. If the water in the liquid to be treated is insufficient and the supercritical water reaction cannot be maintained, supplemental water may be added to the liquid to be treated 88 via the supplementary water pipe 96.

【0006】なお、被処理液と処理液とを熱交換させて
処理液を冷却するとともに被処理液を昇温して熱回収を
図る熱交換器(図示せず)を冷却器76の上流の処理液
管74に、又は被処理液を予熱する予熱器を反応器72
の上流の被処理液管88に設けることもある。更には、
反応器72の下部に亜臨界水領域を設け、反応器72内
で生じた無機塩類を亜臨界水領域に沈降させ、除去する
機構を設けることもある。
A heat exchanger (not shown) for exchanging heat between the liquid to be processed and the processing liquid to cool the processing liquid and raise the temperature of the liquid to be processed to recover heat is provided upstream of the cooler 76. A preheating device for preheating the liquid to be treated is provided in the reactor
May be provided in the liquid pipe 88 to be processed, which is located upstream of the pipe. Furthermore,
A subcritical water region may be provided below the reactor 72, and a mechanism may be provided to settle and remove the inorganic salts generated in the reactor 72 in the subcritical water region.

【0007】ところで、PCB、ダイオキシン類は、現
在、それらを無害化する処理方法を確立することが強く
望まれている廃棄物の例であるが、最近の研究によっ
て、超臨界水反応を利用することにより、PCBを比較
的容易に分解し、処理液中の残存PCB濃度を規定の3
ppb以下に処理することができる超臨界水反応技術が
確立されつつある。超臨界水反応によってPCBを処理
する際、単位量当たりのPCBは、単位量当たりのPC
Bを酸化分解する超臨界水反応を維持するのに必要な熱
量を発生させることができるので、補助燃料を送入して
熱エネルギーを補充する必要はなく、超臨界水生成用の
水とPCBとを混合して送入すればよいことが、理論的
にも、実験的にも実証されている。
[0007] By the way, PCBs and dioxins are examples of wastes for which it is strongly desired to establish a treatment method for detoxifying them. Recent research has shown that supercritical water reactions are used. As a result, the PCB is relatively easily decomposed, and the concentration of the remaining PCB in the processing solution is reduced to a specified value.
A supercritical water reaction technology capable of treating ppb or less is being established. When treating PCB by supercritical water reaction, PCB per unit amount is calculated as PC per unit amount.
Since the amount of heat required to maintain the supercritical water reaction for oxidative decomposition of B can be generated, there is no need to supply supplementary fuel to replenish heat energy, and water for generating supercritical water and PCB It has been proved theoretically and experimentally that it is sufficient to mix and send.

【0008】[0008]

【発明が解決しようとする課題】しかし、疎水性有機物
と水とを別々のポンプで反応器に供給する場合、何らか
のトラブルで水の供給がストップすると、疎水性有機物
のみが酸化剤とともに反応器へ送られてしまい、反応器
内の温度が異常に昇温する危険性を有する。また、これ
を回避するために、疎水性有機物と水とを混合し、1つ
のポンプで供給を行えば、疎水性有機物のみが反応器へ
送られることは避けられるが、単に混合しただけでは、
反応器までの供給配管内で疎水性有機物と水とが分離を
してしまう可能性がある。この場合、程度は低くなる
が、上記と同様の問題が残る。従って、あらかじめ疎水
性有機物と水とでエマルションを形成させ、このエマル
ションを供給することが考えられるが、このエマルショ
ン形成がうまくないと、やはりエマルションの分離が起
こるようになり、反応器内温度の変動(上昇、下降)を
引き起こす。例えば、或る時には反応温度が上限温度に
近くなったり、或る時には反応温度が下限温度に近くな
ったりして、超臨界水反応の進行が極めて不安定である
という問題があった。
However, when the hydrophobic organic substance and water are supplied to the reactor by separate pumps, if the supply of water is stopped due to some trouble, only the hydrophobic organic substance is supplied to the reactor together with the oxidizing agent. There is a danger that it will be sent and the temperature inside the reactor will rise abnormally. Further, in order to avoid this, if the hydrophobic organic substance and water are mixed and supplied by one pump, it is possible to avoid that only the hydrophobic organic substance is sent to the reactor.
There is a possibility that hydrophobic organic matter and water may be separated in the supply pipe to the reactor. In this case, to a lesser extent, the same problem as described above remains. Therefore, it is conceivable that an emulsion is formed in advance between the hydrophobic organic substance and water and this emulsion is supplied. However, if this emulsion formation is not successful, the separation of the emulsion will also occur, and the fluctuation of the temperature in the reactor will occur. (Up, down). For example, in some cases, the reaction temperature approaches the upper limit temperature, and in other cases, the reaction temperature approaches the lower limit temperature, and there has been a problem that the progress of the supercritical water reaction is extremely unstable.

【0009】そこで、本発明の目的は、PCB等の疎水
性有機物と水とを同時に反応器に送入する際にも、安定
した反応温度で超臨界水反応を持続させるようにした超
臨界水反応装置を提供することである。
Accordingly, an object of the present invention is to provide a supercritical water system in which a supercritical water reaction is maintained at a stable reaction temperature even when a hydrophobic organic substance such as PCB and water are simultaneously fed into a reactor. It is to provide a reactor.

【0010】[0010]

【課題を解決するための手段】本発明者は、PCBと水
とを混合して反応器に送入する際に反応温度が不安定に
なる原因を調べ、その原因が次の現象にあることを見い
出した。従来の超臨界水反応装置では、PCBと水とを
混合した混合流体として被処理液管で反応器に送ると、
疎水性有機物であるPCBの水から分離し易いという性
質に起因して、PCBが被処理液管内で水から分離し、
PCBと水との混合流体がPCBリッチのブロックと、
水リッチのブロックとにブロック化する。そして、混合
流体は、PCB濃度が高いブロックと、PCB濃度が低
いブロックとに分離し、交互に反応器に流入する。その
結果、PCB濃度の高いブロックが反応器に流入する
と、超臨界水酸化反応が急激に進行して反応温度が上昇
する。逆に、PCB濃度の低いブロックが流入すると、
発熱量が不足して、反応温度が低下するということを見
い出した。即ち、反応温度の不安定性は、PCBが均一
な濃度で被処理液中に分散した状態で反応器に流入しな
いからであることを見い出した。
Means for Solving the Problems The present inventor investigated the cause of the instability of the reaction temperature when mixing PCB and water and sending them to the reactor, and found that the cause was the following phenomenon. I found In a conventional supercritical water reactor, when a mixed fluid of PCB and water is sent to a reactor through a liquid pipe to be treated,
PCB is separated from water in the liquid pipe to be treated due to the property of easily being separated from water of PCB which is a hydrophobic organic substance,
A block of PCB-rich mixed fluid of water and PCB,
Block into water-rich blocks. Then, the mixed fluid is separated into a block having a high PCB concentration and a block having a low PCB concentration, and alternately flows into the reactor. As a result, when a block having a high PCB concentration flows into the reactor, the supercritical hydroxylation reaction proceeds rapidly, and the reaction temperature rises. Conversely, when a block with a low PCB concentration flows in,
It was found that the calorific value was insufficient and the reaction temperature was lowered. That is, it has been found that the instability of the reaction temperature is because the PCB does not flow into the reactor in a state of being dispersed in the liquid to be treated at a uniform concentration.

