JP2000109850A - Process and device for converting heavy oil into fluid fuel for generating unit - Google Patents

Process and device for converting heavy oil into fluid fuel for generating unit

Info

Publication number
JP2000109850A
JP2000109850A JP10284887A JP28488798A JP2000109850A JP 2000109850 A JP2000109850 A JP 2000109850A JP 10284887 A JP10284887 A JP 10284887A JP 28488798 A JP28488798 A JP 28488798A JP 2000109850 A JP2000109850 A JP 2000109850A
Authority
JP
Japan
Prior art keywords
water
supercritical
gas
oil
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10284887A
Other languages
Japanese (ja)
Inventor
Kazuaki Ota
和明 太田
Masatoshi Hanzawa
正利 半沢
Akira Tanaka
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10284887A priority Critical patent/JP2000109850A/en
Publication of JP2000109850A publication Critical patent/JP2000109850A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and easily gasify heavy oils and convert them into light oils, to inhibit facility corrosion and environmental pollution by easily converting metal components or sulfuric components contained in heavy oils into harmless inorganic salts and removing them, and to alleviate efforts for maintenance and increase the electric power generation efficiency of electric power generating devices. SOLUTION: A heavy oil, water and an alkali are maintained at the supercritical state of water and decomposed in a supercritical reactor 24 to generate a light oil component, a hydrocarbon gas, a metal oxide, an alkaline salt and supercritical water. The obtained decomposed product is maintained in an extractor 25 at a temperature and pressure equal to or below the subcritical state of water to extract a hydrocarbon gas, a light oil component and moisture from the decomposed product. The extracted hydrocarbon gas, light oil component and moisture are vapor-liquid separated by a vapor-liquid separator 27 into a hydrocarbon gas, a light oil component and moisture. The separated light oil component and moisture are separated into a light oil component and water by an oil-water separator 28.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重質油を超臨界状
態の水中で分解し、この分解により生じた分解生成物か
ら可燃ガス及び軽質油を生成する、重質油の発電設備用
流体燃料への転換方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid for power generation equipment for heavy oil, which decomposes heavy oil in water in a supercritical state, and generates flammable gas and light oil from decomposition products generated by the decomposition. The present invention relates to a method and an apparatus for converting fuel.

【0002】[0002]

【従来の技術】発電装置として、石炭、重質油などの化
石燃料の燃焼エネルギをボイラで蒸気に変えて、この蒸
気エネルギで蒸気タービンを駆動して発電する火力発電
装置が周知である。この発電装置では化石燃料に含まれ
る硫黄分等が不純物として多く発生する。このためこの
不純物が有害物質となって環境汚染を生じないように火
力発電装置では複雑な浄化装置を必要とする。また高い
発電効率が得られない問題点がある。この発電効率を向
上するために、図4に示すような重質油ガス化複合発電
装置1が知られている。この発電装置1では、ガス化反
応炉2の下段炉に重質油を供給し、この重質油をこの下
段炉の下側からコンプレッサ3によりガス化反応炉2に
供給されるガス化剤の空気によってガス化する。コンプ
レッサ3は後述するガスタービン7から供給される圧縮
空気によって駆動される。ガス化反応炉2で生成した生
成ガスは炉の上方領域から粗成ガスとして取出された
後、フィルタ4に送られる。粗成ガス中のガス化しなか
った未反応の重質油成分はフィルタ4で捕集された後、
ガス化反応炉2の下段炉に送られて再び空気によって燃
焼されガス化される。灰分はガス化反応炉2の炉底より
取出される。ガス化反応炉2には後述する蒸気タービン
16に蒸気を供給する熱回収ボイラ5が設けられる。フ
ィルタ4を通過した粗成ガスは脱アルカリ装置6に送ら
れ、ここで粗成ガス中のアルカリ成分が除去される。脱
アルカリ装置6から取出された粗成ガスは可燃ガスとし
てガスタービン7を駆動し、ガスタービン7と回転軸が
直結している第1発電機8により発電する。
2. Description of the Related Art As a power generation device, a thermal power generation device that converts combustion energy of fossil fuels such as coal and heavy oil into steam by a boiler and drives a steam turbine with the steam energy to generate power is known. In this power generation device, a large amount of sulfur and the like contained in fossil fuel is generated as impurities. For this reason, a thermal power generator requires a complicated purification device so that these impurities do not become harmful substances and cause environmental pollution. There is also a problem that high power generation efficiency cannot be obtained. In order to improve this power generation efficiency, a heavy oil gasification combined cycle power generation device 1 as shown in FIG. 4 is known. In this power generation device 1, heavy oil is supplied to the lower furnace of the gasification reactor 2, and the heavy oil is supplied to the gasification reactor 2 from the lower side of the lower furnace by the compressor 3. Gasified by air. The compressor 3 is driven by compressed air supplied from a gas turbine 7 described below. The product gas generated in the gasification reactor 2 is taken out from the upper region of the furnace as a crude gas and then sent to the filter 4. The unreacted heavy oil components that have not been gasified in the crude gas are collected by the filter 4,
It is sent to the lower furnace of the gasification reactor 2 and is again burned and gasified by air. Ash is extracted from the bottom of the gasification reactor 2. The gasification reactor 2 is provided with a heat recovery boiler 5 that supplies steam to a steam turbine 16 described below. The crude gas that has passed through the filter 4 is sent to the dealkalizer 6, where alkali components in the crude gas are removed. The crude gas taken out from the dealkalizer 6 drives the gas turbine 7 as combustible gas, and generates power using a first generator 8 having a rotating shaft directly connected to the gas turbine 7.

