JP4857459B2 - Hydrothermal reaction method and apparatus - Google Patents

Hydrothermal reaction method and apparatus Download PDF

Info

Publication number
JP4857459B2
JP4857459B2 JP2000313316A JP2000313316A JP4857459B2 JP 4857459 B2 JP4857459 B2 JP 4857459B2 JP 2000313316 A JP2000313316 A JP 2000313316A JP 2000313316 A JP2000313316 A JP 2000313316A JP 4857459 B2 JP4857459 B2 JP 4857459B2
Authority
JP
Japan
Prior art keywords
reactor
reactant
reaction
oxidant
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000313316A
Other languages
Japanese (ja)
Other versions
JP2001246239A (en
Inventor
エー ハズルベック ダビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Kurita Water Industries Ltd
Original Assignee
Komatsu Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Kurita Water Industries Ltd filed Critical Komatsu Ltd
Publication of JP2001246239A publication Critical patent/JP2001246239A/en
Application granted granted Critical
Publication of JP4857459B2 publication Critical patent/JP4857459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物分解、エネルギー生成または化学物質製造を行うための水熱反応方法および装置、特に水の超臨界または亜臨界状態下で水熱反応を行うのに好適な水熱反応方法および装置に関するものである。
【0002】
【従来の技術】
水熱反応は水の超臨界または亜臨界状態で、被反応物を酸化反応や加水分解反応させて廃棄物を分解したり、エネルギーを生成したり、化学物質を製造したりする方法である。
特に近年、水の超臨界または亜臨界状態で有機物を含む被反応物と、酸化剤を反応させることにより酸化反応を生じさせ、被反応物中の有機物を短時間で、ほぼ完全に分解する水熱反応が注目されている。
【0003】
このように水熱反応して被反応物中の有機物を酸化分解する場合、被反応物、酸化剤、水が、374℃以上の温度で22MPa以上の圧力の超臨界状態、あるいは374℃以上の温度で2.5MPa以上で22MPa未満の圧力の亜臨界状態で反応する。この場合、被反応物に予め適性量の水を含む場合は、水を供給する必要はない。
反応の結果、有機物は酸化分解され、水と二酸化炭素からなる高温高圧の流体と、乾燥またはスラリー状態の灰分や塩類等の固体を含む反応生成物が得られる。反応生成物のうち固体は固体分離装置によって分離される。固体を分離した流体はエネルギー回収されるか、冷却、減圧され、ガス分と液分とに分離される。
【0004】
このような水熱反応方法として、分解対象の有機廃液等の被処理物および酸化剤を高圧ポンプで加圧し、混合した状態で噴射機構により反応器に上部から噴射し、反応器の上部に逆流を伴う混合区画を形成し、下部に栓流区画を形成して水熱反応を行う方法が提案されている(特開平11−156186号)。
上記の方法では上部に逆流を伴う混合区画を形成し、下部に栓流区画を形成することにより、効率よく水熱反応を行うことができるが、小型の装置でさらに効率よく水熱反応を行うことが要望されている。
【0005】
【発明が解決しようとする課題】
本発明の課題は、反応器に導入する被処理物および酸化剤を導入直後に均一に分散させることができ、これにより反応効率を高くでき、小型の装置により高効率で被反応物を分解することが可能な水熱反応方法および装置を提供することである。
【0006】
【課題を解決するための手段】
本発明は、次の水熱反応方法および装置である。
(1) 実質的に垂直方向に配置され内径の6倍以上の長さを有する筒状の反応器に、
被反応物と酸化剤の混合物を反応器の上部から噴射機構により、反応器内径の1/15〜1/200の内径を有する噴射口を通して、10m/sec以上の噴射速度で噴射し、
これにより反応器内に実質的な完全混合域およびその下にプラグフロー域を形成して、水の超臨界または亜臨界状態で水熱反応を行う
ことを特徴とする水熱反応方法。
(2) 被反応物は窒素含有物質である上記(1)記載の方法。
(3) 水の超臨界または亜臨界状態で水熱反応を行う実質的に垂直方向に配置された筒状の反応器と、
反応器の上部へ被反応物を供給する被反応物供給路と、
反応器の上部へ酸化剤を供給する酸化剤供給路と、
被反応物供給路から供給される被反応物および酸化剤供給路から供給される酸化剤を混合状態で反応器の上部から噴射する噴射機構と、
反応器の下部から反応物を取り出す反応物取出路とを備え、
前記反応器は内径の6倍以上の長さを有し、
前記噴射機構は反応器の内径の1/15〜1/200の内径を有する噴射口から被反応物と酸化剤の混合物を10m/sec以上の噴射速度で反応器内に噴射することにより反応器内に実質的な完全混合域およびその下にプラグフロー域を形成するように構成されている
ことを特徴とする水熱反応装置。
(4) 反応器の内壁に耐腐食性ライナーを有する上記(3)記載の装置。
(5) 反応器の内壁から付着物を除去する手段を備えている上記(3)または(4)記載の装置。
(6) 反応器の反応物を冷却する手段を備えている上記(3)ないし(5)のいずれかの装置。
【0007】
本発明では上記構成とすることにより、反応器の中に実質的な完全混合域を形成し、この部分において被反応物および酸化剤を反応器導入直後に均一に分散させ、その完全混合域の下にプラグフロー域を形成してさらに反応させて、望ましい水熱反応を生じさせるように意図されている。完全混合域は導入直後の被反応物および酸化剤がその領域内に一様に分散する完全混合流が生じる領域である。このように完全混合域では被反応物と酸化剤が導入直後に領域内の反応物と均一に混合するため、反応効率は高くなり、被反応物の大部分(例えば90〜99重量%)を完全混合域で分解することができる。
【0008】
このような実質的な完全混合領域で大部分の被反応物を処理した後の反応物は、反応器の長さを長くすることにより、完全混合域の下にプラグフロー域を形成し、この部分において水熱反応を継続することにより残余の被反応物を分解した反応物を得ることができる。
【0009】
本発明において水熱反応とは、超臨界または亜臨界状態の高温高圧の水の存在下に被反応物を酸化反応等させることを意味する。ここで超臨界状態とは374℃以上、22MPa以上の状態である。また亜臨界状態とは例えば374℃以上、2.5MPa以上22MPa未満あるいは374℃以下、22MPa以上の状態、あるいは374℃以下、22MPa未満であっても臨界点に近い高温高圧状態をいう。
【0010】
被反応物は水の超臨界または亜臨界状態で酸化反応、加水分解反応等の水熱反応の対象となる物質を含むものである。具体的な被反応物としては、工場等から排出される廃液中の有機物、PCB、ダイオキシンあるいはトリクロロエチレンに代表される有機塩素化合物や環境ホルモン等の有害物質およびそれらで汚染された水、油、土、汚泥などの物質、プラスチック、各種無機物、粒状物、それらの水溶液あるいは水との混合物、し尿、下水汚泥、活性汚泥からの余剰汚泥などがあげられる。下水汚泥、し尿、活性汚泥からの余剰汚泥、アミンやアミノ酸やタンパク質等の窒素含有有機物等の窒素を含む被反応物は、本発明の対象として好適である。なぜならそれらの窒素含有物を窒素ガスに分解するには、従来の水熱反応ではより高い反応温度とより長い反応時間を必要としたからである。このような被反応物は酸化剤と混合した状態で反応器に導入され、水熱反応を受ける。酸化剤としては、空気等の酸素含有ガス、過酸化水素等の過酸化物などがあげられる。
【0011】
被反応物を供給する場合、有機物や酸化物を別々にあるいは混合して反応器に供給して水熱反応が行われる。このような水熱反応系は被反応物のほかに水が存在し、さらに必要により触媒や中和剤等が添加される場合があるが、これらも被反応物と混合して、あるいは別々に反応器に供給することができる。
【0012】