【0011】そこで、本発明者は、PCB等の疎水性有
機物を処理する際には、疎水性有機物と水とを混合して
相互に分散させたエマルション状の流体を形成し、形成
したエマルションを反応器に送入することを着想し、種
々の実験を行った結果、次のことを見い出した。 (1)エマルションを形成する際、水とPCB等の疎水
性有機物とに、単に界面活性剤を添加して混合・分散し
ただけでは、以下のような理由から、反応器内の反応温
度は安定しないことが、実験により判った。即ち、単に
界面活性剤を添加し、混合、分散させただけでは、エマ
ルション中に生成したミセルが、エマルションを収容し
たエマルション槽内、エマルションを送入する被処理液
管内、更にはエマルションを反応器に送入するために圧
送する圧送ポンプ内で沈降してしまうことが多い。その
結果、エマルション中のミセル濃度、従って疎水性有機
物濃度が不均一になるので、疎水性有機物濃度の異なる
エマルションの導入に伴い、反応器温度も変動する。つ
まり、エマルションの性状が反応温度の変動の大小を規
定することが判った。
Therefore, the present inventor, when treating a hydrophobic organic substance such as a PCB, forms an emulsion-like fluid in which the hydrophobic organic substance and water are mixed and dispersed with each other, and the formed emulsion is treated. As a result of conducting various experiments with the idea of feeding into the reactor, the following was found. (1) When an emulsion is formed, simply adding a surfactant to water and a hydrophobic organic substance such as PCB and mixing and dispersing the same results in a stable reaction temperature in the reactor for the following reasons. Experiments have shown that no. That is, simply by adding a surfactant, mixing and dispersing, the micelles generated in the emulsion are dispersed in the emulsion tank containing the emulsion, in the liquid tube to be fed the emulsion, and further in the reactor. Often settles in a pumping pump that pumps it into the pump. As a result, the micelle concentration in the emulsion, and hence the concentration of the hydrophobic organic substance, becomes non-uniform, so that the temperature of the reactor fluctuates with the introduction of emulsions having different concentrations of the hydrophobic organic substance. That is, it was found that the properties of the emulsion determine the magnitude of the fluctuation of the reaction temperature.

【0012】(2)エマルションの性状を規定する因子
は、エマルション中に生成したミセルの平均粒径及びミ
セル濃度であって、特にミセルの平均粒径が重要であ
る。ミセルの平均粒径が大きいときには、ミセルの負に
帯電した相互反発力よりもミセルに作用する重力の方が
大きくなり、ミセルが沈降し始める。ミセルの平均粒径
が小さいと、ミセル同士の相互反発力が、重力による沈
降力を上回り、沈降作用を抑制して、長時間安定した濃
度分布を示す。つまり、ミセルの粒径が小さいほど、ミ
セル濃度が均一で、長時間安定した乳化状態のエマルシ
ョンを維持することができる。そして、ミセルの平均粒
径が2μm以下であれば、ミセルの沈降が殆ど起こらな
いことを実験により確認した。
(2) The factors that determine the properties of the emulsion are the average particle size and the micelle concentration of micelles formed in the emulsion, and the average particle size of the micelles is particularly important. When the average particle size of the micelles is large, the gravity acting on the micelles becomes larger than the negatively charged mutual repulsion of the micelles, and the micelles begin to settle. If the average particle size of the micelles is small, the mutual repulsion between the micelles exceeds the sedimentation force due to gravity, suppressing the sedimentation action and showing a long-term stable concentration distribution. That is, the smaller the micelle particle size, the more uniform the micelle concentration, and the longer the emulsion in a stable emulsified state can be maintained. Further, it was confirmed by an experiment that if the average particle size of the micelles was 2 μm or less, sedimentation of the micelles hardly occurred.

【0013】(3)また、界面活性剤にも制約があっ
て、界面活性剤であれば、何でもよいという訳ではな
く、非イオン性界面活性剤を使用することが重要であ
る。適用できる界面活性剤は、疎水性有機物の種類によ
って異なるものの、PCB、ダイオキシン等のベンゼン
環を含む有機塩素化合物には、アルキルフェニルエーテ
ル系、多環フェニルエーテル系、ソルビタン系の非イオ
ン性界面活性剤を用いることができ、特に、ソルビタン
系あるいは多環フェニルエーテル系非イオン性界面活性
剤が望ましい。これらの界面活性剤を使用することによ
り、ミセルの平均粒径が2μm以下のPCBと水のエマ
ルションを容易に形成することができる。また、界面活
性剤が酸生成成分又は塩基生成成分を含んでいると、そ
れらが反応器内で塩類や酸を形成して、塩類の析出や酸
による反応器の腐食等を引き起こす恐れがあるので、界
面活性剤は、アルカリ、アルカリ土類金属等の塩基生成
成分、ハロゲン及び硫黄等の酸生成成分を含まないこと
が重要である。 (4)ミセルの平均粒径を2μm以下にするためには、
臨界ミセル濃度以上の濃度範囲で、疎水性有機物の質量
に対して5質量%以上20質量%以下の添加率で界面活
性剤を添加することが必要であることが判った。
(3) There are also restrictions on surfactants, and any surfactant may be used, and it is important to use a nonionic surfactant. Applicable surfactants vary depending on the type of hydrophobic organic substance. However, organic chlorinated compounds containing a benzene ring such as PCB and dioxin include alkylphenyl ether, polycyclic phenyl ether, and sorbitan nonionic surfactants. A sorbitan-based or polycyclic phenyl ether-based nonionic surfactant is particularly desirable. By using these surfactants, an emulsion of water and PCB having an average micelle particle size of 2 μm or less can be easily formed. Further, if the surfactant contains an acid-forming component or a base-forming component, they may form salts or acids in the reactor, which may cause precipitation of salts or corrosion of the reactor due to the acid. It is important that the surfactant does not contain a base-forming component such as an alkali or an alkaline earth metal and an acid-forming component such as halogen and sulfur. (4) In order to reduce the average particle size of micelles to 2 μm or less,
It has been found that it is necessary to add a surfactant at a concentration of 5% by mass or more and 20% by mass or less based on the mass of the hydrophobic organic substance in the concentration range of the critical micelle concentration or more.