【0003】次にガスタービン7からの排ガスは第1熱
交換器9、脱窒装置11、第2熱交換器12及び脱硫装
置13を順次経由して煙突14から放出される。脱窒装
置11では、排ガスに含まれる窒素が除去され、また脱
硫装置13では、排ガスに含まれる硫黄が除去される。
一方、熱回収ボイラ5で生じた蒸気は蒸気タービン16
を駆動し、蒸気タービン16と回転軸が直結している第
2発電機17により発電する。蒸気タービン16から取
出された蒸気は復水器18で冷却されて水を生じ、この
水は第2熱交換器12に送られる。第2熱交換器12に
おいて、水はガスタービン7からの排ガスを冷却すると
ともに加熱される。次いでこの加熱された水は第1熱交
換器9に送られてガスタービン7からの排ガスを冷却す
るとともに更に加熱される。第1熱交換器9で加熱され
た水はガス化反応炉2の熱回収ボイラ5に送られて蒸気
となる。
Next, the exhaust gas from the gas turbine 7 is discharged from a chimney 14 via a first heat exchanger 9, a denitrification device 11, a second heat exchanger 12, and a desulfurization device 13 in order. In the denitrification device 11, nitrogen contained in the exhaust gas is removed, and in the desulfurization device 13, sulfur contained in the exhaust gas is removed.
On the other hand, the steam generated in the heat recovery boiler 5 is
And a second generator 17 having a rotating shaft directly connected to the steam turbine 16 to generate electric power. The steam extracted from the steam turbine 16 is cooled in the condenser 18 to produce water, which is sent to the second heat exchanger 12. In the second heat exchanger 12, the water cools the exhaust gas from the gas turbine 7 and is heated. Next, the heated water is sent to the first heat exchanger 9 to cool the exhaust gas from the gas turbine 7 and to be further heated. The water heated in the first heat exchanger 9 is sent to the heat recovery boiler 5 of the gasification reactor 2 and turns into steam.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記重質油ガ
ス化複合発電装置では重質油中の金属成分、硫黄分等が
フィルタ、ガスタービン、蒸気タービンに固着してこれ
らの装置の材料を腐食させる不都合がある。また重質油
中の硫黄分等の不純物を除去するために、脱硫装置、脱
アルカリ装置、脱窒装置等の装置が必要となり、設備が
大型化しかつ制御が複雑になる問題があった。更に地球
のエネルギ資源にはオイルサンド、オイルシェールなど
の埋蔵量に富んだ超重質油が存在するが、これらは通常
の重質油より更に不純物が多く、発電設備用の燃料にす
ることは極めて困難であった。
However, in the heavy oil gasification combined cycle power plant, the metal components, sulfur content, etc. in the heavy oil adhere to filters, gas turbines, and steam turbines, and the material of these devices is reduced. There is a problem of corrosion. Further, in order to remove impurities such as sulfur content in heavy oil, devices such as a desulfurization device, a dealkalization device, and a denitrification device are required, and there has been a problem that the equipment becomes large and control becomes complicated. In addition, ultra-heavy oils with abundant reserves such as oil sands and oil shale exist in the earth's energy resources, but these have more impurities than ordinary heavy oils, and it is extremely difficult to use them as fuel for power generation facilities. It was difficult.

【0005】本発明の目的は、重質油を効率良く簡単に
ガス化するとともに軽質化し得る重質油の発電設備用流
体燃料への転換方法及びその装置を提供することにあ
る。本発明の別の目的は、重質油に含まれる金属成分や
硫黄分を容易に無害な無機塩にして除去することにより
設備を腐食させずかつ環境汚染を生じさせない重質油の
発電設備用流体燃料への転換方法及びその装置を提供す
ることにある。本発明の更に別の目的は、メンテナンス
作業を軽減し発電装置の発電効率を高めることができる
重質油の発電設備用流体燃料への転換方法及びその装置
を提供することにある。
An object of the present invention is to provide a method and apparatus for converting heavy oil into fluid fuel for power generation equipment, which can gasify heavy oil efficiently and easily and lighten it. Another object of the present invention is for heavy oil power generation equipment that does not corrode equipment and does not cause environmental pollution by easily removing metal components and sulfur contained in heavy oil into harmless inorganic salts. It is an object of the present invention to provide a method and an apparatus for converting to fluid fuel. Still another object of the present invention is to provide a method and apparatus for converting heavy oil to fluid fuel for power generation equipment, which can reduce maintenance work and increase power generation efficiency of the power generation apparatus.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
重質油と水とアルカリを混合したエマルジョンを水の超
臨界状態の温度及び圧力に維持することにより上記重質
油を分解して、炭化水素系ガス、軽質油分、金属酸化
物、アルカリ塩及び超臨界水を生成する超臨界反応工程
と、この超臨界反応工程で得られた分解生成物を水の亜
臨界状態又はそれ以下の温度及び圧力に維持してこの分
解生成物から炭化水素系ガスと軽質油分と水分を抽出す
る抽出工程と、この抽出工程で抽出された炭化水素系ガ
スと軽質油分と水分を気液分離して炭化水素系ガスと軽
質油分及び水分とに分離する気液分離工程と、この気液
分離工程で分離された軽質油分及び水分を軽質油と水に
分離する油水分離工程とを含む重質油の発電設備用流体
燃料への転換方法である。請求項2に係る発明は、請求
項1に係る発明であって、超臨界反応工程で得られた分
解生成物を水の亜臨界状態又はそれ以下の温度及び圧力
に維持してこの分解生成物から金属酸化物とアルカリ塩
が溶解した廃水を分離する塩類分離工程を更に含む転換
方法である。請求項3に係る発明は、請求項2に係る発
明であって、油水分離工程で分離された水を塩類分離工
程に供給する転換方法である。請求項4に係る発明は、
請求項1に係る発明であって、エマルジョンに脱硫触媒
を加える転換方法である。請求項5に係る発明は、請求
項1に係る発明であって、超臨界反応工程に酸素源を加
えて水の超臨界状態の温度及び圧力に維持することによ
りCOガスを生成し、このCOガスと超臨界水との反応
により活性水素を生成する工程を更に含む転換方法であ
る。
The invention according to claim 1 is
The heavy oil is decomposed by maintaining the emulsion in which the heavy oil, water and alkali are mixed at the temperature and pressure of water in a supercritical state, and the hydrocarbon-based gas, light oil component, metal oxide, alkali salt and A supercritical reaction step for generating supercritical water, and the decomposition product obtained in the supercritical reaction step is maintained in a subcritical state of water or at a temperature and pressure lower than that to produce hydrocarbon-based gas from the decomposition product. Extraction process for extracting oil, light oil and water, and gas-liquid separation for separating the hydrocarbon-based gas, light oil and moisture extracted in this extraction process into gas and liquid to separate hydrocarbon-based gas, light oil and water A method for converting heavy oil to fluid fuel for power generation equipment, comprising a step and an oil-water separation step of separating light oil and water separated in the gas-liquid separation step into light oil and water. The invention according to claim 2 is the invention according to claim 1, wherein the decomposition product obtained in the supercritical reaction step is maintained in a subcritical state of water or at a temperature and pressure lower than that of water. This is a conversion method further comprising a salt separation step of separating wastewater in which a metal oxide and an alkali salt are dissolved from the wastewater. The invention according to claim 3 is the invention according to claim 2, which is a conversion method for supplying the water separated in the oil-water separation step to the salt separation step. The invention according to claim 4 is
The invention according to claim 1, which is a conversion method for adding a desulfurization catalyst to the emulsion. The invention according to claim 5 is the invention according to claim 1, wherein an oxygen source is added to the supercritical reaction step to maintain the temperature and pressure of water in a supercritical state, thereby generating CO gas. The conversion method further includes a step of generating active hydrogen by reacting the gas with supercritical water.