本発明で用いられる反応器は超臨界または亜臨界状態で水熱反応を行うように、耐熱、耐圧材料により、実質的に垂直方向に配置した筒状容器で形成される。反応熱により超臨界または亜臨界状態に達しない場合には、被処理物を反応器に導入する前に予熱したり、補助燃料を被処理物に添加することができる。容器の形状は円筒、だ円筒、多角筒とすることができ、下端部はコーン状とするのが好ましい。このような反応器により超臨界または亜臨界状態で水熱反応を行うと、被反応物の有機物は酸化剤により酸化されて最終的に水と二酸化炭素に分解され、あるいは加水分解により低分子化する。反応生成物は冷却、減圧され、ガス分と液分に分離される。
【0013】
上記の超臨界または亜臨界状態で水熱反応を行う反応器に被反応物および酸化剤を供給するために、被反応物および酸化剤を供給する被反応物供給路および酸化剤供給路をそれぞれ高圧の供給ポンプを介して反応器の上部に連絡するように設ける。被反応物と酸化剤が混合されている場合には、共用の供給路を用いることができる。反応器における水熱反応を定常状態で行うためには、それぞれの供給ポンプは被反応物および酸化剤を一定流量で供給するように構成される。反応器の下部には反応物を取り出すための反応物取出路が連絡するように設けられる。
【0014】
噴射機構は被反応物供給路から供給される被反応物と酸化剤供給路から供給される酸化剤を混合した状態で反応器の上部から下向に噴射するように設けられる。噴射機構は噴射口を有する噴射ノズルにより形成されるが、噴射口は複数個であってもよい。噴射口は通常、噴射流が反応器の内壁に直接噴射されないように反応容器の上蓋中央付近に設置されるが、反応容器の上部の側壁から配管を導入して容器内部で下側に向けて噴射する形態でもよい。
【0015】
上記の構成において、反応器は内径(実質的に水熱反応が行われる領域の内径)の6倍以上の長さ、好ましくは6〜20倍、さらに好ましくは6〜15倍の長さとなるように形成される。本発明において内径は、反応器が円筒以外の形状の場合には、水力学的に等価な円筒の直径に相当する相当直径が用いられる。
【0016】
噴射装置は反応器の内径の1/15〜1/200、好ましくは1/20〜1/150、さらに好ましくは1/30〜1/100の内径(実質的に水熱反応が行われる領域の内径)を有する噴射口から、被反応物と酸化剤の混合物を10m/sec以上、好ましくは10〜500m/sec、さらに好ましくは15〜300m/secの噴射速度で反応器内に下向に噴射するように構成される。噴射口が複数個ある場合には、合計の断面積を有する円の直径に換算して内径比を求める。
【0017】
上記の反応器に噴射機構から被反応物と酸化剤の混合物を下向に噴射すると、反応器に実質的な完全混合域が形成される。実質的な完全混合域は、通常反応器の上端から内径の4〜8倍の長さの領域に形成される。実質的な完全混合領域では反応器の中心部が下向流、周辺部が上向流の均一な循環流が生じる。中心部の下向流の方向に被反応物と酸化剤の混合物を噴射すると、噴射流は循環流と混合されて循環し、循環流中に均一に分散する。このため実質的な完全混合域に噴射された被反応物と酸化剤の混合物は完全混合域内の流体中に噴射直後に均一に分散して反応物と混合され、これにより反応物中の熱を受けて、直ちに超臨界または亜臨界状態に達し、効率よく水熱反応が行われる。
【0018】
このような実質的な完全混合域では、被反応物の大部分(例えば90〜99重量%)が分解される。さらに分解率を高くするために、反応器内に実質的な完全混合域の下にプラグフロー域を設ける。プラグフロー域では、反応物の自重と、反応物取り出し路からの引抜き力により下向きの実質的な平行流が形成され、超臨界または亜臨界状態で移動するため水熱反応が進行し、残留する被反応物が分解される。実質的な完全混合域の下のプラグフロー域は、少なくとも内径の2倍の長さが必要と考えられる。それ故に、一つの反応器内に実質的な完全混合域とプラグフロー域を持つためには、少なくとも内径の6倍の長さが必要と考えられる。好ましい混合状態を得るためのこの反応器の長さ/内径の比は、流体力学解析で支持されている。
【0019】
反応器の内径と長さの比、反応器の内径と噴射口の内径の比、および噴射速度が前記範囲外の場合には、反応器内に逆流が生じる場合でも均一な実質的な完全混合域を得ることは非常に困難である。この場合、被反応物と酸化剤の混合流がこのような混合域に噴射されても、均一な分散を得ることは非常に困難である。このような混合域では、水熱反応は安定に継続できない。水熱反応が起こったとしても、反応効率は十分には高くなく、被反応物のほとんどを分解するのは非常に難しい。
【0020】
本発明では実質的な完全混合域とプラグフロー域で水熱反応を行うことにより、水熱反応を効率よく行うことができ、これにより小型の反応器により被反応物を高効率で分解することができる。大部分の被反応物を実質的な完全混合域で分解した反応物は実質的な完全混合域の下のプラグフロー域で継続処理を行うことにより、残余の被反応物を分解して高除去率で被反応物を分解除去することができる。
【0021】
上記の反応器を形成する材質としては、水熱反応に耐えるものであれば、材質は制限されないが、ハステロイ、インコネル、ステンレス等が使用できる。
【0022】
被反応物が酸のような腐食性物質を含む場合や、反応によって酸のような腐食性物質を生成する場合には、反応器は耐腐食性ライナーを設けることができる。耐腐食性ライナーは、特に限定されず、チタン、白金、イリジウム、ジルコニア、チタニア等の耐腐食性材料で反応器内面をコーティングしたもの、あるいは同様の材料からなるカバー状部材を反応器内面に直接または間隔を保って配置したものなどがあげられる。このようなライナーを設けることにより、反応器の腐食を防止し、長期にわたる水熱反応が可能である。
【0023】
本発明では、被処理物に含まれる固体、反応により生成する無機塩や酸化物のような固体は、重力の作用で反応器内を下向きに移動して、反応物取出路から排出される。噴射供給された流体が、反応器内壁に直接接触しないようにすることは、固体の付着を防ぐために好適である。
固体の粘着性が著しい場合には、反応容器内壁に付着した固体を除去するための除去手段を設けることができる。固体除去手段としては機械的装置とすることができ、特に限定されないが、回転フレーム式のもの、あるいは特開平11−156186号に示された切欠窓部分を有する実質的に円筒状のスクレーパが好適である。このような固形物除去手段を設けることにより、反応器内面に付着する固形物を除去して長期にわたって水熱反応を続けることができる。
【0024】
本発明では、反応物を反応物取出路から排出する前に冷却するための冷却手段を設けることができる。冷却手段は、特に限定されないが、反応器の下部に水を導入して冷却し、無機塩を水に溶解してその排出を促進することができる。また、反応器内に酸やアルカリを含む水を導入して冷却するとともにアルカリや酸の中和を行うこともできる。このような冷却手段を設けることにより反応器内を冷却して液体を生成させ可溶性成分を溶解し、かつ中和によりpHが中性の状態で取り出すことができ、このとき固形物も分散して取り出すことができ、これらの排出が容易になる。
【0025】
【発明の効果】
本発明によれば、反応器に実質的な完全混合域を形成して水熱反応を行うようにしたので、被処理物および酸化剤を反応器導入直後に均一に分散させることができ、反応効率を高くできる。
さらに、実質的な完全混合域の下にプラグフロー域を設けて水熱反応を継続させるので、小さい反応器で高効率で分解できる。このように被処理物を高効率で小さい反応器で分解できる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は実施形態の水熱反応装置を示す垂直断面図である。
【0027】
図1において、1は反応器であって、耐熱、耐圧性材料により下部が円錐部1aとなった円筒状の容器からなり、上部に噴射機構2が設けられている。噴射機構2は下端部に噴射口3を有する小円筒状の噴射ノズル4と混合部5からなる。噴射ノズル4は反応器1の上部から噴射口3が反応器1内に下向に開口するように取付けられている。混合部5の上部と側壁部に設けられた被反応物導入部6および酸化剤導入部7に、それぞれ被反応物供給路8および酸化剤供給路9が連絡している。
【0028】
反応器1の内壁には耐腐食性のライナー11が形成されている。反応器1のライナー11の内側に間隔を保って下部が円錐部12aとなった円筒からなるスクレーパ12が回転可能に設けられており、反応器1の下端部の小径部1bに挿入された小径部12bに連絡する駆動機構13により回転させられるようになっている。反応器1の小径部1bの中央部を通して下から冷却水路14が立ち上がっている。反応器1下端部の小径部1bには反応物取出部15が設けられており、反応物取出路16が連絡している。
【0029】
上記の構成において、反応器1の長さ(反応器1において実質的に水熱反応が行われる有効長さ)Hは反応器1の内径(反応器1において実質的に水熱反応が行われる有効径)Rの6倍以上とされている。また噴射機構2の噴射ノズル4の噴射口3の内径rはRの1/15〜1/200とされ、噴射口3から噴射される噴射流aの噴射速度は10m/sec以上とされている。
【0030】
上記の装置における水熱反応は、被反応物供給路8から被反応物を供給し、酸化剤供給路9から酸化剤を供給して噴射機構2の混合部5で混合し、混合物を噴射ノズル4の噴射口3から反応器1内に下向流で噴射して、超臨界または亜臨界の状態で水熱反応を行う。この間駆動装置13によりスクレーパ12を回転させて、反応器1の内壁に付着する固形物を剥離し、冷却水路14から冷却水を反応器1の下部に吹き込んで冷却するとともに/または中和し、液化した液体に可溶性成分を溶解させ流下させる。反応物は流体および固体とともに反応物取出路16から取り出される。