【0014】上記目的を達成するために、上述の知見に
基づいて、超臨界水を収容する反応器を備え、水と疎水
性有機物とを反応器に送入し、かつ、酸化剤を反応器に
供給して、超臨界水の存在下で疎水性有機物と酸化剤と
の超臨界水反応を行う超臨界水反応装置であって、疎水
性有機物が超臨界水酸化する際に発生する熱エネルギー
で、反応器内の温度を疎水性有機物が超臨界水酸化する
超臨界水反応の反応温度に昇温できるような、水と疎水
性有機物との混合比率で、水と疎水性有機物とを混合す
る際、更に、界面活性剤を添加して、水と疎水性有機物
と界面活性剤とを混合して相互に分散させ、エマルショ
ンを形成する混合・分散手段と、エマルションを反応器
に送入する送入手段とを備え、当該混合・分散手段は、
エマルション中のミセルの平均粒径が2μm以下になる
ように調整可能であることを特徴としている。
To achieve the above object, based on the above findings, a reactor containing supercritical water is provided, water and a hydrophobic organic substance are fed into the reactor, and an oxidizing agent is supplied to the reactor. Is a supercritical water reactor that performs a supercritical water reaction between a hydrophobic organic substance and an oxidizing agent in the presence of supercritical water, the thermal energy generated when the hydrophobic organic substance undergoes supercritical water oxidation. The water and the hydrophobic organic substance are mixed at a mixing ratio of water and the hydrophobic organic substance so that the temperature in the reactor can be raised to the reaction temperature of the supercritical water reaction in which the hydrophobic organic substance supercritically hydroxylates. In addition, a surfactant is further added, water, the hydrophobic organic substance, and the surfactant are mixed and dispersed with each other, and a mixing / dispersing means for forming an emulsion, and the emulsion is fed into a reactor. And a mixing / dispersing means,
It is characterized in that it can be adjusted so that the average particle size of the micelles in the emulsion is 2 μm or less.

【0015】また、実用的には、混合・分散手段が、疎
水性有機物に対する質量比率で5質量%以上20質量%
以下の添加率で界面活性剤を添加する。実験によれば、
この範囲の添加率で界面活性剤を添加することにより、
ミセルの平均粒径を2μm以下にすることができる。
Practically, the mixing / dispersing means is used in an amount of 5% by mass to 20% by mass relative to the hydrophobic organic substance.
The surfactant is added at the following addition rates. According to experiments,
By adding a surfactant at an addition rate in this range,
The average particle size of the micelles can be reduced to 2 μm or less.

【0016】エマルションを生成する方法には、(1)
水と、疎水性有機物と、界面活性剤とを同時に混合、攪
拌、分散させる方法、(2)先ず、所要量以下の水と、
疎水性有機物と、界面活性剤とを混合、攪拌、分散させ
てエマルションを生成し、反応器に送入する直前で、所
要量まで水を補充する方法、(3)水と界面活性剤を混
合、攪拌、分散、または溶解させ、次いで、水と界面活
性剤との混合液に疎水性有機物を混合、攪拌、分散させ
て、エマルションを生成する方法、(4)水と親水性界
面活性剤とを混合、分散、または溶解させ、別途、疎水
性有機物と疎水性界面活性剤とを混合、分散、または溶
解させ、双方を混合、攪拌、分散させてエマルションを
生成する方法等の種々の方法がある。
The method for producing an emulsion includes the following (1)
A method of simultaneously mixing, stirring and dispersing water, a hydrophobic organic substance, and a surfactant, (2) first, water of a required amount or less,
A method in which a hydrophobic organic substance and a surfactant are mixed, stirred, and dispersed to form an emulsion, and water is replenished to a required amount immediately before being fed into a reactor. (3) Mixing water and a surfactant Stirring, dispersing, or dissolving, then mixing, stirring, and dispersing a hydrophobic organic substance in a mixed solution of water and a surfactant to form an emulsion; (4) water and a hydrophilic surfactant; Various methods such as mixing, dispersing or dissolving, separately mixing, dispersing or dissolving a hydrophobic organic substance and a hydrophobic surfactant, and mixing, stirring and dispersing both to form an emulsion. is there.

【0017】エマルションを生成する混合・分散手段と
して、乳化装置、ラインミキサー等を使う。混合・分散
手段を設置する位置は、反応器の直前や、水、疎水性有
機物、界面活性剤が合流する地点など、エマルションを
形成するために目的に合う位置ならばどこでも良い。
As a means for mixing and dispersing the emulsion, an emulsifying apparatus, a line mixer and the like are used. The position where the mixing / dispersion means is installed may be any position just before the reactor or a position suitable for the purpose of forming the emulsion, such as a point where water, a hydrophobic organic substance and a surfactant join.

【0018】以上の知見に基づいて、本発明の好適な実
施態様では、混合・分散手段が、水と疎水性有機物とに
界面活性剤を添加して混合、分散させ、エマルションを
形成する乳化装置である。また、別法として、混合・分
散手段が、水と疎水性有機物とを反応器に送入する送入
管に設けられたラインミキサーであって、ラインミキサ
ーの上流で、水と疎水性有機物と界面活性剤とを送入管
に注入する。
Based on the above findings, in a preferred embodiment of the present invention, the mixing / dispersing means comprises an emulsifying apparatus for adding and mixing a surfactant to water and a hydrophobic organic substance to form an emulsion. It is. Alternatively, the mixing / dispersing means is a line mixer provided in an inlet pipe for feeding water and a hydrophobic organic substance into a reactor, and water and the hydrophobic organic substance are provided upstream of the line mixer. The surfactant is injected into the inlet tube.