【0007】請求項6に係る発明は、図1に示すよう
に、重質油と水とアルカリを貯えるタンク21と、重質
油と水とアルカリを水の超臨界状態に維持することによ
りこの重質油を分解して、軽質油分、炭化水素系ガス、
金属酸化物、アルカリ塩及び超臨界水を生成する超臨界
反応器24と、超臨界反応器24に接続されこの超臨界
反応器24で得られた分解生成物を水の亜臨界状態又は
それ以下の温度及び圧力に維持してこの分解生成物から
炭化水素系ガスと軽質油分と水分を抽出する抽出器25
と、抽出器25で抽出された炭化水素系ガスと軽質油分
と水分を気液分離して炭化水素系ガスと軽質油分及び水
分とに分離する気液分離器27と、気液分離器27で分
離された軽質油分及び水分を軽質油と水に分離する油水
分離器28とを備えた重質油の発電設備用流体燃料への
転換装置である。請求項7に係る発明は、請求項6に係
る発明であって、図1又は図2に示すように、超臨界反
応器24,34と一体的に又は別に分離して設けられ、
超臨界反応器24,34で得られた分解生成物を水の亜
臨界状態又はそれ以下の温度及び圧力に維持して上記分
解生成物から金属酸化物とアルカリ塩が溶解した廃水を
分離する塩類分離器29,36とを更に有する転換装置
である。請求項8に係る発明は、請求項7に係る発明で
あって、図1又は図2に示すように、油水分離器28で
分離された水を塩類分離器29,36に供給する手段3
1を更に有する転換装置である。請求項9に係る発明
は、請求項6に係る発明であって、図1又は図2に示す
ように、超臨界反応器24,34に酸素源を加える手段
32を更に有する転換装置である。請求項10に係る発
明は、請求項6に係る発明であって、図2に示すよう
に、気液分離器27で分離された炭化水素系ガス及び油
水分離器28で分離された油を主たる燃料としてエマル
ジョンを加熱するバーナ33が超臨界反応器34に設け
られた転換装置である。
As shown in FIG. 1, the invention according to claim 6 comprises a tank 21 for storing heavy oil, water and alkali, and a heavy oil, water and alkali maintained in a supercritical state of water. Cracks heavy oil to produce light oil, hydrocarbon gas,
A supercritical reactor 24 for producing metal oxides, alkali salts and supercritical water, and a decomposition product connected to the supercritical reactor 24 and obtained by the supercritical reactor 24, which is in a subcritical state of water or lower. Extractor 25 for extracting hydrocarbon-based gas, light oil and moisture from the decomposition product while maintaining the temperature and pressure
A gas-liquid separator 27 that separates the hydrocarbon-based gas, light oil, and moisture extracted by the extractor 25 into gas and liquid to separate them into a hydrocarbon-based gas, light oil, and moisture; This is a device for converting heavy oil into fluid fuel for power generation equipment, comprising an oil-water separator 28 for separating the separated light oil and water into light oil and water. The invention according to claim 7 is the invention according to claim 6, and is provided integrally with or separately from the supercritical reactors 24 and 34, as shown in FIG. 1 or 2,
Salts for separating the decomposition products obtained in the supercritical reactors 24 and 34 into a subcritical state of water or a temperature and pressure lower than that of water to separate wastewater in which metal oxides and alkali salts are dissolved from the decomposition products This is a conversion device further including separators 29 and 36. The invention according to claim 8 is the invention according to claim 7, wherein the water separated by the oil / water separator 28 is supplied to the salt separators 29 and 36 as shown in FIG. 1 or FIG.
1. A ninth aspect of the present invention is the conversion apparatus according to the sixth aspect, further comprising a means 32 for adding an oxygen source to the supercritical reactors 24 and 34, as shown in FIG. 1 or FIG. The invention according to claim 10 is the invention according to claim 6, and mainly includes the hydrocarbon-based gas separated by the gas-liquid separator 27 and the oil separated by the oil-water separator 28, as shown in FIG. A burner 33 for heating the emulsion as a fuel is a conversion device provided in the supercritical reactor 34.

【0008】[0008]

【発明の実施の形態】本発明において、水の亜臨界状態
とは200〜374℃の温度でかつ160〜215kg
/cm2の圧力にある水の状態を意味する。また水の超
臨界状態とは374〜900℃の温度でかつ215〜5
00kg/cm2の圧力にある水の状態を意味する。超
臨界状態における温度及び圧力の下限値未満では、反応
が遅く、重質油の分解効率が良くない。また超臨界状態
における温度及び圧力の上限値を超えると分解反応装置
に負荷がかかり過ぎ、これも効率的でない。図1に示す
ように、本発明の第1の実施の形態の重質油の発電設備
用流体燃料への転換装置では、タンク21に重質油と水
とアルカリと脱硫触媒が貯えられる。重質油としては石
炭液化油、石油の他にオイルサンド、オイルシェール等
が例示される。重質油は硫黄分を含むため、この硫黄分
を取除くためにタンク21にはアルカリ水溶液が貯えら
れる。このアルカリ水溶液としては、NaOH、KO
H、Ca(OH)2等の水溶液が例示される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the subcritical state of water is a temperature of 200 to 374 ° C. and 160 to 215 kg.
Means the state of water at a pressure of / cm 2 . The supercritical state of water is a temperature of 374 to 900 ° C. and 215 to 5
It means the state of water at a pressure of 00 kg / cm 2 . If the temperature and pressure in the supercritical state are lower than the lower limits, the reaction is slow and the efficiency of cracking heavy oil is not good. If the temperature and pressure in the supercritical state exceed the upper limits, the load on the decomposition reactor is too high, which is also inefficient. As shown in FIG. 1, in the apparatus for converting heavy oil to fluid fuel for power generation equipment according to the first embodiment of the present invention, heavy oil, water, alkali, and a desulfurization catalyst are stored in a tank 21. Examples of heavy oil include coal liquefied oil and petroleum, as well as oil sands and oil shale. Since heavy oil contains sulfur, an aqueous alkali solution is stored in the tank 21 to remove the sulfur. Examples of the alkaline aqueous solution include NaOH, KO
An aqueous solution of H, Ca (OH) 2 or the like is exemplified.

【0009】このタンク21に貯えられた重質油、水、
アルカリ及び脱硫触媒を含むエマルジョンはポンプ22
により熱交換器23を通って超臨界反応器24に圧送さ
れる。熱交換器23でこのエマルジョンは超臨界反応器
の反応熱により150〜350℃程度に加熱される。熱
交換器23で加熱されたエマルジョンは超臨界反応器2
4に供給され、そこで更に昇圧・昇温され、超臨界状態
になる。好ましくは374〜900℃の温度でかつ21
5〜500kg/cm2の圧力、より好ましくは374
〜600℃の温度でかつ215〜450kg/cm2
圧力の超臨界状態になる。超臨界状態において、重質油
は超臨界水に完全に溶解して、炭化水素系ガス、金属酸
化物及びアルカリ塩を生成するとともに、軽質油分とな
る。生成した金属酸化物及びアルカリ塩などの不純物は
溶解度が低いため、超臨界水中に固体として析出する。
超臨界反応器24で生成した分解生成物の内で、固体と
して析出した金属酸化物及びアルカリ塩は超臨界反応器
24の下方にこれと一体的に設けられた塩類分離器29
に送られる。塩類分離器29には亜臨界状態又はそれ以
下の温度及び圧力に維持され水が貯えられ、塩類分離器
29で金属酸化物及びアルカリ塩は貯えられた水と接触
してこの水に溶解する。この金属酸化物及びアルカリ塩
が溶解した水は廃水として外部に取出されて、処分され
る。
The heavy oil, water,
The emulsion containing the alkali and desulfurization catalyst is pumped 22
By pressure to the supercritical reactor 24 through the heat exchanger 23. In the heat exchanger 23, the emulsion is heated to about 150 to 350 ° C. by reaction heat of the supercritical reactor. The emulsion heated in the heat exchanger 23 is supplied to the supercritical reactor 2
4 where it is further pressurized and heated to a supercritical state. Preferably at a temperature of 374-900 ° C and 21
5 to 500 kg / cm 2 pressure, more preferably 374
It becomes a supercritical state at a temperature of 600600 ° C. and a pressure of 215 to 450 kg / cm 2 . In the supercritical state, the heavy oil is completely dissolved in the supercritical water to generate a hydrocarbon-based gas, a metal oxide, and an alkali salt, and becomes a light oil component. The generated impurities such as metal oxides and alkali salts have low solubility, and thus precipitate as solids in supercritical water.
Among the decomposition products generated in the supercritical reactor 24, metal oxides and alkali salts precipitated as solids are separated below the supercritical reactor 24 by a salt separator 29 provided integrally therewith.
Sent to Water is stored in the salt separator 29 at a temperature and pressure lower than or equal to a subcritical state, and the metal oxide and the alkali salt are brought into contact with the stored water and dissolved in the water in the salt separator 29. The water in which the metal oxide and the alkali salt are dissolved is taken out as wastewater and disposed of.

【0010】超臨界反応器24で硫黄分を含む重質油が
エマルジョンのアルカリ水溶液と反応すると、この硫黄
分は硫黄酸化物(SOx)を経て超臨界状態の水に容易
に溶解するともに、次の式(1)及び(2)の反応で無
害の無機塩になる。 SO3 + H2O → H2SO4 …… (1) H2SO4 + 2NaOH → Na2SO4 + 2H2O ……(2) 即ち、タンク21のエマルジョンが例えばNaOH水溶
液を含む場合には、このアルカリ(NaOH)水溶液に
より硫黄酸化物(SO3)は無害な硫酸塩(Na2
4)になる。なおエマルジョンに脱硫触媒を含むと、
この硫黄分はより無害な無機塩として取除くことができ
る。また超臨界反応器24に空気又は酸素のような酸素
源を酸素源の導入手段であるコンプレッサ32により導
入した場合には、式(3)に示すようにCOガスが生成
する。 2C + O2 → 2CO …… (3) このCOガスと超臨界水との反応により、式(4)に示
すように、活性水素(H2)が生成するため、重質油の
軽質化が更に促進される。 CO + H2O → CO2 + H2 … (4) 超臨界反応器24で生成した分解生成物の内で、固体と
して析出した金属酸化物及びアルカリ塩を除く炭化水素
系ガス、軽質油分及び超臨界水の混合流体は抽出器25
に送られる。
When the heavy oil containing sulfur reacts with the aqueous alkali solution of the emulsion in the supercritical reactor 24, the sulfur easily dissolves in supercritical water via sulfur oxide (SOx), and A harmless inorganic salt is obtained by the reaction of the formulas (1) and (2). SO 3 + H 2 O → H 2 SO 4 (1) H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O (2) That is, when the emulsion in the tank 21 contains, for example, an aqueous solution of NaOH. Is that sulfur oxide (SO 3 ) is harmless by this alkali (NaOH) aqueous solution (Na 2 S).
O 4 ). If the emulsion contains a desulfurization catalyst,
This sulfur content can be removed as a more harmless inorganic salt. Also, when an oxygen source such as air or oxygen is introduced into the supercritical reactor 24 by the compressor 32 which is an introduction means of the oxygen source, CO gas is generated as shown in Expression (3). 2C + O 2 → 2CO (3) The reaction between the CO gas and the supercritical water generates active hydrogen (H 2 ) as shown in equation (4). Further promoted. CO + H 2 O → CO 2 + H 2 (4) Among the decomposition products generated in the supercritical reactor 24, hydrocarbon-based gas, light oil, and the like, excluding metal oxides and alkali salts precipitated as solids The mixed fluid of supercritical water is
Sent to

【0011】この実施の形態では抽出器25は前述した
熱交換器23と減圧弁26により構成される。この混合
流体は熱交換器23で冷却され、減圧弁26で減圧され
て水の亜臨界状態又はそれ以下の温度及び圧力になる。
この混合流体は気液分離器27に送られて炭化水素系ガ
スの気体と軽質油分及び水分の液体とに分離される。こ
の炭化水素系ガスは水素、メタン、エタン、ベンゼン等
を主成分として含有する。分離された炭化水素系ガスは
図示しない発電用の燃焼ボイラーに燃料として供給され
る。気液分離器27で炭化水素系ガスから分離された軽
質油分と水分は油水分離器28に送られて軽質油と水に
分離される。分離された軽質油は炭化水素系ガスと同様
に図示しない発電用の燃焼ボイラーに燃料として供給さ
れる。上記油水分離器28で油から分離された水はポン
プ31により塩類分離器29に送られて、金属酸化物及
びアルカリ塩を溶解するための水として使用される。
In this embodiment, the extractor 25 comprises the heat exchanger 23 and the pressure reducing valve 26 described above. This mixed fluid is cooled by the heat exchanger 23 and depressurized by the pressure reducing valve 26 to reach a temperature and pressure of water in a subcritical state or lower.
This mixed fluid is sent to the gas-liquid separator 27, where it is separated into a hydrocarbon-based gas and a light oil and moisture liquid. This hydrocarbon-based gas contains hydrogen, methane, ethane, benzene and the like as main components. The separated hydrocarbon-based gas is supplied as fuel to a combustion boiler for power generation (not shown). The light oil component and water separated from the hydrocarbon-based gas by the gas-liquid separator 27 are sent to an oil-water separator 28 where they are separated into light oil and water. The separated light oil is supplied as a fuel to a power generation combustion boiler (not shown) in the same manner as the hydrocarbon-based gas. The water separated from the oil by the oil / water separator 28 is sent to the salt separator 29 by the pump 31 and used as water for dissolving metal oxides and alkali salts.

【0012】次に図2に本発明の第2の実施の形態の転
換装置を示す。図2において図1に示した構成要素と同
一の要素には同一符号を付している。この第2の実施の
形態の特徴ある構成は、超臨界反応器34と塩類分離器
36とを分離して設け、超臨界反応器34の内部には加
熱用のバーナ33を設け、気液分離器27で分離された
炭化水素系ガス及び油水分離器で分離された軽質油の一
部をバーナ33の燃料として用いたことにある。第1の
実施の形態の転換装置と比べて、超臨界状態にするため
の熱エネルギを低減することができる。
FIG. 2 shows a conversion device according to a second embodiment of the present invention. 2, the same elements as those shown in FIG. 1 are denoted by the same reference numerals. The characteristic configuration of the second embodiment is that a supercritical reactor 34 and a salt separator 36 are provided separately, a burner 33 for heating is provided inside the supercritical reactor 34, and gas-liquid separation is performed. That is, the hydrocarbon gas separated by the separator 27 and a part of the light oil separated by the oil-water separator are used as fuel for the burner 33. Compared with the conversion device of the first embodiment, the heat energy required to bring the supercritical state can be reduced.

【0013】更に図3に本発明の第1の実施の形態の転
換装置を利用した複合発電装置を示す。図3において図
1に示した構成要素と同一の要素には同一符号を付し、
図4に示した構成要素と同一要素にはその符号に40を
加えている。この複合発電装置では、気液分離器27で
分離された炭化水素系ガス及び油水分離器28で分離さ
れた軽質油をコンプレッサ43で圧縮された空気ととも
にガス化反応炉42に供給し、ガス化反応炉42で高温
高圧のCO及びH2を主成分とする可燃ガスを生成す
る。この可燃ガスの一部は超臨界反応器24に送られ、
重質油をより一層軽質化するために使用される。ガス化
反応炉42の供給原料は重質油を軽質化したものである
ため、図4に示したガス化反応炉2と異なり、図3に示
すガス化反応炉42では灰分は発生せず、また可燃ガス
をろ過したフィルタ44の捕集物には硫黄分及びアルカ
リ分は含まれていない。このためフィルタ44を腐食す
る恐れもなく、また図4に示した脱アルカリ装置6を経
由することなく、図3に示すガスタービン47に送られ
る。このガスタービン47の駆動でガスタービン47と
回転軸が直結している第1発電機48により発電する。
FIG. 3 shows a combined power generation apparatus using the conversion apparatus according to the first embodiment of the present invention. In FIG. 3, the same components as those shown in FIG.
Elements that are the same as the elements shown in FIG. In this combined power generation device, the hydrocarbon-based gas separated by the gas-liquid separator 27 and the light oil separated by the oil-water separator 28 are supplied to the gasification reaction furnace 42 together with the air compressed by the compressor 43, In the reaction furnace 42, a combustible gas mainly composed of high temperature and high pressure CO and H 2 is generated. Part of this combustible gas is sent to the supercritical reactor 24,
It is used to make heavy oil lighter. Since the feedstock of the gasification reactor 42 is obtained by lightening heavy oil, unlike the gasification reactor 2 shown in FIG. 4, no ash is generated in the gasification reactor 42 shown in FIG. Further, the collected matter of the filter 44 which filtered the combustible gas does not contain sulfur and alkali. For this reason, the filter 44 is sent to the gas turbine 47 shown in FIG. 3 without corroding the filter 44 and without passing through the dealkalizer 6 shown in FIG. By driving the gas turbine 47, power is generated by a first generator 48 having a rotating shaft directly connected to the gas turbine 47.

【0014】ガスタービン47からの排ガスには窒素酸
化物(NOx)や硫黄分は既に除去されているため、図
4に示した脱窒装置11及び脱硫装置13を経由するこ
となく、熱交換器49を経て煙突54から大気中に放出
される。一方、ガス化反応炉42に設けられた熱回収ボ
イラ45で生じた蒸気は蒸気タービン56を駆動し、蒸
気タービン56と回転軸が直結している第2発電機57
により発電する。蒸気タービン56から取出された蒸気
は復水器58で冷却されて水を生じ、この水は熱交換器
49でガスタービン47からの排ガスを冷却するととも
に加熱された後、ガス化反応炉42の熱回収ボイラ45
に送られて蒸気となる。この発電装置では、ガス化反応
炉42の後工程で、脱アルカリ装置、脱窒装置及び脱硫
装置が不要となり、フィルタ44、ガスタービン47な
どの腐食の問題を低減することができる。またこの発電
装置によりメンテナンス作業を軽減でき、高効率に第1
発電機48及び第2発電機57を運転し、有効に熱エネ
ルギが発電に利用される。
Since nitrogen oxides (NOx) and sulfur are already removed from the exhaust gas from the gas turbine 47, the heat exchanger does not pass through the denitrification unit 11 and the desulfurization unit 13 shown in FIG. The air is discharged from the chimney 54 to the atmosphere via the air passage 49. On the other hand, the steam generated in the heat recovery boiler 45 provided in the gasification reactor 42 drives the steam turbine 56, and the second power generator 57 having a rotating shaft directly connected to the steam turbine 56.
To generate electricity. The steam withdrawn from the steam turbine 56 is cooled by a condenser 58 to produce water, which is cooled and heated by a heat exchanger 49 after exhaust gas from the gas turbine 47 is passed through the gasification reactor 42. Heat recovery boiler 45
To be turned into steam. In this power generation device, a dealkalization device, a denitrification device, and a desulfurization device are not required in the subsequent process of the gasification reactor 42, and the problem of corrosion of the filter 44, the gas turbine 47, and the like can be reduced. In addition, maintenance work can be reduced by this power generation device, and the first
The generator 48 and the second generator 57 are operated, and heat energy is effectively used for power generation.

【0015】[0015]

【実施例】次に本発明の実施例を説明する。図1に示す
転換装置の超臨界反応器24及び塩類分離器29を用い
て、5つの超臨界水条件で重質油を含むエマルジョンか
ら硫黄分及び金属不純物を除去した。エマルジョンには
アルカリ水溶液としてNaOH水溶液と、金属粉からな
る脱硫触媒を含有した。このときの重質油の物性を表1
に、また超臨界水条件及び硫黄分及び金属不純物の除去
率を表2にそれぞれ示す。硫黄分及び金属不純物の除去
率は塩類分離器29で分離された廃水中の硫黄分及び金
属不純物を重質油中の硫黄分及び金属不純物でそれぞれ
除することにより求めた。
Next, embodiments of the present invention will be described. Using the supercritical reactor 24 and the salt separator 29 of the conversion apparatus shown in FIG. 1, sulfur content and metal impurities were removed from the emulsion containing heavy oil under five supercritical water conditions. The emulsion contained an aqueous NaOH solution as an aqueous alkali solution and a desulfurization catalyst composed of metal powder. Table 1 shows the physical properties of the heavy oil at this time.
Table 2 shows the conditions of supercritical water and the removal rates of sulfur and metal impurities. The sulfur and metal impurity removal rates were determined by removing the sulfur and metal impurities in the wastewater separated by the salt separator 29 by the sulfur and metal impurities in the heavy oil, respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表2から明らかなように、超臨界水条件の
温度及び圧力を高めることにより、硫黄分及び金属不純
物の除去率が高まり、特に硫黄分の除去率は顕著であっ
た。
As is clear from Table 2, the removal rate of sulfur and metal impurities was increased by increasing the temperature and pressure under supercritical water conditions, and the removal rate of sulfur was particularly remarkable.

【0019】[0019]

【発明の効果】以上述べたように、本発明は重質油と水
とアルカリを混合したエマルジョンを水の超臨界状態の
温度及び圧力に維持することにより重質油を分解して分
解生成物を生成させ、これを水の亜臨界状態又はそれ以
下の温度及び圧力に維持して炭化水素系ガスと軽質油分
と水分を抽出し、抽出された炭化水素系ガスと軽質油分
と水分を互いに分離することにより、次の優れた効果を
有する。 (1) 重質油中の金属成分、硫黄分等の不純物を容易に無
害な無機塩にして除去することができるので、重質油ガ
ス化複合発電装置を構成するフィルタ、ガスタービン、
蒸気タービンに上記不純物が固着してこれらの装置の材
料を腐食させる恐れがない。このため従来の複合発電装
置に使用されている脱硫装置、脱アルカリ装置、脱窒装
置等の装置が必要とせず、制御が複雑にならず、比較的
硫黄分の多いオイルサンド、オイルシェールなどの重質
油を原料とすることができる。 (2) 超臨界反応で重質油が分解して生成した生成油と炭
化水素系ガスはともに高い熱量を有しているため、ガス
化反応炉で燃焼させて得られる可燃ガスをガスタービン
に供給することにより著しくガスタービン効率を向上さ
せることができ、燃焼排気温度も高くできる。この結
果、ガスタービンや蒸気タービン効率も向上し、複合発
電全体の効率を向上できる。
As described above, the present invention decomposes the heavy oil by decomposing the heavy oil by maintaining the emulsion in which the heavy oil, water and alkali are mixed at the temperature and pressure in the supercritical state of water. Is generated and maintained at a temperature and pressure lower than or equal to the subcritical state of water to extract hydrocarbon-based gas, light oil and moisture, and separate the extracted hydrocarbon-based gas, light oil and moisture from each other. By doing so, it has the following excellent effects. (1) Metal components in heavy oil, impurities such as sulfur can be easily converted into harmless inorganic salts and removed, so that a filter, a gas turbine,
There is no danger that the impurities will adhere to the steam turbine and corrode the materials of these devices. This eliminates the need for devices such as desulfurizers, de-alkalizers, and denitrifiers that are used in conventional combined cycle generators. Heavy oil can be used as a raw material. (2) Since both the product oil and hydrocarbon-based gas generated by the decomposition of heavy oil in the supercritical reaction have a high calorific value, the combustible gas obtained by burning in the gasification reactor is supplied to the gas turbine. By supplying the gas, the efficiency of the gas turbine can be significantly improved, and the temperature of the combustion exhaust gas can be increased. As a result, the efficiency of the gas turbine and the steam turbine is improved, and the efficiency of the combined power generation as a whole can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の重質油の発電設備
用流体燃料への転換装置の構成図。
FIG. 1 is a configuration diagram of a device for converting heavy oil into fluid fuel for power generation equipment according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の重質油の発電設備
用流体燃料への転換装置の構成図。
FIG. 2 is a configuration diagram of an apparatus for converting heavy oil into fluid fuel for power generation equipment according to a second embodiment of the present invention.

【図3】本発明の第1の実施の形態の転換装置と発電装
置の構成図。
FIG. 3 is a configuration diagram of a conversion device and a power generation device according to the first embodiment of the present invention.

【図4】従来の重質油ガス化複合発電装置の構成図。FIG. 4 is a configuration diagram of a conventional heavy oil gasification combined cycle power plant.

【符号の説明】[Explanation of symbols]

21 タンク 22 ポンプ 23 熱交換器 24,34 超臨界反応器 25 抽出器 26 減圧弁 27 気液分離器 28 油水分離器 29,36 塩類分離器 31 ポンプ(水の供給手段) 32 コンプレッサ(酸素源の供給手段) 33 バーナ Reference Signs List 21 tank 22 pump 23 heat exchanger 24, 34 supercritical reactor 25 extractor 26 pressure reducing valve 27 gas-liquid separator 28 oil-water separator 29, 36 salt separator 31 pump (water supply means) 32 compressor (oxygen source Supply means) 33 burner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10L 3/06 C10L 3/00 A (72)発明者 田中 皓 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 Fターム(参考) 4H013 AA02 4H029 AA11 AB01 AB03 AB05 AB10 AC03 AC04 AC05 AC07 AC08 AC12 AD08 AE27 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10L 3/06 C10L 3/00 A (72) Inventor Akira Tanaka 1-35-2 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Materials Corporation System Business Center F term (reference) 4H013 AA02 4H029 AA11 AB01 AB03 AB05 AB10 AC03 AC04 AC05 AC07 AC08 AC12 AD08 AE27

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重質油と水とアルカリを混合したエマル
ジョンを水の超臨界状態の温度及び圧力に維持すること
により前記重質油を分解して、炭化水素系ガス、油分、
金属酸化物、アルカリ塩及び超臨界水を生成する超臨界
反応工程と、 前記超臨界反応工程で得られた分解生成物を水の亜臨界
状態又はそれ以下の温度及び圧力に維持して前記分解生
成物から炭化水素系ガスと軽質油分と水分を抽出する抽
出工程と、 前記抽出工程で抽出された炭化水素系ガスと軽質油分と
水分を気液分離して炭化水素系ガスと軽質油分及び水分
とに分離する気液分離工程と、 前記気液分離工程で分離された軽質油分及び水分を軽質
油と水に分離する油水分離工程とを含む重質油の発電設
備用流体燃料への転換方法。
1. A heavy oil is decomposed by maintaining an emulsion obtained by mixing a heavy oil, water and an alkali at a temperature and pressure in a supercritical state of water to decompose the hydrocarbon oil, an oil component,
A supercritical reaction step of generating a metal oxide, an alkali salt and supercritical water, and the decomposition by maintaining the decomposition product obtained in the supercritical reaction step in a subcritical state of water or at a temperature and pressure lower than that An extraction step of extracting a hydrocarbon-based gas, a light oil component, and moisture from the product; and a gas-liquid separation of the hydrocarbon-based gas, the light oil component, and the moisture extracted in the extraction step, and a hydrocarbon-based gas, a light oil component, and a moisture component. A method for converting heavy oil to fluid fuel for power generation equipment, comprising: a gas-liquid separation step of separating the light oil and water separated in the gas-liquid separation step into light oil and water. .
【請求項2】 超臨界反応工程で得られた分解生成物を
水の亜臨界状態又はそれ以下の温度及び圧力に維持して
前記分解生成物から金属酸化物とアルカリ塩が溶解した
廃水を分離する塩類分離工程を更に含む請求項1記載の
転換方法。
2. The decomposition product obtained in the supercritical reaction step is maintained in a subcritical state of water or at a temperature and pressure lower than that of water to separate wastewater in which metal oxides and alkali salts are dissolved from the decomposition product. The conversion method according to claim 1, further comprising a salt separation step.
【請求項3】 油水分離工程で分離された水を塩類分離
工程に供給する請求項2記載の転換方法。
3. The conversion method according to claim 2, wherein the water separated in the oil-water separation step is supplied to the salt separation step.
【請求項4】 エマルジョンに脱硫触媒を加える請求項
1記載の転換方法。
4. The conversion method according to claim 1, wherein a desulfurization catalyst is added to the emulsion.
【請求項5】 超臨界反応工程に酸素源を加えて水の超
臨界状態の温度及び圧力に維持することによりCOガス
を生成し、このCOガスと超臨界水との反応により活性
水素を生成する工程を更に含む請求項1記載の転換方
法。
5. A CO gas is generated by adding an oxygen source to the supercritical reaction step to maintain the temperature and pressure of water in a supercritical state, and active hydrogen is generated by a reaction between the CO gas and supercritical water. 2. The method of claim 1, further comprising the step of:
【請求項6】 重質油と水とアルカリを貯えるタンク(2
1)と、 重質油と水とアルカリを水の超臨界状態に維持すること
により前記重質油を分解して、軽質油分、炭化水素系ガ
ス、金属酸化物、アルカリ塩及び超臨界水を生成する超
臨界反応器(24)と、 前記超臨界反応器(24)に接続されこの超臨界反応器(24)
で得られた分解生成物を水の亜臨界状態又はそれ以下の
温度及び圧力に維持して前記分解生成物から炭化水素系
ガスと軽質油分と水分を抽出する抽出器(25)と、 前記抽出器(25)で抽出された炭化水素系ガスと軽質油分
と水分を気液分離して炭化水素系ガスと軽質油分及び水
分とに分離する気液分離器(27)と、 前記気液分離器(27)で分離された軽質油分及び水分を軽
質油と水に分離する油水分離器(28)とを備えた重質油の
発電設備用流体燃料への転換装置。
6. A tank (2) for storing heavy oil, water and alkali.
1) and decomposing the heavy oil by maintaining the heavy oil, water and alkali in a water supercritical state, and converting the light oil component, hydrocarbon gas, metal oxide, alkali salt and supercritical water. A supercritical reactor (24) to be generated, and connected to the supercritical reactor (24), the supercritical reactor (24)
An extractor (25) for extracting the hydrocarbon-based gas, light oil and moisture from the decomposition product while maintaining the decomposition product obtained in the sub-critical state of water or at a temperature and pressure lower than that, A gas-liquid separator (27) for gas-liquid separation of the hydrocarbon-based gas, light oil and moisture extracted by the vessel (25) to separate the hydrocarbon-based gas, light oil and moisture, and the gas-liquid separator An apparatus for converting heavy oil to fluid fuel for power generation equipment, comprising an oil-water separator (28) for separating the light oil component and water separated in (27) into light oil and water.
【請求項7】 超臨界反応器(24,34)と一体的に又は別
に分離して設けられ、前記超臨界反応器(24,34)で得ら
れた分解生成物を水の亜臨界状態又はそれ以下の温度及
び圧力に維持して前記分解生成物から金属酸化物とアル
カリ塩が溶解した廃水を分離する塩類分離器(29,36)と
を更に有する請求項6記載の転換装置。
7. The decomposition product obtained in the supercritical reactor (24, 34) is provided integrally or separately from the supercritical reactor (24, 34), The conversion apparatus according to claim 6, further comprising a salt separator (29, 36) for separating wastewater in which the metal oxide and the alkali salt are dissolved from the decomposition product while maintaining the temperature and the pressure below the temperature.
【請求項8】 油水分離器(28)で分離された水を塩類分
離器(29,36)に供給する手段(31)を更に有する請求項7
記載の転換装置。
8. A means (31) for supplying water separated by the oil-water separator (28) to the salt separator (29, 36).
A conversion device as described.
【請求項9】 超臨界反応器(24,34)に酸素源を加える
手段(32)を更に有する請求項6記載の転換装置。
9. The converter according to claim 6, further comprising means (32) for adding a source of oxygen to the supercritical reactor (24, 34).
【請求項10】 気液分離器(27)で分離された炭化水素
系ガス及び油水分離器(28)で分離された油を主たる燃料
としてエマルジョンを加熱するバーナ(33)が超臨界反応
器(34)に設けられた請求項6記載の転換装置。
A burner (33) for heating an emulsion using the hydrocarbon-based gas separated by the gas-liquid separator (27) and the oil separated by the oil-water separator (28) as a main fuel, comprises a supercritical reactor (33). The conversion device according to claim 6, which is provided in (34).
JP10284887A 1998-10-07 1998-10-07 Process and device for converting heavy oil into fluid fuel for generating unit Withdrawn JP2000109850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10284887A JP2000109850A (en) 1998-10-07 1998-10-07 Process and device for converting heavy oil into fluid fuel for generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10284887A JP2000109850A (en) 1998-10-07 1998-10-07 Process and device for converting heavy oil into fluid fuel for generating unit

Publications (1)

Publication Number Publication Date
JP2000109850A true JP2000109850A (en) 2000-04-18

Family

ID=17684333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10284887A Withdrawn JP2000109850A (en) 1998-10-07 1998-10-07 Process and device for converting heavy oil into fluid fuel for generating unit

Country Status (1)

Country Link
JP (1) JP2000109850A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095953A (en) * 2000-09-21 2002-04-02 Japan Organo Co Ltd Reaction device for supercritical water
EP1342771A1 (en) * 2002-03-08 2003-09-10 Hitachi, Ltd. Process and apparatus for treating heavy oil and power generation system equipped therewith
EP1616931A1 (en) 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
JPWO2004037731A1 (en) * 2002-10-22 2006-02-23 財団法人大阪産業振興機構 Methane gas manufacturing method
JP2006233838A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Gas turbine system burning reformed fuel of heavy oil, and its operation method
JP2007051223A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil
JP2008031247A (en) * 2006-07-27 2008-02-14 T Rad Co Ltd Method for pyrolyzing polystyrene
EP1903091A1 (en) * 2006-09-20 2008-03-26 Forschungszentrum Karlsruhe GmbH Gasification method for biomass
US7591983B2 (en) 2003-08-05 2009-09-22 Hitachi, Ltd. Heavy oil treating method and heavy oil treating system
US7740065B2 (en) 2007-11-28 2010-06-22 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
JP2011144108A (en) * 2009-04-27 2011-07-28 Tamiaki Kanabe Apparatus for producing gas
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
KR101824186B1 (en) * 2015-07-27 2018-01-31 삼성중공업 주식회사 Apparatus for treating produced water
US10011790B2 (en) 2015-12-15 2018-07-03 Saudi Arabian Oil Company Supercritical water processes for upgrading a petroleum-based composition while decreasing plugging
WO2018128880A1 (en) * 2017-01-04 2018-07-12 Saudi Arabian Oil Company Systems and processes for power generation
US10066172B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce paraffinic stream from heavy oil
US10066176B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce high grade coke
US10119081B2 (en) 2015-12-15 2018-11-06 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10577546B2 (en) 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
US11162035B2 (en) 2020-01-28 2021-11-02 Saudi Arabian Oil Company Catalytic upgrading of heavy oil with supercritical water
CN114921257A (en) * 2022-07-14 2022-08-19 太原理工大学 Method for improving quality of oil shale pyrolysis oil through deep pyrolysis