【0031】
上記の水熱反応では反応器1の上部に実質的な完全混合域21、その下部にプラグフロー域22、さらにその下部に冷却域23が形成される。
【0032】
実質的な完全混合域21では下向流bと上向流cからなる均一な循環流が形成されており、噴射口3から噴射される噴射流aは循環する下向流bと混合して循環し、噴射直後に被反応物と酸化剤の混合物が実質的な完全混合域21の循環流中に均一に分散する。このため混合物は循環流の熱を受けて直ちに超臨界または亜臨界状態になるため水熱反応が進行し、実質的な完全混合域21中を循環する間に被反応物の大部分が分解する。
【0033】
実質的な完全混合域21の循環流のうち、噴射流aに相当する量はプラグフロー域22に移り、重力により下向流dを形成する。プラグフロー域22における下向流は実質的に平行流であり、緩速流として流下し、その間水熱反応は継続し、残余の被反応物は分解される。
【0034】
冷却域23では冷却水路14から吹込まれる冷却水eにより冷却されて超臨界温度以下になることにより反応物中の液成分が液化し、塩等の可溶性成分を溶解し、固形物を分散させた状態で反応物とともに反応物取出路16から取出される。
【0035】
上記の水熱酸化反応では、生成する反応熱が流体の顕熱上昇をもたらす。実質的な完全混合状態が形成されるため、有機廃液の熱量を適切に選ぶことにより、外部加熱なしで反応容器を所定の反応温度に保ち、安定した反応の継続を実現することが可能となる。なお、被反応物の供給は、間欠供給してもよい。有害物質を完全に分解する場合のように、高い反応率を得るためには、目標の反応率を得るためにプラグフロー域において必要な滞留時間を与えるように、反応器の長さを設定できる。
【0036】
反応器1に供給する被反応物は通常貯留タンクに保有され、高圧ポンプで加圧されて被反応物供給路8より供給される。被処理物が水を含まない場合には、予め水と混合して、水溶液あるいは水スラリーとして供給できる。また、被反応物供給路8の配管中で水と混合してもよい。水熱酸化反応の場合には、酸化剤も同様に高圧ポンプやコンプレッサーで加圧供給される。酸化剤は、空気、酸素、液体酸素、過酸化水素水、硝酸、亜硝酸、硝酸塩、亜硝酸塩を用いることができる。酸化剤は、被反応物あるいは被反応物を含む水と混合して供給してもよいし、噴射ノズル4を二重管ノズルにして複層流として供給してもよい。
【0037】
特に水熱酸化反応の場合、反応器1はできるだけ断熱状態として、反応によって生成する熱量で所定の反応温度に達するように、被反応物の熱量を調整することが好ましい。ただし、相対的に熱量の低い反応物に対して、被反応物および被反応物を含む流体を予備加熱してから供給すること、灯油、アルコール、廃有機溶剤等を添加して熱量を調整すること、あるいは反応温度を外部熱源で調整してもよい。
【0038】
反応開始の手順は特に限定されない。例えぱ、加圧された被反応物と酸化剤は予熱され、噴射機構2の混合部5を通って反応器1に導入される。予熱は、電気ヒーター、燃焼を伴う加熱手段、それらの組み合わせで達成される。反応混合物は十分に混合されているので、水熱反応が起こって反応熱が生成し、流体の温度が上昇する。いったん反応器1で定常状態が得られれば、被反応物が十分な熱量があれば予熱をやめてもよい。
【0039】
反応物取出路16から取出される反応物は通常、冷却、減圧される。冷却、減圧の過程で固体分離や気液分離の工程を行うことができる。最終的に生成した水、気体、固体は、そのまま、エネルギー回収されたり、物質として再利用されたり、そのまま、あるいは追加処理して廃棄される。
【0040】
【実施例】
以下、本発明の実施例について説明する。各例中、%は重量%である。
【0041】
実施例1
長さが1640mm、内径が108mmの垂直円筒状の反応器1の上蓋中央部の内径1.4mmの噴射口3を有する噴射ノズル4から、表1に示す組成の有機性廃棄物を、水、空気とともに噴射し、超臨界状態で水熱酸化反応を行い、反応物を下端部の反応物取出路16から取り出して気液分離し、分離液の水質と分解率を測定した。表2に運転条件と結果を示した。運転に際しては、あらかじめ、反応器1を反応温度まで外部熱源で予熱した。
表2に示すように、640℃、22.5MPa、滞留時間22秒で水熱酸化反応でき、有機物を完全分解できた。約3時間安定した反応が継続した。反応後に観察したが、生成する無機物によるスケール生成や閉塞は認められなかった。
【0042】
実施例2
実施例1と同じ反応器、有機性廃棄物を用いて、水、空気とともに亜臨界状態で水熱酸化反応を行い、表2に運転条件と結果を示した。
表2に示したように、650℃、14.8MPa、滞留時間19秒で水熱酸化反応でき、有機物を完全分解できた。約3時間安定した反応が継続した。また、反応後に観察したが、生成する無機物によるスケール生成や閉塞は認められなかった。
【0043】
実施例3
表3に示す組成の下水汚泥を、実施例1で使用した反応器を用いて、超臨界状態で水熱反応を実施した。下水汚泥は、予熱後、空気と水と一緒に噴射注入した。噴射ノズルは、開口部の直径を3.0mmに調整した。
表4に示すように、615℃、22.3MPa、滞留時間19秒で水熱反応を行い、有機性炭素(TOC)と窒素(TN)が完全に分解した。反応は、3時間、安定に継続した。反応後の観察では、生成する無機物によるスケール生成や閉塞は認められなかった。
【0044】
【表1】

Figure 0004857459
【0045】
【表2】
Figure 0004857459
【0046】
【表3】
Figure 0004857459
【0047】
【表4】
Figure 0004857459
【0048】
比較例1
実施例1の反応器の噴射機構の噴射ノズルを、9mmの噴射口径を持つノズルに変更した。実施例1と同じ有機性廃薬物を用いて、水、空気とともに、超臨界状態で水熱酸化反応を行った。
被反応物供給量を0.12kg/min、水供給量を1.00kg/min、空気供給量を2.22kg/minと実施例1と同じ条件として水熱反応を開始したが、反応が継続せず、不完全燃焼で生成したチャーと思われる黒い物質を含む流体が排出された。
本比較例では、噴射口の内径は反応器内径の1/12、噴射速度は1.7m/secであり、被反応物と酸化剤を含む被処理流体が十分に混合されないために、反応熱による温度上昇と反応の進行、供給された被処理物の反応開始が満足に実現しなかったと判断される。
【図面の簡単な説明】
【図1】実施形態の水熱反応装置の断面図である。
【符号の説明】
1 反応器
2 噴射機構
3 噴射口
4 噴射ノズル
5 混合部
6 被反応物導入部
7 酸化剤導入部
8 被反応物供給路
9 酸化剤供給路
11 ライナー
12 スクレーパ
13 駆動機構
14 冷却水路
15 反応物取出部
16 反応物取出路
21 完全混合域
22 プラグフロー域
23 冷却域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrothermal reaction method and apparatus for performing waste decomposition, energy generation or chemical production, in particular, a hydrothermal reaction method suitable for conducting a hydrothermal reaction under supercritical or subcritical conditions of water and It relates to the device.
[0002]
[Prior art]
The hydrothermal reaction is a method of decomposing waste, generating energy, or producing a chemical substance by subjecting a reaction object to an oxidation reaction or hydrolysis reaction in a supercritical or subcritical state of water.
In recent years, in particular, water that causes an oxidation reaction by reacting a reactant containing an organic substance in a supercritical or subcritical state of water with an oxidant, and that completely decomposes the organic substance in the reactant in a short time. Thermal reactions are attracting attention.
[0003]