【0019】乳化装置とは、機械的な強い力により、液
体中にそれと溶け合わない液体を微粒化・分散させ、安
定した均質なエマルションを形成することを目的とした
装置である。乳化装置には、微細径の穴やノズル、或い
はスリット状の狭い間隙を強制的に高速で液体を通過さ
せる際に生じる剪断力を利用する方式、液体内で翼を高
速回転させることにより生じる剪断力とキャビテーショ
ンの破壊による衝撃力を利用する方式、超音波を利用す
る方式等がある。
An emulsifying apparatus is an apparatus for forming a stable and homogeneous emulsion by atomizing and dispersing a liquid that does not dissolve in the liquid by a strong mechanical force. The emulsifier uses a shear force generated when a liquid is forcibly passed at a high speed through a fine hole or nozzle or a narrow slit-like gap, and a shear generated by rotating a blade at a high speed in the liquid. There are a method using an impact force due to the destruction of force and cavitation, a method using ultrasonic waves, and the like.

【0020】本発明で使用するラインミキサーは、エマ
ルションを生成できる限り、その形式に制約はないもの
の、例えば既知のリボン式又はディスク・ドーナツ式ラ
インミキサー等のスタティックミキサー、或いはマグネ
ット・スタラー等の機械攪拌式のものを使用する。
The type of the line mixer used in the present invention is not limited, as long as it can produce an emulsion. For example, a static mixer such as a known ribbon type or disk donut type line mixer, or a machine such as a magnet stirrer. Use a stirring type.

【0021】[0021]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。実施形態例1 本実施形態例は、本発明に係る超臨界水反応装置の実施
形態の一例であって、図1は本実施形態例の超臨界水反
応装置の構成を示すフローシートである。本実施形態例
の超臨界水反応装置10は、疎水性有機物としてPCB
を超臨界水生成用の水と共に反応器に送入してPCBを
超臨界水反応させる装置であって、図1に示すように、
反応器12、反応器12にPCB、超臨界水生成用の水
及び界面活性剤を供給する供給系統、PCBと水とを界
面活性剤によってエマルション化する乳化装置14、空
気を供給する供給系統、及び反応器12以降の流出系統
を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of a supercritical water reactor according to the present invention, and FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor of this embodiment. The supercritical water reactor 10 according to the present embodiment uses PCB as a hydrophobic organic substance.
Is supplied to a reactor together with water for generating supercritical water to cause a PCB to react with supercritical water, as shown in FIG.
A reactor 12, a supply system for supplying PCB, water for generating supercritical water and a surfactant to the reactor 12, an emulsifier 14 for emulsifying PCB and water with a surfactant, a supply system for supplying air, And an outflow system after the reactor 12.

【0022】水の供給系統は、水を収容した水槽16
と、水槽16から乳化装置14に水を送る水ポンプ18
とから、PCBの供給系統は、PCBを収容したPCB
槽20と、PCB槽20から乳化装置14にPCBを送
るPCBポンプ22とから、また、界面活性剤の供給系
統は、界面活性剤を収容した界面活性剤槽24と、界面
活性剤槽24から乳化装置14に界面活性剤を送る界面
活性剤ポンプ26とから構成されている。混合・分散手
段として設けた乳化装置14は、乳化装置本体28と、
乳化装置本体28から流出したエマルションを収容する
エマルション・タンク30、及び、エマルション・タン
ク30から送入管32を通って反応器12にエマルショ
ンを送入する送入ポンプ34を備えている。
The water supply system includes a water tank 16 containing water.
And a water pump 18 for sending water from the water tank 16 to the emulsifier 14.
Therefore, the PCB supply system is the PCB containing the PCB
The tank 20 and a PCB pump 22 that sends the PCB from the PCB tank 20 to the emulsifier 14, and a surfactant supply system includes a surfactant tank 24 containing a surfactant and a surfactant tank 24. And a surfactant pump 26 for sending a surfactant to the emulsifying device 14. The emulsifying device 14 provided as mixing / dispersing means includes an emulsifying device main body 28,
An emulsion tank 30 containing the emulsion flowing out of the emulsification apparatus main body 28 and a feed pump 34 for feeding the emulsion from the emulsion tank 30 to the reactor 12 through the feed pipe 32 are provided.

【0023】乳化装置本体28は、連続運転型でも、バ
ッチ運転型でも良い。更には、連続運転型の乳化装置本
体28と、送入ポンプ34とを円滑に連動させることが
できる限り、エマルション・タンク30を設ける必要は
なく、乳化装置本体28と送入ポンプ34とを配管で直
接、接続して連続運転することもできる。尚、エマルシ
ョンが再び分離することを防ぐためには、エマルション
・タンク30の容量は小さいことが望ましく、更に望ま
しくは、上述のように乳化装置本体28と送入ポンプ3
4とを配管で直接、接続して連続運転する。本超臨界水
反応装置10で使用する乳化装置本体28は、例えばミ
ズホ工業(株)製の乳化攪拌装置、真空乳化攪拌装置を
使用することができる。
The emulsifying apparatus main body 28 may be of a continuous operation type or a batch operation type. Furthermore, as long as the continuous operation type emulsifier main body 28 and the feed pump 34 can be smoothly linked, there is no need to provide the emulsion tank 30, and the emulsifier main body 28 and the feed pump 34 are connected by piping. Can be connected directly for continuous operation. In order to prevent the emulsion from separating again, the capacity of the emulsion tank 30 is desirably small, and more desirably, as described above, the emulsifier main body 28 and the feed pump 3.
And 4 are connected directly by piping to operate continuously. As the emulsifier main body 28 used in the present supercritical water reactor 10, for example, an emulsification stirrer or a vacuum emulsification stirrer manufactured by Mizuho Industry Co., Ltd. can be used.

【0024】空気の供給系統は、送入管32に接続され
た空気送入管36、及び空気送入管36と送入管32を
介して反応器12に空気を圧入する空気圧縮器38を備
えている。また、超臨界水反応装置10は、従来の超臨
界水反応装置と同様に、反応器12から処理液を流出さ
せる処理液管40に、順次、処理液を冷却する冷却器4
2、反応器12内の圧力を制御する圧力制御弁44、及
び、処理液をガスと液体とに気液分離する気液分離器4
6を備えている。尚、本超臨界水反応装置10では、処
理液にアルカリ水溶液を注入して処理液を中和し、かつ
急冷する中和急冷部48を反応器12の出口直後に備
え、そこにアルカリ水溶液を注入するアルカリ水溶液注
入管50が接続されている。
The air supply system includes an air inlet pipe 36 connected to the inlet pipe 32 and an air compressor 38 for injecting air into the reactor 12 via the air inlet pipe 36 and the inlet pipe 32. Have. Further, similarly to the conventional supercritical water reactor, the supercritical water reactor 10 is provided with a cooler 4 for sequentially cooling the processing liquid to a processing liquid pipe 40 for discharging the processing liquid from the reactor 12.
2. a pressure control valve 44 for controlling the pressure in the reactor 12, and a gas-liquid separator 4 for gas-liquid separation of the processing liquid into gas and liquid
6 is provided. The supercritical water reactor 10 is provided with a neutralization quenching section 48 for injecting an aqueous alkali solution into the processing liquid to neutralize the processing liquid and quenching it immediately after the outlet of the reactor 12, where the aqueous alkali solution is added. An alkaline aqueous solution injection pipe 50 to be injected is connected.