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095953A (en) * 2000-09-21 2002-04-02 Japan Organo Co Ltd Reaction device for supercritical water
US7264710B2 (en) 2002-03-08 2007-09-04 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
EP1342771A1 (en) * 2002-03-08 2003-09-10 Hitachi, Ltd. Process and apparatus for treating heavy oil and power generation system equipped therewith
US7767076B2 (en) 2002-03-08 2010-08-03 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
JPWO2004037731A1 (en) * 2002-10-22 2006-02-23 財団法人大阪産業振興機構 Methane gas manufacturing method
JP4590613B2 (en) * 2002-10-22 2010-12-01 財団法人大阪産業振興機構 Method for producing methane gas
US7591983B2 (en) 2003-08-05 2009-09-22 Hitachi, Ltd. Heavy oil treating method and heavy oil treating system
US7594387B2 (en) 2004-07-15 2009-09-29 Hitachi, Ltd. Modified fuel burning gas turbine
JP2006029184A (en) * 2004-07-15 2006-02-02 Hitachi Ltd Reformed fuel combustion gas turbine and method for operating the same
EP1616931A1 (en) 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
JP4555010B2 (en) * 2004-07-15 2010-09-29 株式会社日立製作所 Reformed fuel-fired gas turbine and operation method thereof
JP2006233838A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Gas turbine system burning reformed fuel of heavy oil, and its operation method
JP4495004B2 (en) * 2005-02-24 2010-06-30 株式会社日立製作所 Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JP2007051223A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil
JP2008031247A (en) * 2006-07-27 2008-02-14 T Rad Co Ltd Method for pyrolyzing polystyrene
EP1903091A1 (en) * 2006-09-20 2008-03-26 Forschungszentrum Karlsruhe GmbH Gasification method for biomass
US8815081B2 (en) 2007-11-28 2014-08-26 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US7740065B2 (en) 2007-11-28 2010-06-22 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
US9295957B2 (en) 2007-11-28 2016-03-29 Saudi Arabian Oil Company Process to reduce acidity of crude oil
US10010839B2 (en) 2007-11-28 2018-07-03 Saudi Arabian Oil Company Process to upgrade highly waxy crude oil by hot pressurized water
JP2011144108A (en) * 2009-04-27 2011-07-28 Tamiaki Kanabe Apparatus for producing gas
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
JP2013515141A (en) * 2009-12-21 2013-05-02 サウジ アラビアン オイル カンパニー Process of mixing water, oxidant and heavy oil under supercritical temperature and pressure conditions and finally subjecting the mixture to microwave treatment
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US9957450B2 (en) 2010-09-14 2018-05-01 Saudi Arabian Oil Company Petroleum upgrading process
KR101824186B1 (en) * 2015-07-27 2018-01-31 삼성중공업 주식회사 Apparatus for treating produced water
US10066176B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce high grade coke
US10543468B2 (en) 2015-12-15 2020-01-28 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10066172B2 (en) 2015-12-15 2018-09-04 Saudi Arabian Oil Company Supercritical water upgrading process to produce paraffinic stream from heavy oil
US10011790B2 (en) 2015-12-15 2018-07-03 Saudi Arabian Oil Company Supercritical water processes for upgrading a petroleum-based composition while decreasing plugging
US10119081B2 (en) 2015-12-15 2018-11-06 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10344228B2 (en) 2015-12-15 2019-07-09 Saudi Arabian Oil Company Supercritical water upgrading process to produce high grade coke
US10384179B2 (en) 2015-12-15 2019-08-20 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US11021660B2 (en) 2015-12-15 2021-06-01 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10995281B2 (en) 2015-12-15 2021-05-04 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10640715B2 (en) 2015-12-15 2020-05-05 Saudi Arabian Oil Company Supercritical reactor systems and processes for petroleum upgrading
US10815434B2 (en) 2017-01-04 2020-10-27 Saudi Arabian Oil Company Systems and processes for power generation
US10577546B2 (en) 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
WO2018128880A1 (en) * 2017-01-04 2018-07-12 Saudi Arabian Oil Company Systems and processes for power generation
US11162035B2 (en) 2020-01-28 2021-11-02 Saudi Arabian Oil Company Catalytic upgrading of heavy oil with supercritical water
CN114921257A (en) * 2022-07-14 2022-08-19 太原理工大学 Method for improving quality of oil shale pyrolysis oil through deep pyrolysis

Similar Documents

Publication Publication Date Title
JP2000109850A (en) Process and device for converting heavy oil into fluid fuel for generating unit
JP4098181B2 (en) Heavy oil treatment method and heavy oil treatment system
US4193259A (en) Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
US4202167A (en) Process for producing power
CN108884761B (en) Ammonia cracking
EP1247004B1 (en) Method of operating a power plant
US7937948B2 (en) Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US7264710B2 (en) Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
AU2010272097B2 (en) Hydrogen Production Method and Hydrogen Production System
US20050072137A1 (en) Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
WO2008137815A1 (en) Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
CZ2004440A3 (en) Method for controlling temperature of combustion turbine inlet fuel in order to achieve maximum power output
EA000504B1 (en) Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
EP3169879B1 (en) Integrated calcium looping combined cycle for sour gas applications
CA2739420C (en) Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US20150159126A1 (en) System for hydrogen production and carbon sequestration
JP2008069017A (en) Method for producing hydrogen
EP3906356B1 (en) System and method for adjusting pressure in a reservoir
JP2554230B2 (en) Combined cycle power generation method
GB2456169A (en) A method and associated apparatus for the production of hydrogen and/or electric energy
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
JP3947887B2 (en) Method and apparatus for converting coal into fuel for power generation facilities
JP2001173930A (en) Recovery processing method for effluent oil and apparatus therefor
JP2001050010A (en) Power plant
JP2001294873A (en) Method for converting cola into fuel for power generation and equipment therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110