In this way, when the organic matter in the reaction product is oxidatively decomposed by hydrothermal reaction, the reaction product, oxidant, and water are in a supercritical state at a pressure of 22 MPa or higher at a temperature of 374 ° C. or higher, or 374 ° C. or higher. Reacts in a subcritical state at a pressure of 2.5 MPa or more and less than 22 MPa. In this case, it is not necessary to supply water when the reaction object contains an appropriate amount of water in advance.
As a result of the reaction, the organic substance is oxidatively decomposed to obtain a reaction product containing a high-temperature and high-pressure fluid composed of water and carbon dioxide, and a solid such as ash and salts in a dry or slurry state. The solid of the reaction product is separated by a solid separation device. The fluid from which the solid has been separated is recovered for energy, or cooled and decompressed, and separated into a gas component and a liquid component.
[0004]
As such a hydrothermal reaction method, an object to be decomposed such as an organic waste liquid to be decomposed and an oxidizing agent are pressurized with a high-pressure pump, mixed and injected from above into the reactor by an injection mechanism, and backflowed into the top of the reactor. There has been proposed a method in which a mixing compartment with a water vapor is formed and a plug flow compartment is formed in the lower part to perform a hydrothermal reaction (Japanese Patent Laid-Open No. 11-156186).
In the above method, a hydrothermal reaction can be performed efficiently by forming a mixing section with backflow at the upper part and a plug flow section at the lower part. It is requested.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to uniformly disperse the workpiece and the oxidant to be introduced into the reactor immediately after the introduction, thereby increasing the reaction efficiency and decomposing the reactant with high efficiency by a small apparatus. It is to provide a hydrothermal reaction method and apparatus capable of this.
[0006]
[Means for Solving the Problems]
The present invention is the following hydrothermal reaction method and apparatus.
(1) To a cylindrical reactor which is arranged substantially vertically and has a length not less than 6 times the inner diameter,
The mixture of the reactant and the oxidant is injected from the upper part of the reactor by an injection mechanism at an injection speed of 10 m / sec or more through an injection port having an inner diameter of 1/15 to 1/200 of the inner diameter of the reactor,
A hydrothermal reaction method characterized in that a substantially complete mixing zone and a plug flow zone are formed in the reactor thereby to perform a hydrothermal reaction in a supercritical or subcritical state of water.
(2) The method according to (1) above, wherein the reactant is a nitrogen-containing substance.
(3) a cylindrical reactor arranged in a substantially vertical direction for performing a hydrothermal reaction in a supercritical or subcritical state of water;
A reactant supply path for supplying the reactant to the upper part of the reactor;
An oxidant supply path for supplying an oxidant to the top of the reactor;
An injection mechanism for injecting the reactant supplied from the reactant supply path and the oxidant supplied from the oxidant supply path from the upper part of the reactor in a mixed state;
A reactant take-out path for taking out the reactant from the lower part of the reactor,
The reactor has a length of at least six times the inner diameter;
The injection mechanism is configured to inject a mixture of a reactant and an oxidant into the reactor at an injection speed of 10 m / sec or more from an injection port having an inner diameter of 1/15 to 1/200 of the inner diameter of the reactor. A hydrothermal reactor characterized in that a substantially complete mixing zone and a plug flow zone are formed therein.
(4) The apparatus according to (3) above, wherein a corrosion-resistant liner is provided on the inner wall of the reactor.