【0025】本超臨界水反応装置10では、生成したエ
マルションのミセルの平均粒径を検出する粒径検出装置
52が、エマルション・タンク30と送入ポンプ34と
の間に設けられている。粒径検出装置52は、濁度計と
同じ原理の散乱光式のものである。
In the present supercritical water reactor 10, a particle size detection device 52 for detecting the average particle size of micelles of the produced emulsion is provided between the emulsion tank 30 and the feed pump 34. The particle size detector 52 is of a scattered light type based on the same principle as the turbidimeter.

【0026】超臨界水反応装置10を運転する際には、
エマルションのミセルの平均粒径が2μm以下になるよ
うに、界面活性剤を添加する。尚、PCBが超臨界水反
応する際の発生エネルギーで、反応器12内の温度を超
臨界水反応の反応温度に昇温できるような、水とPCB
との混合比率で、水とPCBとを混合する際、PCBに
対する質量比率で5質量%以上20質量%以下の添加率
で界面活性剤を添加することにより、エマルションのミ
セルの平均粒径を2μm以下にすることができる。
When the supercritical water reactor 10 is operated,
A surfactant is added so that the average particle size of the emulsion micelles is 2 μm or less. It should be noted that water and PCB which can raise the temperature in the reactor 12 to the reaction temperature of the supercritical water reaction by the energy generated when the PCB undergoes the supercritical water reaction.
When water and PCB are mixed at a mixing ratio of: and a surfactant is added at an addition ratio of 5% by mass or more and 20% by mass or less with respect to PCB, the average particle size of micelles in the emulsion is 2 μm. It can be:

【0027】本実施形態例では、超臨界水生成用の水と
PCBとが、本発明で規定した界面活性剤の作用によっ
て、ミセルの平均粒径が2μm以下で、ミセルの沈降分
離が生じることなく、PCB濃度が一定、つまりPCB
がほぼ均一に分散したエマルションとなって、反応器1
2内に導入されるので、従来の超臨界水反応装置のよう
に反応温度が変動するようなことは生じない。
In the present embodiment, the water for generating supercritical water and the PCB have an average micelle particle diameter of 2 μm or less and sedimentation of micelles occurs due to the action of the surfactant specified in the present invention. No, PCB concentration is constant, that is, PCB
Is almost uniformly dispersed in the reactor 1
2, the reaction temperature does not fluctuate unlike the conventional supercritical water reactor.

【0028】実験例 本実施形態例の超臨界水反応装置10と同じ構成の実験
装置を使い、PCBのダミー物質として使用したDCB
(ジクロロベンゼン)の超臨界水反応を行って、反応器
内の反応温度の変化を調べた。そして、得た反応温度の
変化を図2のグラフに示した。 実験条件 水とDCBとの混合比;水の質量:DCBの質量=1:1 界面活性剤 ;ソルビタン系非イオン性界面活性剤 界面活性剤の添加率 :DCBの質量に対して15質量%
EXPERIMENTAL EXAMPLE An experimental apparatus having the same configuration as the supercritical water reactor 10 of the present embodiment was used, and the DCB used as a dummy substance of the PCB was used.
A supercritical water reaction of (dichlorobenzene) was performed, and the change in the reaction temperature in the reactor was examined. And the obtained change of the reaction temperature was shown in the graph of FIG. Experimental conditions Mixing ratio of water and DCB; mass of water: mass of DCB = 1: 1 surfactant; sorbitan-based nonionic surfactant Addition ratio of surfactant: 15 mass% with respect to mass of DCB

【0029】実験例では、先ず、水を加熱しつつ反応器
12に送入し、約4時間後に反応器12内の温度を40
0℃に昇温させた。この時点で、質量比1:1でIPA
(イソプロピルアルコール)を水に注入して反応器12
に送入した。これにより、反応器12内で酸化反応が進
行して、反応器12内の温度は急激に上昇し、実験開始
の約5時間後に600℃に達したので、この時点で、I
PAに代えて、質量比1:1でDCBを水に注入し始め
た。DCBの注入開始と共に、界面活性剤をDCBの質
量に対して15質量%で添加した。その後、当初の初期
変動の期間を除いて、反応器12内の温度は、図2のグ
ラフ(■印)に示すように、変動することなく、ほぼ一
定で推移した。尚、平均粒径検出装置52で測定したミ
セルの平均粒径は、0.6μmであった。尚、界面活性
剤の添加率を5質量%にしたこと以外は上記と全く同じ
条件で実験した場合も、反応器12内の温度は上記結果
と全く同様であった。
In the experimental example, first, water was fed into the reactor 12 while heating, and after about 4 hours, the temperature in the reactor 12 was raised to 40 ° C.
The temperature was raised to 0 ° C. At this point, IPA at a mass ratio of 1: 1
(Isopropyl alcohol) into water
Sent to. As a result, the oxidation reaction proceeded in the reactor 12 and the temperature in the reactor 12 rapidly increased, and reached 600 ° C. about 5 hours after the start of the experiment.
Instead of PA, DCB was started to be injected into the water at a weight ratio of 1: 1. At the start of the DCB injection, the surfactant was added at 15% by weight based on the weight of the DCB. After that, except for the initial period of the initial fluctuation, the temperature in the reactor 12 remained almost constant without fluctuation, as shown in the graph of FIG. The average particle size of the micelles measured by the average particle size detector 52 was 0.6 μm. In addition, the temperature in the reactor 12 was completely the same as the above result also when the experiment was carried out under the same conditions as above except that the addition ratio of the surfactant was 5% by mass.

【0030】比較実験例 本比較実験例は、実験例に対する比較例として行われた
実験例である。界面活性剤の添加率が2%であることを
除いて、実験例と同じようにして実験を行い、反応器内
の反応温度の変化を調べた。尚、比較実験例の際のミセ
ルの平均粒径は、界面活性剤の添加率が低いために、
3.1μmであった。比較実験例で得た反応温度の変化
は、図2のグラフ(●印)に示す通りである。比較実験
例では、ミセルの平均粒径が2μmより大きいので、反
応器12内の反応温度は、図2の●印に示すように、常
時、短い周期で30℃から40℃の範囲で変動した。従
って、250分を経過した後、運転を停止した。
Comparative Experimental Example This comparative experimental example is an experimental example performed as a comparative example to the experimental example. An experiment was performed in the same manner as in the experimental example except that the addition ratio of the surfactant was 2%, and a change in the reaction temperature in the reactor was examined. Incidentally, the average particle size of the micelles in the comparative experiment example, because the addition rate of the surfactant is low,
It was 3.1 μm. The change in the reaction temperature obtained in the comparative example is as shown in the graph of FIG. In the comparative experimental example, since the average particle size of the micelles was larger than 2 μm, the reaction temperature in the reactor 12 always fluctuated in a short cycle in the range of 30 ° C. to 40 ° C. as shown by the mark ● in FIG. . Therefore, the operation was stopped after 250 minutes had elapsed.

【0031】実験例と比較実験例との比較から、本実施
形態例の超臨界水反応装置40が反応温度の変動を抑制
する上で有効であると評価できるとともに、反応温度を
安定させて、超臨界水反応を持続させるためには、ミセ
ルの平均粒径が2μm以下になるように、界面活性剤の
添加率を調整することが、極めて重要であることが判
る。非イオン性界面活性剤の添加量とエマルション中の
ミセルの平均粒径の関係を知るために、以下の実験を行
った。すなわち、水とDCBを質量比で1:1とし、こ
こにソルビタン系非イオン性界面活性剤の濃度をDCB
に対して、それぞれ2%、5%、10%、15%、20
%の5種類に変化させて加え、乳化装置クレアミックス
(Mテクニック社製)で2万回転、2分間でエマルショ
ンを形成し、30分後に散乱光式の粒子計を用いて、ミ
セルの平均粒径を測定した。その結果を表1に示した。
From the comparison between the experimental example and the comparative experimental example, it can be evaluated that the supercritical water reactor 40 of the present embodiment is effective in suppressing the fluctuation of the reaction temperature, and the reaction temperature is stabilized. In order to maintain the supercritical water reaction, it is understood that it is extremely important to adjust the addition rate of the surfactant so that the average particle size of the micelles is 2 μm or less. The following experiment was conducted in order to know the relationship between the amount of the nonionic surfactant added and the average particle size of micelles in the emulsion. That is, the mass ratio of water to DCB is 1: 1 and the concentration of the sorbitan-based nonionic surfactant is
2%, 5%, 10%, 15%, 20%
%, And the emulsion was formed in an emulsifying apparatus CLEARMIX (manufactured by M Technique Co., Ltd.) at 20,000 rpm for 2 minutes. The diameter was measured. The results are shown in Table 1.

【表1】 [Table 1]

【0032】実施形態例2 本実施形態例は、本発明に係る超臨界水反応装置の実施
形態の別の例であって、図3は本実施形態例の超臨界水
反応装置の構成を示すフローシートである。本実施形態
例の超臨界水反応装置60は、図3に示すように、混合
・分散手段としてラインミキサー62を設けたことを除
いて、実施形態例1の超臨界水反応装置10と同じ構成
を備えている。
Embodiment 2 This embodiment is another example of the embodiment of the supercritical water reactor according to the present invention, and FIG. 3 shows the configuration of the supercritical water reactor of this embodiment. It is a flow sheet. The supercritical water reactor 60 according to the present embodiment has the same configuration as the supercritical water reactor 10 according to the first embodiment except that a line mixer 62 is provided as a mixing / dispersing means as shown in FIG. It has.

【0033】ラインミキサー62は、水とPCBと界面
活性剤とを混合し、相互に分散させてエマルション状の
混合液を形成することができる限り、その種類、形式に
制約はなく、例えば既知のリボン式又はディスク・ドー
ナツ式ラインミキサー等のスタティックミキサー、或い
はマグネット・スタラー等の機械式攪拌を使用すること
ができる。
The type and form of the line mixer 62 are not limited as long as water, PCB and surfactant can be mixed and dispersed with each other to form an emulsion mixture. A static mixer such as a ribbon-type or disk-donut-type line mixer, or a mechanical stirrer such as a magnet stirrer can be used.

【0034】本実施形態例では、水、PCB、及び界面
活性剤をそれぞれ水ポンプ18、PCBポンプ22、及
び界面活性剤ポンプ26で送入し、ラインミキサー62
によってそれらを十分に混合、分散させた後に反応器1
2に送入する。これにより、本実施形態例の超臨界水反
応装置60でも、実施形態例1の超臨界水反応装置10
と同様に、超臨界水生成用の水とPCBとが、界面活性
剤の作用によって、ミセルの平均粒径が2μm以下で、
ミセルの沈降分離が生じることなく、PCB濃度が一
定、つまりPCBがほぼ均一に分散したエマルションと
なって、反応器12内に導入されるので、従来の超臨界
水反応装置のように反応温度が変動するようなことは生
じない。
In this embodiment, water, PCB, and surfactant are fed by the water pump 18, PCB pump 22, and surfactant pump 26, respectively, and the line mixer 62 is used.
After thoroughly mixing and dispersing them, the reactor 1
Send to 2. As a result, the supercritical water reactor 60 of the first embodiment can be replaced with the supercritical water reactor 60 of the first embodiment.
Similarly to the above, the water for supercritical water generation and the PCB are mixed by the action of the surfactant so that the average particle size of the micelle is 2 μm or less.
Since the PCB concentration is constant, that is, an emulsion in which the PCB is substantially uniformly dispersed is introduced into the reactor 12 without sedimentation and separation of micelles, the reaction temperature is increased as in a conventional supercritical water reactor. No fluctuations occur.

【0035】[0035]

【発明の効果】本発明によれば、例えば乳化装置、或い
はラインミキサー等のエマルションを形成する混合・分
散手段と、エマルションを反応器に送入するポンプ等の
送入手段とを備え、PCB等の疎水性有機物と水とを、
所定の添加率で添加された界面活性剤によって均質にエ
マルション化することにより、ミセルの沈降分離を生じ
させることなく、反応器に導入することができるので、
従来の超臨界水反応装置のように反応温度が変動するよ
うなことは生じない。本発明に係る超臨界水反応装置を
使用することにより、PCB等の疎水性有機物の処理の
際、安定した反応温度で超臨界水反応を持続させ、確実
にPCBを処理することができる。
According to the present invention, for example, there is provided a mixing / dispersing means for forming an emulsion such as an emulsifying apparatus or a line mixer, and a feeding means such as a pump for feeding the emulsion into a reactor, and a PCB or the like. Of hydrophobic organic matter and water,
By homogenizing the emulsion with a surfactant added at a predetermined addition rate, the micelle can be introduced into the reactor without causing sedimentation and separation,
The fluctuation of the reaction temperature unlike the conventional supercritical water reactor does not occur. By using the supercritical water reactor according to the present invention, when treating a hydrophobic organic substance such as PCB, the supercritical water reaction can be maintained at a stable reaction temperature and the PCB can be reliably processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の超臨界水反応装置の構成を示す
フローシートである。
FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor of a first embodiment.