(5) The apparatus according to (3) or (4) above, comprising means for removing deposits from the inner wall of the reactor.
(6) The apparatus according to any one of (3) to (5) above, comprising means for cooling the reaction product in the reactor.
[0007]
In the present invention, the above-described configuration forms a substantially complete mixing zone in the reactor, and in this portion, the reactants and the oxidant are uniformly dispersed immediately after the introduction of the reactor. It is intended to form a plug flow zone underneath and react further to produce the desired hydrothermal reaction. The complete mixing zone is a zone where a completely mixed flow in which the reactants and oxidant immediately after introduction are uniformly dispersed in the zone is generated. In this way, in the complete mixing zone, the reactant and oxidant are uniformly mixed with the reactant in the zone immediately after the introduction, so that the reaction efficiency becomes high and most of the reactant (for example, 90 to 99% by weight) is absorbed. It can be decomposed in the complete mixing zone.
[0008]
The reaction product after the treatment of most of the reactants in such a substantially complete mixing region forms a plug flow region under the complete mixing region by increasing the length of the reactor. By continuing the hydrothermal reaction in the part, a reaction product obtained by decomposing the remaining reactant can be obtained.
[0009]
In the present invention, the hydrothermal reaction means that an object to be reacted is oxidized in the presence of high-temperature and high-pressure water in a supercritical or subcritical state. Here, the supercritical state is a state of 374 ° C. or higher and 22 MPa or higher. The subcritical state refers to a state of 374 ° C. or higher, 2.5 MPa or higher and lower than 22 MPa, or 374 ° C. or lower, 22 MPa or higher, or a high temperature and high pressure state close to the critical point even when 374 ° C. or lower and lower than 22 MPa.
[0010]
The to-be-reacted substance contains a substance that is a target of hydrothermal reaction such as oxidation reaction and hydrolysis reaction in a supercritical or subcritical state of water. Specific reactants include organic substances in waste liquids discharged from factories, etc., toxic substances such as PCBs, dioxins or organochlorine compounds such as trichlorethylene and environmental hormones, and water, oil, soil contaminated with them. Substances such as sludge, plastics, various inorganic substances, granular materials, their aqueous solutions or mixtures with water, human waste, sewage sludge, surplus sludge from activated sludge, and the like. Sewage sludge, human waste, surplus sludge from activated sludge, and reactants containing nitrogen such as nitrogen-containing organic substances such as amines, amino acids and proteins are suitable as objects of the present invention. This is because, in order to decompose these nitrogen-containing materials into nitrogen gas, the conventional hydrothermal reaction requires a higher reaction temperature and a longer reaction time. Such a reactant is introduced into the reactor in a state of being mixed with an oxidant, and undergoes a hydrothermal reaction. Examples of the oxidizing agent include oxygen-containing gases such as air and peroxides such as hydrogen peroxide.
[0011]
When supplying a to-be-reacted substance, a hydrothermal reaction is performed by supplying organic substances and oxides separately or mixed to the reactor. In such a hydrothermal reaction system, water is present in addition to the reactant, and if necessary, a catalyst, a neutralizing agent, etc. may be added, but these may also be mixed with the reactant or separately. The reactor can be fed.
[0012]
The reactor used in the present invention is formed of a cylindrical vessel arranged in a substantially vertical direction by a heat-resistant and pressure-resistant material so as to perform a hydrothermal reaction in a supercritical or subcritical state. When the supercritical or subcritical state is not reached due to the reaction heat, the workpiece can be preheated before being introduced into the reactor, or auxiliary fuel can be added to the workpiece. The shape of the container can be a cylinder, an elliptic cylinder, or a polygonal cylinder, and the lower end is preferably a cone. When a hydrothermal reaction is carried out in a supercritical or subcritical state using such a reactor, the organic substance to be reacted is oxidized by an oxidizing agent and finally decomposed into water and carbon dioxide, or reduced in molecular weight by hydrolysis. To do. The reaction product is cooled and decompressed, and separated into a gas component and a liquid component.
[0013]
In order to supply the reactant and the oxidizing agent to the reactor that performs the hydrothermal reaction in the supercritical or subcritical state, the reactant supply path and the oxidizing agent supply path for supplying the reactant and the oxidizing agent are respectively provided. It is provided so as to communicate with the upper part of the reactor through a high-pressure feed pump. When the reactant and the oxidant are mixed, a common supply path can be used. In order to perform the hydrothermal reaction in the reactor in a steady state, each supply pump is configured to supply the reactant and the oxidizing agent at a constant flow rate. At the bottom of the reactor, a reactant take-out path for taking out the reactant is provided in communication.
[0014]
The injection mechanism is provided so as to inject downward from the upper part of the reactor in a state where the reactant supplied from the reactant supply path and the oxidant supplied from the oxidant supply path are mixed. The injection mechanism is formed by an injection nozzle having an injection port, but there may be a plurality of injection ports. The injection port is usually installed near the center of the upper lid of the reaction vessel so that the injection flow is not directly injected onto the inner wall of the reactor, but piping is introduced from the upper side wall of the reaction vessel toward the lower side inside the vessel. The form to inject may be sufficient.
[0015]
In the above configuration, the reactor has a length that is 6 times or more, preferably 6 to 20 times, more preferably 6 to 15 times the inner diameter (the inner diameter of the region in which the hydrothermal reaction is substantially performed). Formed. In the present invention, when the reactor has a shape other than a cylinder, an equivalent diameter corresponding to the diameter of a hydraulically equivalent cylinder is used.
[0016]
The injection device has an inner diameter of 1/15 to 1/200, preferably 1/20 to 1/150, more preferably 1/30 to 1/100 of the inner diameter of the reactor (substantially in the region where the hydrothermal reaction takes place. The mixture of the reactant and the oxidizing agent is injected downward into the reactor at an injection speed of 10 m / sec or more, preferably 10 to 500 m / sec, more preferably 15 to 300 m / sec. Configured to do. When there are a plurality of injection ports, the inner diameter ratio is obtained by converting into the diameter of a circle having a total cross-sectional area.
[0017]
When a mixture of the reactant and the oxidant is injected downward from the injection mechanism into the reactor, a substantially complete mixing zone is formed in the reactor. The substantially complete mixing zone is usually formed in a region 4 to 8 times the inner diameter from the upper end of the reactor. In a substantially complete mixing region, a uniform circulating flow is produced in which the central portion of the reactor has a downward flow and the peripheral portion has an upward flow. When the mixture of the reactant and the oxidant is injected in the direction of the downward flow in the center, the injection flow is mixed with the circulation flow and circulated, and is uniformly dispersed in the circulation flow. For this reason, the mixture of the reactant and the oxidant injected into the substantially complete mixing zone is uniformly dispersed in the fluid in the complete mixing zone immediately after the injection and mixed with the reactant, thereby reducing the heat in the reactant. In response, the supercritical or subcritical state is reached immediately, and the hydrothermal reaction is carried out efficiently.
[0018]
In such a substantially complete mixing zone, most of the reactants (for example, 90 to 99% by weight) are decomposed. In order to further increase the decomposition rate, a plug flow zone is provided in the reactor under a substantially complete mixing zone. In the plug flow zone, a downward substantially parallel flow is formed by the weight of the reactant and the drawing force from the reactant take-out path, and the hydrothermal reaction proceeds and remains because it moves in a supercritical or subcritical state. The reactant is decomposed. It is believed that the plug flow zone below the substantially complete mixing zone needs to be at least twice as long as the inner diameter. Therefore, in order to have a substantially complete mixing zone and plug flow zone in one reactor, it is considered that the length is at least 6 times the inner diameter. The length / inner diameter ratio of this reactor to obtain a favorable mixing condition is supported by hydrodynamic analysis.
[0019]
If the ratio between the inner diameter of the reactor and the length of the reactor, the ratio of the inner diameter of the reactor to the inner diameter of the injection port, and the injection speed are out of the above ranges, uniform and substantially complete mixing even when backflow occurs in the reactor It is very difficult to get a range. In this case, it is very difficult to obtain uniform dispersion even when the mixed flow of the reactant and the oxidizing agent is injected into such a mixing zone. In such a mixing zone, the hydrothermal reaction cannot continue stably. Even if a hydrothermal reaction occurs, the reaction efficiency is not sufficiently high, and it is very difficult to decompose most of the reactants.
[0020]
In the present invention, the hydrothermal reaction can be efficiently performed by performing the hydrothermal reaction in the substantially complete mixing zone and the plug flow zone, and thereby the reactants can be decomposed with high efficiency by a small reactor. Can do. Reactants obtained by decomposing most of the reactants in the substantially complete mixing zone are continuously removed in the plug flow zone below the substantially complete mixing zone, and the remaining reactants are decomposed and removed at a high rate. The reaction product can be decomposed and removed at a high rate.
[0021]
The material for forming the reactor is not limited as long as it can withstand a hydrothermal reaction, but Hastelloy, Inconel, stainless steel and the like can be used.
[0022]
When the reactant includes a corrosive substance such as an acid or when the reaction generates a corrosive substance such as an acid, the reactor can be provided with a corrosion-resistant liner. The corrosion-resistant liner is not particularly limited, and the reactor inner surface is coated with a corrosion-resistant material such as titanium, platinum, iridium, zirconia, and titania, or a cover-like member made of the same material is directly applied to the reactor inner surface. Or the thing arrange | positioned at intervals is mention | raise | lifted. By providing such a liner, corrosion of the reactor is prevented and a hydrothermal reaction over a long period of time is possible.
[0023]
In the present invention, a solid such as an inorganic salt or an oxide generated by the reaction and an object to be processed moves downward in the reactor by the action of gravity and is discharged from the reactant outlet. It is preferable to prevent the sprayed fluid from directly contacting the inner wall of the reactor in order to prevent solid adhesion.
When the stickiness of the solid is remarkable, a removing means for removing the solid adhering to the inner wall of the reaction vessel can be provided. The solid removal means may be a mechanical device, and is not particularly limited, but is preferably a rotating frame type or a substantially cylindrical scraper having a notch window portion as disclosed in JP-A-11-156186. It is. By providing such solid matter removing means, the solid matter adhering to the inner surface of the reactor can be removed and the hydrothermal reaction can be continued for a long time.
[0024]
In the present invention, it is possible to provide a cooling means for cooling the reactant before discharging it from the reactant outlet. The cooling means is not particularly limited, but water can be introduced into the lower part of the reactor for cooling, and the inorganic salt can be dissolved in water to facilitate its discharge. In addition, water containing acid or alkali can be introduced into the reactor and cooled, and the alkali or acid can be neutralized. By providing such a cooling means, the inside of the reactor can be cooled to produce a liquid to dissolve soluble components, and it can be taken out in a neutral state by neutralization. They can be taken out and their discharge becomes easy.
[0025]
【Effect of the invention】
According to the present invention, since the hydrothermal reaction is performed by forming a substantially complete mixing zone in the reactor, the object to be treated and the oxidizing agent can be uniformly dispersed immediately after the introduction of the reactor. High efficiency can be achieved.
Furthermore, since the plug flow zone is provided under the substantially complete mixing zone and the hydrothermal reaction is continued, it can be decomposed with high efficiency in a small reactor. In this way, the object to be treated can be decomposed with high efficiency and a small reactor.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a vertical sectional view showing a hydrothermal reaction apparatus according to an embodiment.
[0027]
In FIG. 1, 1 is a reactor, which is composed of a cylindrical container having a conical portion 1a at the bottom made of a heat and pressure resistant material, and an injection mechanism 2 is provided at the top. The injection mechanism 2 includes a small cylindrical injection nozzle 4 having an injection port 3 at the lower end and a mixing unit 5. The injection nozzle 4 is attached from the upper part of the reactor 1 so that the injection port 3 opens downward into the reactor 1. A reactant supply path 8 and an oxidant supply path 9 are in communication with the reactant introduction section 6 and the oxidant introduction section 7 provided on the upper portion and the side wall of the mixing section 5, respectively.
[0028]
A corrosion-resistant liner 11 is formed on the inner wall of the reactor 1. A scraper 12 made of a cylinder having a conical portion 12a at a lower portion is provided inside the liner 11 of the reactor 1 so as to be rotatable, and a small diameter inserted into the small diameter portion 1b at the lower end portion of the reactor 1. It is made to rotate by the drive mechanism 13 connected to the part 12b. A cooling water channel 14 rises from below through the center of the small-diameter portion 1b of the reactor 1. A reactant outlet 15 is provided in the small diameter portion 1b at the lower end of the reactor 1, and a reactant outlet 16 communicates therewith.
[0029]
In the above configuration, the length of the reactor 1 (effective length in which the hydrothermal reaction is substantially performed in the reactor 1) H is the inner diameter of the reactor 1 (the hydrothermal reaction is substantially performed in the reactor 1). Effective diameter) 6 times or more than R. The inner diameter r of the injection port 3 of the injection nozzle 4 of the injection mechanism 2 is set to 1/15 to 1/200 of R, and the injection speed of the injection flow a injected from the injection port 3 is 10 m / sec or more. .
[0030]
In the hydrothermal reaction in the above apparatus, the reactant is supplied from the reactant supply path 8, the oxidant is supplied from the oxidant supply path 9 and mixed in the mixing unit 5 of the injection mechanism 2, and the mixture is injected into the injection nozzle. The hydrothermal reaction is carried out in a supercritical or subcritical state by injecting downward into the reactor 1 from the injection port 4. During this time, the scraper 12 is rotated by the driving device 13 to separate the solid matter adhering to the inner wall of the reactor 1, and cooling water is blown from the cooling water channel 14 into the lower part of the reactor 1 to cool and / or neutralize, The soluble component is dissolved in the liquefied liquid and allowed to flow down. The reactant is withdrawn from the reactant outlet 16 along with the fluid and solids.
[0031]
In the above hydrothermal reaction, a substantially complete mixing zone 21 is formed at the top of the reactor 1, a plug flow zone 22 is formed at the bottom thereof, and a cooling zone 23 is formed at the bottom thereof.