【図2】実験例及び比較実験例の反応温度の変動を示す
グラフである。
FIG. 2 is a graph showing a change in a reaction temperature in an experimental example and a comparative experimental example.

【図3】実施形態例2の超臨界水反応装置の構成を示す
フローシートである。
FIG. 3 is a flow sheet showing a configuration of a supercritical water reactor of Embodiment 2.

【図4】従来の超臨界水反応装置の構成を示すフローシ
ートである。
FIG. 4 is a flow sheet showing a configuration of a conventional supercritical water reactor.

【符号の説明】[Explanation of symbols]

10 実施形態例1の超臨界水反応装置 12 反応器 14 乳化装置 16 水槽 18 水ポンプ 20 PCB槽 22 PCBポンプ 24 界面活性剤槽 26 界面活性剤ポンプ 28 乳化装置本体 30 エマルション・タンク 32 送入管 34 送入ポンプ 36 空気送入管 38 空気圧縮器 40 処理液管 42 冷却器 44 圧力制御弁 46 気液分離器 48 中和急冷部 50 アルカリ水溶液注入管 52 粒径検出装置 60 実施形態例2の超臨界水反応装置 62 ラインミキサー 70 従来の超臨界水反応装置 72 反応器 74 処理液管 76 冷却器 78 圧力制御弁 80 気液分離器 84 被処理液ポンプ 86 空気圧縮機 88 被処理液管 90 空気送入管 92 補助燃料管 94 アルカリ剤送入管 96 補給水管 10 Supercritical water reactor of Embodiment 1 12 Reactor 14 Emulsifier 16 Water tank 18 Water pump 20 PCB tank 22 PCB pump 24 Surfactant tank 26 Surfactant pump 28 Emulsifier main body 30 Emulsion tank 32 Feed pipe 34 Inlet Pump 36 Air Inlet Pipe 38 Air Compressor 40 Processing Liquid Pipe 42 Cooler 44 Pressure Control Valve 46 Gas-Liquid Separator 48 Neutralizing Quenching Unit 50 Alkaline Aqueous Solution Injection Pipe 52 Particle Size Detection Device 60 Supercritical water reactor 62 Line mixer 70 Conventional supercritical water reactor 72 Reactor 74 Processing liquid tube 76 Cooler 78 Pressure control valve 80 Gas-liquid separator 84 Liquid to be processed pump 86 Air compressor 88 Liquid to be processed 90 Air inlet pipe 92 Auxiliary fuel pipe 94 Alkaline agent inlet pipe 96 Make-up water pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07B 37/06 C07B 37/06 C07C 25/18 C07C 25/18 (72)発明者 倉持 太郎 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 2E191 BA12 BA13 BB00 BC01 BC05 BD11 4D050 AA12 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 4H006 AA05 AC13 AC26 BA73 BB31 BE30 BE31 BE32 BE33 BE36 BE60 EA22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07B 37/06 C07B 37/06 C07C 25/18 C07C 25/18 (72) Inventor Taro Kuramochi Koto-ku, Tokyo 1-272 Shinsuna Organo Co., Ltd. (72) Inventor Akira Suzuki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Co., Ltd. F-term (reference) 2E191 BA12 BA13 BB00 BC01 BC05 BD11 4D050 AA12 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 4H006 AA05 AC13 AC26 BA73 BB31 BE30 BE31 BE32 BE33 BE36 BE60 EA22

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水を収容する反応器を備え、水と
疎水性有機物とを反応器に送入し、かつ、酸化剤を反応
器に供給して、超臨界水の存在下で疎水性有機物と酸化
剤との超臨界水反応を行う超臨界水反応装置であって、 疎水性有機物が超臨界水酸化する際に発生する熱エネル
ギーで、反応器内の温度を疎水性有機物が超臨界水酸化
する反応温度に昇温できるような、水と疎水性有機物と
の混合比率で、水と疎水性有機物とを混合する際、更
に、界面活性剤を添加して、水と疎水性有機物と界面活
性剤とを混合して相互に分散させ、エマルションを形成
する混合・分散手段と、 エマルションを反応器に送入する送入手段とを備え、 当該混合・分散手段は、エマルション中のミセルの平均
粒径が2μm以下になるように調整可能であることを特
徴とする超臨界水反応装置。
A reactor containing supercritical water is provided. Water and a hydrophobic organic substance are fed into the reactor, and an oxidizing agent is supplied to the reactor. A supercritical water reactor that performs a supercritical water reaction between a hydrophobic organic substance and an oxidizing agent. The thermal energy generated when the hydrophobic organic substance undergoes supercritical water oxidation, which causes the temperature inside the reactor to exceed When mixing water and the hydrophobic organic substance at a mixing ratio of water and the hydrophobic organic substance so that the temperature can be raised to the reaction temperature for critical hydroxylation, a surfactant is further added, and water and the hydrophobic organic substance are added. Mixing and dispersing means for mixing and dispersing each other with each other to form an emulsion, and a feeding means for feeding the emulsion into a reactor, wherein the mixing / dispersing means comprises micelles in the emulsion. That the average particle size can be adjusted to 2 μm or less. Supercritical water reactor to symptoms.
【請求項2】 界面活性剤として、アルカリ、アルカリ
土類金属等の塩基生成成分、及びハロゲン、硫黄等の酸
生成成分を含まない非イオン性界面活性剤を用いること
を特徴とする請求項1に記載の超臨界水反応装置。
2. A nonionic surfactant which does not contain a base-forming component such as an alkali or an alkaline-earth metal and an acid-forming component such as a halogen or sulfur as a surfactant. The supercritical water reactor according to the above.
【請求項3】 混合・分散手段が、疎水性有機物に対す
る質量比率で5質量%以上20質量%以下の添加率で界
面活性剤を添加することを特徴とする請求項1又は2に
記載の超臨界水反応装置。
3. The method according to claim 1, wherein the mixing / dispersing means adds the surfactant at an addition rate of 5% by mass or more and 20% by mass or less with respect to the hydrophobic organic substance. Critical water reactor.
【請求項4】 混合・分散手段が、水と疎水性有機物と
界面活性剤とを混合、分散させ、エマルションを形成す
る乳化装置であることを特徴とする請求項1から3のう
ちのいずれか1項に記載の超臨界水反応装置。
4. The method according to claim 1, wherein the mixing / dispersing means is an emulsifying apparatus for mixing and dispersing water, a hydrophobic organic substance, and a surfactant to form an emulsion. 2. The supercritical water reactor according to claim 1.
【請求項5】 混合・分散手段が、水と疎水性有機物と
を反応器に送入する送入管に設けられたラインミキサー
であって、 ラインミキサーの上流で、水と疎水性有機物と界面活性
剤とを送入管に注入することを特徴とする請求項1から
3のうちのいずれか1項に記載の超臨界水反応装置。
5. A line mixer provided in a feed pipe for feeding water and a hydrophobic organic substance into a reactor, wherein the mixing / dispersing means is provided at an interface between the water, the hydrophobic organic substance, and the water upstream of the line mixer. The supercritical water reactor according to any one of claims 1 to 3, wherein the activator is injected into the inlet pipe.
JP2000286401A 2000-09-21 2000-09-21 Reaction device for supercritical water Pending JP2002095953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286401A JP2002095953A (en) 2000-09-21 2000-09-21 Reaction device for supercritical water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286401A JP2002095953A (en) 2000-09-21 2000-09-21 Reaction device for supercritical water

Publications (2)

Publication Number Publication Date
JP2002095953A true JP2002095953A (en) 2002-04-02
JP2002095953A5 JP2002095953A5 (en) 2007-07-26

Family

ID=18770324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286401A Pending JP2002095953A (en) 2000-09-21 2000-09-21 Reaction device for supercritical water

Country Status (1)

Country Link
JP (1) JP2002095953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013367A (en) * 2008-07-01 2010-01-21 Hitachi Plant Technologies Ltd Method for producing acrolein using supercritical water
WO2013027465A1 (en) 2011-08-19 2013-02-28 独立行政法人海洋研究開発機構 Method for producing emulsion
KR101591547B1 (en) 2011-12-21 2016-02-04 주식회사 엘지화학 Mixing apparatus for manufacturing positive active material
JP6296471B1 (en) * 2017-04-10 2018-03-20 サイデン化学株式会社 Method for producing polymerizable emulsion microemulsion and method for producing microresin emulsion
CN109351284A (en) * 2018-10-26 2019-02-19 北京航天新风机械设备有限责任公司 A kind of organic liquid waste feed process applied to continuous supercritical water method for oxidation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296076A (en) * 1997-04-23 1998-11-10 Ebara Corp Device and method for supercritical reaction
JP2000109850A (en) * 1998-10-07 2000-04-18 Mitsubishi Materials Corp Process and device for converting heavy oil into fluid fuel for generating unit
JP2000192055A (en) * 1998-12-25 2000-07-11 Mitsubishi Materials Corp Process for conversion of hydrocarbon resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296076A (en) * 1997-04-23 1998-11-10 Ebara Corp Device and method for supercritical reaction
JP2000109850A (en) * 1998-10-07 2000-04-18 Mitsubishi Materials Corp Process and device for converting heavy oil into fluid fuel for generating unit
JP2000192055A (en) * 1998-12-25 2000-07-11 Mitsubishi Materials Corp Process for conversion of hydrocarbon resources

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013367A (en) * 2008-07-01 2010-01-21 Hitachi Plant Technologies Ltd Method for producing acrolein using supercritical water
JP4687754B2 (en) * 2008-07-01 2011-05-25 株式会社日立プラントテクノロジー Method for producing acrolein using supercritical water
WO2013027465A1 (en) 2011-08-19 2013-02-28 独立行政法人海洋研究開発機構 Method for producing emulsion
US10058827B2 (en) 2011-08-19 2018-08-28 Japan Agency For Marine-Earth Science And Technology Method for manufacturing emulsion
US10967336B2 (en) 2011-08-19 2021-04-06 Japan Agency For Marine-Earth Science And Technology Method for producing emulsion
KR101591547B1 (en) 2011-12-21 2016-02-04 주식회사 엘지화학 Mixing apparatus for manufacturing positive active material
JP6296471B1 (en) * 2017-04-10 2018-03-20 サイデン化学株式会社 Method for producing polymerizable emulsion microemulsion and method for producing microresin emulsion
JP2018176044A (en) * 2017-04-10 2018-11-15 サイデン化学株式会社 Manufacturing method of fine emulsified article of polymerizable monomer and manufacturing method of fine resin emulsified article
CN109351284A (en) * 2018-10-26 2019-02-19 北京航天新风机械设备有限责任公司 A kind of organic liquid waste feed process applied to continuous supercritical water method for oxidation

Similar Documents

Publication Publication Date Title
JP3987646B2 (en) Hydrothermal reaction treatment method and hydrothermal reaction treatment vessel
US5110443A (en) Converting heavy hydrocarbons into lighter hydrocarbons using ultrasonic reactor
US5083613A (en) Process for producing bitumen
US5283001A (en) Process for preparing a water continuous emulsion from heavy crude fraction
US20170348743A1 (en) Apparatus for Treating Perfluoroalkyl Compounds
JP2000512538A (en) Apparatus and method for oxidizing organic substances
CN102311099B (en) Oxidation treatment method and oxidation treatment apparatus
JP2002095953A (en) Reaction device for supercritical water
JPH11253796A (en) Pcb decomposition reaction vessel
JP5112231B2 (en) Processing apparatus and processing method
JP3736987B2 (en) Supercritical water reactor
JP2012512316A (en) High shear oxidation of wax
JP2003164750A (en) Method and apparatus for treating waste liquid after analysis
JP4493348B2 (en) Method for producing microspherical porous silica gel particles
KR20170081135A (en) Method for treating organic waste by hydrothermal oxidation
JP4857459B2 (en) Hydrothermal reaction method and apparatus
JPH09209006A (en) Production of dispersion of alkali metal
JP3686778B2 (en) Operation method of supercritical water reactor
JP4746886B2 (en) Method for producing alkali metal dispersion
JP4230954B2 (en) Organohalogen compound treatment system
JP2002126712A (en) Method for treating dioxins and device therefor
WO1992008533A1 (en) Treatment of dispersions
JPH10137774A (en) Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JPH10314768A (en) Method for oxidation of supercritical water
JP3210962B2 (en) Decomposition method of halogenated organic matter by high pressure and high temperature thermal water oxidation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109