[0032]
In the substantially complete mixing zone 21, a uniform circulation flow composed of the downward flow b and the upward flow c is formed, and the injection flow a injected from the injection port 3 is mixed with the circulating downward flow b. The mixture of the reactant and the oxidant is uniformly dispersed in the circulation flow of the substantially complete mixing zone 21 immediately after injection. For this reason, the mixture receives a heat from the circulating flow and immediately becomes a supercritical or subcritical state, so that a hydrothermal reaction proceeds, and most of the reactant is decomposed while circulating in the substantially complete mixing zone 21. .
[0033]
Of the circulating flow in the substantially complete mixing zone 21, the amount corresponding to the jet flow a moves to the plug flow zone 22 and forms a downward flow d by gravity. The downward flow in the plug flow region 22 is a substantially parallel flow and flows down as a slow flow, while the hydrothermal reaction continues, and the remaining reactants are decomposed.
[0034]
In the cooling zone 23, the liquid component in the reaction product is liquefied by being cooled by the cooling water e blown from the cooling water channel 14 to a temperature below the supercritical temperature, solubilizing soluble components such as salts and dispersing solids. In this state, the reactant is taken out from the reactant outlet 16 together with the reactant.
[0035]
In the hydrothermal oxidation reaction, the reaction heat that is generated brings about a rise in sensible heat of the fluid. Since a substantially complete mixed state is formed, it is possible to keep the reaction vessel at a predetermined reaction temperature without external heating and realize a stable continuation of the reaction by appropriately selecting the amount of heat of the organic waste liquid. . Note that the reactant may be supplied intermittently. To achieve a high reaction rate, as in the case of complete decomposition of hazardous substances, the reactor length can be set to give the required residence time in the plug flow zone to achieve the target reaction rate. .
[0036]
The reactant to be supplied to the reactor 1 is normally held in a storage tank, pressurized by a high pressure pump, and supplied from the reactant supply path 8. When the object to be treated does not contain water, it can be mixed with water in advance and supplied as an aqueous solution or water slurry. Moreover, you may mix with water in the piping of the to-be-reacted material supply path 8. FIG. In the case of the hydrothermal oxidation reaction, the oxidant is similarly pressurized and supplied by a high-pressure pump or a compressor. As the oxidizing agent, air, oxygen, liquid oxygen, hydrogen peroxide solution, nitric acid, nitrous acid, nitrate, or nitrite can be used. The oxidizing agent may be supplied after being mixed with the reactant or water containing the reactant, or may be supplied as a multilayer flow with the injection nozzle 4 as a double tube nozzle.
[0037]
In particular, in the case of a hydrothermal oxidation reaction, it is preferable that the reactor 1 is kept in an adiabatic state as much as possible, and the amount of heat of the reactant is adjusted so as to reach a predetermined reaction temperature with the amount of heat generated by the reaction. However, for the reactant with a relatively low calorific value, preheat the reactant and the fluid containing the reactant and supply it, and add kerosene, alcohol, waste organic solvent, etc. to adjust the calorie Alternatively, the reaction temperature may be adjusted with an external heat source.
[0038]
The procedure for starting the reaction is not particularly limited. For example, the pressurized reactant and oxidant are preheated and introduced into the reactor 1 through the mixing section 5 of the injection mechanism 2. Preheating is accomplished with an electric heater, a heating means with combustion, or a combination thereof. Since the reaction mixture is well mixed, a hydrothermal reaction occurs, generating reaction heat, and the temperature of the fluid rises. Once a steady state is obtained in the reactor 1, preheating may be stopped if the reaction object has a sufficient amount of heat.
[0039]
The reactant taken out from the reactant outlet 16 is usually cooled and decompressed. Solid separation and gas-liquid separation processes can be performed in the course of cooling and decompression. The finally generated water, gas, and solid are recovered as they are, recovered as energy, reused as substances, or discarded as they are or after additional processing.
[0040]
【Example】
Examples of the present invention will be described below. In each example,% is% by weight.
[0041]
Example 1
From an injection nozzle 4 having an injection port 3 having an inner diameter of 1.4 mm in the center of the upper lid of the vertical cylindrical reactor 1 having a length of 1640 mm and an inner diameter of 108 mm, water, Injected with air, a hydrothermal oxidation reaction was performed in a supercritical state, the reactant was taken out from the reactant outlet 16 at the lower end, gas-liquid separated, and the water quality and decomposition rate of the separated liquid were measured. Table 2 shows the operating conditions and results. In the operation, the reactor 1 was preheated to the reaction temperature with an external heat source in advance.
As shown in Table 2, the hydrothermal oxidation reaction was possible at 640 ° C., 22.5 MPa, and a residence time of 22 seconds, and the organic matter was completely decomposed. The stable reaction continued for about 3 hours. Although observed after the reaction, no scale formation or clogging was observed due to the generated inorganic substance.
[0042]
Example 2
Using the same reactor and organic waste as in Example 1, a hydrothermal oxidation reaction was performed in a subcritical state together with water and air. Table 2 shows the operating conditions and results.
As shown in Table 2, the hydrothermal oxidation reaction was possible at 650 ° C., 14.8 MPa, residence time 19 seconds, and the organic matter was completely decomposed. The stable reaction continued for about 3 hours. In addition, although observed after the reaction, scale generation or clogging due to the generated inorganic substance was not observed.
[0043]
Example 3
The sewage sludge having the composition shown in Table 3 was subjected to a hydrothermal reaction in a supercritical state using the reactor used in Example 1. Sewage sludge was injected with air and water after preheating. The injection nozzle adjusted the diameter of the opening to 3.0 mm.
As shown in Table 4, a hydrothermal reaction was performed at 615 ° C., 22.3 MPa, and a residence time of 19 seconds, and organic carbon (TOC) and nitrogen (TN) were completely decomposed. The reaction continued stably for 3 hours. In the observation after the reaction, scale generation or clogging due to the generated inorganic substance was not observed.
[0044]
[Table 1]
Figure 0004857459
[0045]
[Table 2]
Figure 0004857459
[0046]
[Table 3]
Figure 0004857459
[0047]
[Table 4]
Figure 0004857459
[0048]
Comparative Example 1
The injection nozzle of the injection mechanism of the reactor of Example 1 was changed to a nozzle having an injection port diameter of 9 mm. Using the same organic waste drug as in Example 1, a hydrothermal oxidation reaction was performed in a supercritical state with water and air.
The hydrothermal reaction was started under the same conditions as in Example 1 with the reactant supply rate of 0.12 kg / min, water supply rate of 1.00 kg / min, and air supply rate of 2.22 kg / min, but the reaction continued Without this, a fluid containing black material that seems to be char generated by incomplete combustion was discharged.
In this comparative example, the inner diameter of the injection port is 1/12 of the inner diameter of the reactor, the injection speed is 1.7 m / sec, and the reaction fluid containing the reactant and the oxidizing agent is not sufficiently mixed. It is determined that the temperature rise due to the reaction, the progress of the reaction, and the start of the reaction of the supplied workpiece were not realized satisfactorily.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a hydrothermal reactor according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Injection mechanism 3 Injection port 4 Injection nozzle 5 Mixing part 6 Reactant introduction part 7 Oxidant introduction part 8 Reactant supply path 9 Oxidant supply path 11 Liner 12 Scraper 13 Drive mechanism 14 Cooling water path 15 Reactant Extraction section 16 Reactant extraction path 21 Complete mixing zone 22 Plug flow zone 23 Cooling zone

Claims (6)

実質的に垂直方向に配置され内径の6倍以上の長さを有する筒状の反応器に、
被反応物と酸化剤の混合物を反応器の上部から噴射機構により、反応器内径の1/15〜1/200の内径を有する噴射口を通して、10m/sec以上の噴射速度で噴射し、
これにより反応器内に実質的な完全混合域およびその下にプラグフロー域を形成して、水の超臨界または亜臨界状態で水熱反応を行う
ことを特徴とする水熱反応方法。
To a cylindrical reactor which is arranged in a substantially vertical direction and has a length of more than 6 times the inner diameter,
The mixture of the reactant and the oxidant is injected from the upper part of the reactor by an injection mechanism at an injection speed of 10 m / sec or more through an injection port having an inner diameter of 1/15 to 1/200 of the inner diameter of the reactor,
A hydrothermal reaction method characterized in that a substantially complete mixing zone and a plug flow zone are formed in the reactor thereby to perform a hydrothermal reaction in a supercritical or subcritical state of water.
被反応物は窒素含有物質である請求項1記載の方法。2. The method according to claim 1, wherein the reactant is a nitrogen-containing substance. 水の超臨界または亜臨界状態で水熱反応を行う実質的に垂直方向に配置された筒状の反応器と、
反応器の上部へ被反応物を供給する被反応物供給路と、
反応器の上部へ酸化剤を供給する酸化剤供給路と、
被反応物供給路から供給される被反応物および酸化剤供給路から供給される酸化剤を混合状態で反応器の上部から噴射する噴射機構と、
反応器の下部から反応物を取り出す反応物取出路とを備え、
前記反応器は内径の6倍以上の長さを有し、
前記噴射機構は反応器の内径の1/15〜1/200の内径を有する噴射口から被反応物と酸化剤の混合物を10m/sec以上の噴射速度で反応器内に噴射することにより反応器内に実質的な完全混合域およびその下にプラグフロー域を形成するように構成されている
ことを特徴とする水熱反応装置。
A cylindrical reactor arranged in a substantially vertical direction to perform a hydrothermal reaction in a supercritical or subcritical state of water;
A reactant supply path for supplying the reactant to the upper part of the reactor;
An oxidant supply path for supplying an oxidant to the top of the reactor;
An injection mechanism for injecting the reactant supplied from the reactant supply path and the oxidant supplied from the oxidant supply path from the upper part of the reactor in a mixed state;
A reactant take-out path for taking out the reactant from the lower part of the reactor,
The reactor has a length of at least six times the inner diameter;
The injection mechanism is configured to inject a mixture of a reactant and an oxidant into the reactor at an injection speed of 10 m / sec or more from an injection port having an inner diameter of 1/15 to 1/200 of the inner diameter of the reactor. A hydrothermal reactor characterized in that a substantially complete mixing zone and a plug flow zone are formed therein.
反応器の内壁に耐腐食性ライナーを有する請求項3記載の装置。The apparatus of claim 3 having a corrosion resistant liner on the inner wall of the reactor. 反応器の内壁から付着物を除去する手段を備えている請求項3または4記載の装置。The apparatus according to claim 3 or 4, further comprising means for removing deposits from the inner wall of the reactor. 反応器の反応物を冷却する手段を備えている請求項3ないし5のいずれかの装置。The apparatus according to any one of claims 3 to 5, further comprising means for cooling the reaction product in the reactor.
JP2000313316A 2000-03-06 2000-10-13 Hydrothermal reaction method and apparatus Expired - Fee Related JP4857459B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18699000P 2000-03-06 2000-03-06
US60/186990 2000-03-06

Publications (2)

Publication Number Publication Date
JP2001246239A JP2001246239A (en) 2001-09-11
JP4857459B2 true JP4857459B2 (en) 2012-01-18

Family

ID=22687154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313316A Expired - Fee Related JP4857459B2 (en) 2000-03-06 2000-10-13 Hydrothermal reaction method and apparatus

Country Status (1)

Country Link
JP (1) JP4857459B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197264B1 (en) * 2004-02-13 2012-11-05 고리츠다이가쿠호진 오사카후리츠다이가쿠 Method for producing product decomposed with subcritical water and apparatus for decomposition treatment with subcritical water
JP4448403B2 (en) 2004-08-16 2010-04-07 富士通株式会社 Power level measuring apparatus and mobile station
CN102665890B (en) * 2009-10-09 2016-02-24 蓝立方知识产权公司 The adiabatic plug flow reactor of production chlorination and/or fluorinated acrylamide and higher alkene and method
EP2604335A4 (en) * 2010-08-11 2017-05-17 LG Chem, Ltd. Production device for inorganic compounds and a production method for inorganic compounds using the same
KR101592189B1 (en) 2012-12-10 2016-02-05 주식회사 엘지화학 Apparatus for Manufacturing Inorganic Compound and Method for Manufacturing Inorganic Compound by Using the Same
CN111470559A (en) * 2020-05-21 2020-07-31 成都九翼环保科技有限公司 Supercritical hydrothermal combustion reactor for recovering salt from organic wastewater and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100560A (en) * 1991-05-31 1992-03-31 Abb Lummus Crest Inc. Apparatus and method for supercritical water oxidation
US5591415A (en) * 1994-01-27 1997-01-07 Rpc Waste Management Services, Inc. Reactor for supercritical water oxidation of waste
US5674405A (en) * 1995-07-28 1997-10-07 Modar, Inc. Method for hydrothermal oxidation
DE19810564A1 (en) * 1998-03-11 1999-09-16 Basf Ag Process for drying microporous particles used in production of thermal insulating materials

Also Published As

Publication number Publication date
JP2001246239A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP3987646B2 (en) Hydrothermal reaction treatment method and hydrothermal reaction treatment vessel
JP3664867B2 (en) PCB decomposition reaction vessel
JP5988155B2 (en) Waste liquid treatment equipment
US6709602B2 (en) Process for hydrothermal treatment of materials
AU2002338425A1 (en) Process for hydrothermal treatment of materials
KR20030029920A (en) Method for treating waste by hydrothermal oxidation
JP4857459B2 (en) Hydrothermal reaction method and apparatus
US7736471B2 (en) Material treatment systems for waste destruction, energy generation, or the production of useful chemicals
JP3219689B2 (en) Method and apparatus for decomposing hardly decomposable substances
JP2003299941A (en) Hydrothermal oxidative reaction treatment apparatus and method using the same
EP0491620B1 (en) Process for the destruction of toxic organic effluents by aqueous phase incineration and installation therefor
JP2003236594A (en) Apparatus for treating sludge
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP2001121167A (en) Batchwise supercritical water reaction apparatus
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP2002126712A (en) Method for treating dioxins and device therefor
JP3686778B2 (en) Operation method of supercritical water reactor
JPH10314768A (en) Method for oxidation of supercritical water
JPH10137774A (en) Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JP2003340263A (en) Method and apparatus for hydrothermal reaction
JP2003300099A (en) Hydrothermal reaction apparatus and method
JP2003236569A (en) Method of hydrothermal oxidation reaction
JP2001120987A (en) Batch type supercritical water reaction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4857459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees