JP2001050010A - Power plant - Google Patents

Power plant

Info

Publication number
JP2001050010A
JP2001050010A JP22591099A JP22591099A JP2001050010A JP 2001050010 A JP2001050010 A JP 2001050010A JP 22591099 A JP22591099 A JP 22591099A JP 22591099 A JP22591099 A JP 22591099A JP 2001050010 A JP2001050010 A JP 2001050010A
Authority
JP
Japan
Prior art keywords
fuel
supercritical
boiler
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22591099A
Other languages
Japanese (ja)
Inventor
Koji Ono
孝治 小野
Yutaka Hasegawa
裕 長谷川
Kazuya Yamada
和矢 山田
Tetsuya Furuya
徹也 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22591099A priority Critical patent/JP2001050010A/en
Publication of JP2001050010A publication Critical patent/JP2001050010A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To reduce the number of facilities additionally provided for suppressing emission of hazardous substances by mixing organic fuel to be combusted in a supercritical pressure boiler with supercritical pressure water to reform fuel not containing hazardous material, and separating the reformed fuel from the mixture to be supplied in the supercritical pressure boiler. SOLUTION: In a reformer 7, critical pressure water extracted from a supercritical pressure boiler 1 and fuel containing hazardous substances are mixed to separate the hazardous substances therefrom and reform the fuel not to contain hazardous substances. In a separator 7, the mixture of the supercritical pressure water is separated into the reformed fuel, hazardous substances, clean supercritical pressure water having a temperature higher than that when extracted from the supercritical pressure boiler 1. The separated reform fuel is supplied in the supercritical pressure boiler 1 by a reformed-fuel supply device 12. The high-temperature supercritical pressure water is returned to a high-temperature section at an outlet point in a supercritical pressure system 8. Since the reformed fuel is combusted in the supercritical pressure boiler 1, devices such as smoke desulphurizer and dust collector become unnecessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界水を用いて
有機物質の燃料を改質し、その改質した燃料を用いて発
電を行うようにした発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation facility in which an organic fuel is reformed using supercritical water and power is generated using the reformed fuel.

【0002】[0002]

【従来の技術】一般に、火力発電プラントは、石炭、石
油、天然ガス等の有機物質を燃料としている。例えば、
石炭火力発電プラントでは、ボイラ内に燃料として石炭
(微粉炭)を吹き込んで燃焼させる。ボイラへの給水は
ボイラ給水ポンプにより給水され、高圧給水加熱器で加
熱されて、さらに節炭器で予熱されボイラ内の熱交換配
管にて蒸気となる。この蒸気を一次過熱器および二次過
熱器で過熱して過熱蒸気とした後に、高圧タービンに導
いてこれを駆動させる。さらに再熱器を通して再熱した
後に、中圧・低圧タービンを駆動させ、これらの高圧タ
ービン、中圧・低圧タービンに直結した発電機を駆動さ
せて発電を行わせる。
2. Description of the Related Art Generally, a thermal power plant uses an organic substance such as coal, oil, or natural gas as a fuel. For example,
In a coal-fired power plant, coal (pulverized coal) is blown into a boiler as fuel and burned. The water supply to the boiler is supplied by a boiler water supply pump, heated by a high pressure feed water heater, preheated by a coal saver, and turned into steam in a heat exchange pipe in the boiler. This steam is superheated by a primary superheater and a secondary superheater to be superheated steam, and then guided to a high-pressure turbine to be driven. Further, after reheating through the reheater, the medium pressure / low pressure turbine is driven, and the high pressure turbine and the generator directly connected to the medium pressure / low pressure turbine are driven to generate power.

【0003】タービンを駆動させた蒸気は、復水器で水
に戻された後に復水ポンプで復水処理装置に送られ、水
中の不純物(無機物、有機物、イオンなど)が除去され
る。その後、低圧給水加熱器および脱気器を通して、再
びボイラ給水ポンプを通じてボイラへの給水となる。
[0003] The steam that drives the turbine is returned to water by a condenser and then sent to a condensate treatment device by a condensate pump to remove impurities (inorganic, organic, ions, etc.) in the water. After that, the water is supplied to the boiler again through the low pressure feed water heater and the deaerator and again through the boiler feed pump.

【0004】このような石炭火力の発電プラントでは、
石炭燃焼に伴って排ガスが発生する。そこで、環境対策
のため、排ガス中に含まれる物質(硫黄酸化物、窒素酸
化物、煤塵など)を除去するための付帯設備が設けられ
る。一般的には、排煙脱硝及び集塵装置(電気集塵器
等)や排煙脱硫装置が設けられ、排ガスはこれらの付帯
設備を通した後に煙突から排出される。
In such a coal-fired power plant,
Exhaust gas is generated with coal combustion. Therefore, for environmental measures, ancillary equipment for removing substances (sulfur oxide, nitrogen oxide, dust, etc.) contained in the exhaust gas is provided. Generally, a flue gas denitration and dust collection device (such as an electric dust collector) and a flue gas desulfurization device are provided, and the exhaust gas is discharged from the chimney after passing through these auxiliary facilities.

【0005】一方、重油火力発電プラントでは、石炭火
力発電プラントと比べて燃料が重油に代わることであ
る。供給燃料の重油は石炭に比べて硫黄分が少ないもの
あるいは重油の脱硫処理を施したものを使用すると、排
ガス中からの脱硫処理を省略することができて脱硝集塵
装置に置き換えることができる。また、排ガス中の煤塵
が少ない場合には、排ガス処理用の付帯設備である集塵
装置を省略できる場合がある点で異なる。その他のプラ
ントの構成は石炭火力発電プラントと略同じである。
[0005] On the other hand, in a heavy oil-fired power plant, fuel is replaced with heavy oil as compared with a coal-fired power plant. If the fuel oil used is a fuel oil having a lower sulfur content than coal or a fuel oil subjected to a desulfurization treatment, the desulfurization treatment from the exhaust gas can be omitted, and it can be replaced with a denitration dust collector. Further, when the amount of dust in the exhaust gas is small, there is a difference in that a dust collector, which is an auxiliary facility for exhaust gas treatment, may be omitted. Other configurations of the plant are substantially the same as those of the coal-fired power plant.

【0006】また、液化天然ガス(LNG)を燃料とす
るガスタービンコンバインドサイクル発電プラントは、
ガスタービン装置と、その燃焼排ガスを熱源として蒸気
を発生する排熱回収ボイラ装置と、この排熱回収ボイラ
装置で発生した蒸気により駆動される蒸気タービン装置
と、ガスタービン装置及び蒸気タービン装置に直結され
た発電機とを備えた構成をなしている。
A gas turbine combined cycle power plant using liquefied natural gas (LNG) as a fuel
A gas turbine device, an exhaust heat recovery boiler device that generates steam using the combustion exhaust gas as a heat source, a steam turbine device driven by the steam generated by the exhaust heat recovery boiler device, and directly connected to the gas turbine device and the steam turbine device And a generator provided.

【0007】このガスタービンコンバインドサイクル発
電プラントのガスタービン装置は、圧縮空気を発生する
空気圧縮機と、燃料系統からの燃料(LNG)に圧縮空
気を混合して燃焼させる燃焼器と、燃焼器で生じた燃焼
ガスにより駆動されるガスタービンとを備えている。ま
た、排熱回収ボイラ装置は、ガスタービンから出た燃焼
ガスのガス流の上流から下流に向かって順次に、過熱
器、第1の蒸発器、脱硝触媒を有する脱硝装置、第2の
蒸発器、節炭器が設けられ、排ガスは煙突から排出され
る。
The gas turbine apparatus of this gas turbine combined cycle power plant comprises an air compressor for generating compressed air, a combustor for mixing fuel (LNG) from a fuel system with compressed air for combustion, and a combustor. A gas turbine driven by the generated combustion gas. The exhaust heat recovery boiler device includes a deheater, a first evaporator, a denitration device having a denitration catalyst, and a second evaporator, which are arranged in order from upstream to downstream of the gas flow of the combustion gas discharged from the gas turbine. And an economizer is installed, and the exhaust gas is discharged from the chimney.

【0008】排熱回収ボイラの節炭器には、復水ポンプ
から導かれた給水が供給されて予熱され、その給水の一
部は第2の蒸発器で蒸気化した後に蒸気タービン装置に
送られる。残りの給水は、給水ポンプを通して第1の蒸
発器で蒸気化された後に、過熱器で過熱されて過熱蒸気
となり蒸気タービンに導入される。蒸気タービンで仕事
を終えた蒸気は、復水器で凝縮され水に戻される。
[0008] Feed water from a condensate pump is supplied to the economizer of the waste heat recovery boiler to be preheated, and a part of the feed water is vaporized by a second evaporator and then sent to a steam turbine device. Can be The remaining feedwater is vaporized by a first evaporator through a feedwater pump, and then superheated by a superheater to become superheated steam and introduced into a steam turbine. The steam that has completed its work in the steam turbine is condensed in the condenser and returned to water.

【0009】ここで、脱硝装置は、燃焼ガスに含まれる
窒素酸化物NOx濃度を低減させるためのものであり、
接触還元分解によりNOxを除去する触媒層を有する反
応器と、その上流側に還元剤(通常アンモニアガス)を
注入する還元剤注入ノズルとを備えている。
[0009] Here, the denitration device is for reducing the concentration of nitrogen oxides NOx contained in the combustion gas.
The reactor includes a reactor having a catalyst layer for removing NOx by catalytic reductive decomposition, and a reducing agent injection nozzle for injecting a reducing agent (usually ammonia gas) upstream of the reactor.

【0010】[0010]

【発明が解決しようとする課題】ところが、既存の火力
発電プラントでは、大規模な排ガス処理の付帯設備が必
要である。すなわち、熱エネルギーを蒸気エネルギーに
変換して発電する主要設備の他に、排出される燃焼ガス
(排ガス)中に含まれる硫黄酸化物、窒素酸化物、煤
塵、有害有機物などを除去するための排ガス処理の付帯
設備が必要である。しかも、一般に排ガス量は大量であ
るから、このための排ガス処理付帯設備は大規模にな
る。また、有害物質(イオウ分等)を含んだ燃料を燃焼す
ると、その燃焼系統の部材が腐食損傷等を起こし、燃焼
系統の部材寿命を縮めると言う問題がある。
However, existing thermal power plants require large-scale exhaust gas treatment facilities. In other words, in addition to the main equipment that converts thermal energy into steam energy to generate power, exhaust gas for removing sulfur oxides, nitrogen oxides, dust, harmful organic substances, etc. contained in the exhaust gas (exhaust gas) Ancillary equipment for processing is required. In addition, since the amount of exhaust gas is generally large, facilities for exhaust gas treatment for this purpose are large-scale. Further, when fuel containing harmful substances (such as sulfur) is burned, there is a problem that members of the combustion system cause corrosion damage and shorten the life of the members of the combustion system.

【0011】また、ガスタービンコンバインドサイクル
発電プラントの場合は、一般に液化天然ガス(LNGガ
ス)を燃料として燃焼ガスをガスタービンに送っている
が、LNGガスの埋蔵量に限りがある。また、LNGガ
スを使用するためには、その周辺に巨大なLNG基地の
建設が必須であり、基地建設の費用は莫大なものとなり
簡単に基地建設というわけには至らない。
In a gas turbine combined cycle power plant, combustion gas is generally sent to a gas turbine using liquefied natural gas (LNG gas) as a fuel, but the reserves of LNG gas are limited. In addition, in order to use LNG gas, it is necessary to construct a huge LNG base around the base, and the cost of the base construction is enormous, and it is not easy to construct the base.

【0012】一方、これらの対応として、この地球上に
無尽蔵といってよいほどある石炭燃料を有効利用するこ
とが、急務として上げられ、低品質炭のガス化システム
等が検討実用化されている。しかし、これらも、その設
備費用効果の面で、まだまだ十分でない状態である。
On the other hand, there is an urgent need to effectively use coal fuel which is almost inexhaustible on the earth as a response to these problems, and a gasification system of low quality coal has been studied and put to practical use. . However, these are still inadequate in terms of equipment cost-effectiveness.

【0013】本発明の目的は、燃料に含まれる有害物質
の放出を抑制するための付帯設備を低減できる発電設備
を提供することである。
[0013] An object of the present invention is to provide a power generation facility capable of reducing incidental facilities for suppressing emission of harmful substances contained in fuel.

【0014】[0014]

【課題を解決するための手段】請求項1に係わる発電設
備は、超臨界圧ボイラからの蒸気で発電機が接続された
蒸気タービンを駆動し前記蒸気タービンで仕事を終え凝
縮された水を給水過熱器で加熱して前記超臨界圧ボイラ
に戻すようにした発電設備において、前記超臨界圧ボイ
ラから超臨界水を取り出す超臨界水系統と、前記超臨界
圧ボイラで燃焼させる有機物質の燃料を供給する燃料供
給系統と、前記燃料供給系統からの燃料と前記超臨界水
系統からの超臨界水とを混合し有害物質を含まない燃料
に改質する改質器と、前記改質器からの混合物から改質
燃料を分離して抽出し前記超臨界圧ボイラに供給する分
離器とを備えたことを特徴とする。
According to a first aspect of the present invention, there is provided a power generation facility, wherein steam from a supercritical pressure boiler drives a steam turbine to which a generator is connected, and supplies water condensed after completing work in the steam turbine. In a power generation facility that is heated by a superheater and returned to the supercritical pressure boiler, a supercritical water system that takes out supercritical water from the supercritical pressure boiler, and a fuel of an organic substance to be burned in the supercritical pressure boiler A fuel supply system to be supplied, a reformer that mixes fuel from the fuel supply system and supercritical water from the supercritical water system to reform the fuel into a fuel containing no harmful substances, A separator that separates and extracts the reformed fuel from the mixture and supplies the reformed fuel to the supercritical boiler.

【0015】請求項1に係わる発電設備では、改質器
は、燃料供給系統からの燃料と超臨界水系統からの超臨
界水とを混合し有害物質を含まない燃料に改質し、分離
器は、改質器からの混合物から改質燃料を分離して抽出
し超臨界圧ボイラに供給する。
In the power generation equipment according to claim 1, the reformer mixes the fuel from the fuel supply system and the supercritical water from the supercritical water system to reform the fuel into a fuel containing no harmful substances. Separates and extracts reformed fuel from the mixture from the reformer and supplies it to the supercritical boiler.

【0016】請求項2に係わる発電設備は、請求項1の
発明において、前記分離器は、前記改質器からの混合物
から、改質燃料、有害物質、超臨界水を別々に取り出
し、前記改質燃料および前記超臨界水は前記超臨界圧ボ
イラに供給し、前記有害物質は系外に排出することを特
徴とする。
According to a second aspect of the present invention, in the power generation equipment according to the first aspect, the separator separately takes out the reformed fuel, the harmful substance, and the supercritical water from the mixture from the reformer. The fuel and the supercritical water are supplied to the supercritical boiler, and the harmful substances are discharged out of the system.

【0017】請求項2に係わる発電設備では、請求項1
の発明の作用に加え、分離器は、改質器からの混合物か
ら、改質燃料、有害物質、超臨界水を別々に取り出す。
そして、改質燃料および超臨界水は超臨界圧ボイラに供
給し、有害物質は系外に排出する。
In the power generation equipment according to claim 2, claim 1 is
In addition to the operation of the invention, the separator separately removes reformed fuel, harmful substances, and supercritical water from the mixture from the reformer.
Then, the reformed fuel and the supercritical water are supplied to the supercritical pressure boiler, and the harmful substances are discharged out of the system.

【0018】請求項3に係わる発電設備は、請求項1ま
たは請求項2の発明において、前記超臨界圧ボイラに供
給する高圧水を電気分解して高圧の水素を発生させ、そ
の高圧の水素を前記改質器に注入する高圧水素発生装置
を備えたことを特徴とする。
According to a third aspect of the present invention, in the power generation equipment according to the first or second aspect, high-pressure water supplied to the supercritical pressure boiler is electrolyzed to generate high-pressure hydrogen, and the high-pressure hydrogen is generated. A high-pressure hydrogen generator for injecting into the reformer is provided.

【0019】請求項3に係わる発電設備では、請求項1
または請求項2の発明の作用に加え、高圧水素発生装置
は、超臨界圧ボイラに供給する高圧水を導入し、電気分
解して高圧の水素を発生させる。その高圧の水素は改質
器に注入する。
In the power generation equipment according to claim 3, claim 1 is
Alternatively, in addition to the function of the invention of claim 2, the high-pressure hydrogen generator introduces high-pressure water supplied to the supercritical pressure boiler and electrolyzes to generate high-pressure hydrogen. The high pressure hydrogen is injected into the reformer.

【0020】請求項4に係わる発電設備は、請求項1の
発明において、前記分離器で分離された改質燃料を、ガ
スタービン発電システムのガス化炉に導くことを特徴と
する。
According to a fourth aspect of the present invention, in the power generation equipment according to the first aspect of the present invention, the reformed fuel separated by the separator is guided to a gasification furnace of a gas turbine power generation system.

【0021】請求項4に係わる発電設備では、請求項1
の発明の作用に加え、分離器で分離された改質燃料は、
超臨界圧ボイラだけでなく、ガスタービン発電システム
のガス化炉にも導かれる。
In the power generation equipment according to claim 4, claim 1 is provided.
In addition to the operation of the invention of the above, the reformed fuel separated by the separator is
It is led not only to supercritical boilers but also to gasifiers in gas turbine power generation systems.

【0022】請求項5に係わる発電設備は、亜臨界圧ボ
イラからの蒸気で発電機が接続された蒸気タービンを駆
動し前記蒸気タービンで仕事を終え凝縮された水を給水
過熱器で加熱して前記亜臨界圧ボイラに戻すようにした
発電設備において、前記亜臨界圧ボイラで燃焼させる有
機物質の燃料を供給する燃料供給系統と、前記亜臨界圧
ボイラに供給する高圧水を抽出し超臨界水を発生させる
超臨界水発生装置と、前記燃料供給系統からの燃料と前
記超臨界水発生装置からの超臨界水とを混合し有害物質
を含まない燃料に改質する改質器と、前記改質器からの
混合物から改質燃料を分離して抽出し前記亜臨界ボイラ
に供給する分離器とを備えたことを特徴とする。
According to a fifth aspect of the present invention, the steam from the subcritical boiler drives a steam turbine to which a generator is connected, and heats condensed water after completing work in the steam turbine and heating the condensed water with a feedwater superheater. In a power generation facility adapted to return to the subcritical boiler, a fuel supply system for supplying a fuel of an organic substance to be burned in the subcritical boiler, and a supercritical water extracting and extracting high pressure water to be supplied to the subcritical boiler A reformer for mixing fuel from the fuel supply system and supercritical water from the supercritical water generator to reform the fuel into a fuel containing no harmful substances; and And a separator for separating and extracting the reformed fuel from the mixture from the reformer and supplying the reformed fuel to the subcritical boiler.

【0023】請求項5に係わる発電設備では、改質器
は、燃料供給系統からの燃料と超臨界水発生装置からの
超臨界水とを混合し有害物質を含まない燃料に改質す
る。分離器は、改質器からの混合物から改質燃料を分離
して抽出し亜臨界ボイラに供給する。
[0023] In the power generation equipment according to claim 5, the reformer mixes the fuel from the fuel supply system and the supercritical water from the supercritical water generator to reform the fuel into a fuel containing no harmful substances. The separator separates and extracts the reformed fuel from the mixture from the reformer and supplies it to the subcritical boiler.

【0024】請求項6に係わる発電設備は、請求項5の
発明において、前記亜臨界圧ボイラに供給する高圧水を
電気分解して高圧の水素を発生させ、その高圧の水素を
前記改質器に注入する高圧水素発生装置を備えたことを
特徴とする。
According to a sixth aspect of the present invention, in the power generation equipment according to the fifth aspect of the present invention, high-pressure water supplied to the subcritical boiler is electrolyzed to generate high-pressure hydrogen, and the high-pressure hydrogen is converted into the reformer. A high-pressure hydrogen generator for injecting hydrogen into the fuel cell.

【0025】請求項6に係わる発電設備では、請求項5
の発明の作用に加え、高圧水素発生装置は、亜臨界圧ボ
イラに供給する高圧水を電気分解して高圧の水素を発生
させる。そして、その高圧の水素を改質器に注入する。
In the power generation equipment according to claim 6,
In addition to the operation of the invention, the high-pressure hydrogen generator generates high-pressure hydrogen by electrolyzing high-pressure water supplied to the subcritical boiler. Then, the high-pressure hydrogen is injected into the reformer.

【0026】請求項7に係わる発電設備は、請求項5の
発明において、前記分離器で分離された改質燃料を、ガ
スタービン発電システムのガス化炉に導くことを特徴と
する。
According to a seventh aspect of the present invention, in the power generation equipment according to the fifth aspect, the reformed fuel separated by the separator is guided to a gasification furnace of a gas turbine power generation system.

【0027】請求項7に係わる発電設備では、請求項5
の発明の作用に加え、分離器で分離された改質燃料は、
亜臨界圧ボイラだけでなく、ガスタービン発電システム
のガス化炉にも導かれる。
In the power generation equipment according to claim 7,
In addition to the operation of the invention of the above, the reformed fuel separated by the separator is
It is led not only to subcritical boilers but also to gasifiers in gas turbine power generation systems.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態に係わる発電設
備の構成図である。図1において、超臨界圧ボイラ1で
発生した蒸気は、蒸気タービン2に導かれ発電機3を駆
動し発電する。蒸気タービン2で仕事を終えた蒸気は、
復水器4で凝縮され、その凝縮された水は給水ポンプ5
により給水加熱器6に導かれる。そして、給水加熱器6
で加熱されて超臨界圧ボイラ1に戻される。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a power generation facility according to a first embodiment of the present invention. In FIG. 1, steam generated by a supercritical boiler 1 is guided to a steam turbine 2 to drive a generator 3 to generate power. The steam that has finished work in the steam turbine 2
The water condensed in the condenser 4 and the condensed water is
Is led to the feed water heater 6. And feed water heater 6
And returned to the supercritical boiler 1.

【0029】超臨界圧ボイラ1内では、水の状態は臨界
圧および臨界温度を超えた状態の超臨界水である。つま
り、臨界温度374℃以上、臨界圧力22.1MPa以
上であり、気相と液相間の転移を示さなく状態の超臨界
域である。
In the supercritical pressure boiler 1, the state of water is supercritical water exceeding the critical pressure and critical temperature. In other words, the supercritical region has a critical temperature of 374 ° C. or higher and a critical pressure of 22.1 MPa or higher, and does not exhibit a transition between a gas phase and a liquid phase.

【0030】改質器7は、超臨界水系統8を介して超臨
界圧ボイラ1から注出した超臨界水と、燃料供給系統9
を介して供給される有害物質を含む燃料とを混合し、燃
料の有害物質を抽出し、有害物質を含まない燃料に改質
する。すなわち、超臨界圧ボイラ1の節炭器下流の火炉
部付近から注水された超臨界水は、超臨界水系統8を経
由して改質器7に供給される。一方、改質器7にはボイ
ラー用の低質燃料が燃料供給系統9から供給され、改質
器7内で超臨界水と混合される。混合状態が、ある一定
時間経過すると、供給された低質燃料から有害物質が超
臨界水に抽出される。
The reformer 7 includes supercritical water discharged from the supercritical boiler 1 via a supercritical water system 8 and a fuel supply system 9.
Is mixed with a fuel containing a harmful substance supplied through the fuel cell, a harmful substance of the fuel is extracted, and the fuel is reformed into a fuel containing no harmful substance. That is, the supercritical water injected from the vicinity of the furnace portion downstream of the economizer of the supercritical pressure boiler 1 is supplied to the reformer 7 via the supercritical water system 8. On the other hand, low quality fuel for boilers is supplied to the reformer 7 from the fuel supply system 9 and mixed with supercritical water in the reformer 7. After a certain period of time in the mixing state, harmful substances are extracted from the supplied low-quality fuel into supercritical water.

【0031】この状態を経た超臨界水の混合体は分離器
10に導かれ、そこで、改質された燃料、有害物質、並
びに超臨界圧ボイラ1から抽出した時よりもより高い温
度になった清浄な超臨界水とに分離される。
The mixture of supercritical water passing through this state is led to a separator 10 where it has a higher temperature than when it was extracted from the reformed fuel, noxious substances and supercritical pressure boiler 1. It is separated into clean supercritical water.

【0032】分離された改質燃料は改質燃料供給系統1
1を経て、改質燃料供給装置12に導かれ超臨界圧ボイ
ラ1に供給される。一方、有害物質は有害物質排出系統
13から排出される。また、より高温の超臨界水は超臨
界水戻し系統14を経て、超臨界圧ボイラ1の超臨界水
系統8の取り出し点より高温部に戻される。
The separated reformed fuel is supplied to the reformed fuel supply system 1
After that, the fuel is guided to the reforming fuel supply device 12 and supplied to the supercritical boiler 1. On the other hand, harmful substances are discharged from the harmful substance discharge system 13. Further, the higher-temperature supercritical water is returned to the high-temperature portion from the extraction point of the supercritical water system 8 of the supercritical pressure boiler 1 via the supercritical water return system 14.

【0033】燃料の改質をさらに高度化するために、給
水加熱器6で加熱した後の高圧水を抽出し、高圧水系統
15を経由して高圧水素発生装置16に導き、この高圧
水素発生装置16で電気分解により水素を発生させる。
この高圧水素発生装置16で発生した高圧水素は、水素
供給系統17を経由して改質器7に送られる。これによ
り、燃料の発熱量を高め超臨界圧発電プラントの熱効率
を高めることができる。
In order to further enhance the reforming of the fuel, high-pressure water heated by the feed water heater 6 is extracted and led to the high-pressure hydrogen generator 16 via the high-pressure water system 15, and this high-pressure hydrogen generation is performed. The apparatus 16 generates hydrogen by electrolysis.
The high-pressure hydrogen generated by the high-pressure hydrogen generator 16 is sent to the reformer 7 via the hydrogen supply system 17. Thereby, the calorific value of the fuel can be increased and the thermal efficiency of the supercritical power plant can be increased.

【0034】このように、超臨界圧発電プラントの超臨
界圧ボイラ1より超臨界水を抽出し、その超臨界水を低
品質の燃料に注入して燃料の改質を行う。そして、改質
を行った燃料を超臨界圧ボイラ1で燃焼させるので、超
臨界圧ボイラ1の排煙脱硫装置や集塵装置が不要とな
る。従って、超臨界圧発電プラントの全体の建設費を低
減させることが可能となり、プラント全体の熱効率を高
めかつ超臨界圧ボイラ1の腐食トラブルを軽減すること
ができる。
As described above, supercritical water is extracted from the supercritical pressure boiler 1 of the supercritical power plant, and the supercritical water is injected into low-quality fuel to reform the fuel. Since the reformed fuel is burned in the supercritical boiler 1, a flue gas desulfurization device and a dust collector of the supercritical boiler 1 become unnecessary. Therefore, it is possible to reduce the construction cost of the entire supercritical power plant, to increase the thermal efficiency of the entire plant, and to reduce the corrosion trouble of the supercritical boiler 1.

【0035】次に、本発明の第2の実施の形態を説明す
る。図2は、本発明の第2の実施の形態に係わる発電設
備の構成図である。この第2の実施の形態は、図1に示
す第1の実施の形態に対し、分離器10で分離された改
質燃料を、ガスタービン発電システム18のガス化炉1
9に導くようにしたものである。図2では、ガスタービ
ン発電システム18として、ガスタービン20と蒸気タ
ービン2Aとを備えた複合発電システムを示している。
Next, a second embodiment of the present invention will be described. FIG. 2 is a configuration diagram of a power generation facility according to the second embodiment of the present invention. The second embodiment differs from the first embodiment shown in FIG. 1 in that the reformed fuel separated by the separator 10 is supplied to the gasification furnace 1 of the gas turbine power generation system 18.
9. FIG. 2 shows a combined power generation system including a gas turbine 20 and a steam turbine 2A as the gas turbine power generation system 18.

【0036】図2において、分離器10で改質された改
質燃料は、改質燃料供給装置12を介して超臨界圧ボイ
ラ1に供給されると共に、ガスタービン発電システム1
8のガス化炉19にも供給される。ガス化炉19は、改
質燃料をガスタービン20の燃焼器21に気体燃料とし
て供給する。
In FIG. 2, the reformed fuel reformed by the separator 10 is supplied to the supercritical boiler 1 via the reformed fuel supply device 12, and the gas turbine power generation system 1
8 is also supplied to the gasification furnace 19. The gasifier 19 supplies the reformed fuel to the combustor 21 of the gas turbine 20 as a gaseous fuel.

【0037】燃焼器21で燃焼した改質燃料は、ガスタ
ービン20の駆動燃料ガスとしてガスタービン20に供
給されガスタービン20を駆動する。ガスタービン20
で仕事を終えた排ガスは排熱回収ボイラ22に導かれ、
その排熱により蒸気を発生する。排熱回収ボイラ22で
発生した蒸気は、ガスタービンに連結された蒸気タービ
ン2Aに供給され、発電機3Aを駆動し発電する。蒸気
タービン2Aで仕事を終えた蒸気は、復水器4Aで凝縮
され、その凝縮された水は給水ポンプ5Aにより給水加
熱器6Aに導かれる。そして、給水加熱器6Aで加熱さ
れて排熱回収ボイラ22に戻される。また、排熱回収ボ
イラ22で熱交換を終えた排ガスは排ガス装置23を介
して系外に排出される。
The reformed fuel burned in the combustor 21 is supplied to the gas turbine 20 as a driving fuel gas for the gas turbine 20, and drives the gas turbine 20. Gas turbine 20
The exhaust gas that has finished the work is led to the exhaust heat recovery boiler 22,
The exhaust heat generates steam. The steam generated by the exhaust heat recovery boiler 22 is supplied to a steam turbine 2A connected to a gas turbine, and drives a generator 3A to generate power. The steam that has finished its work in the steam turbine 2A is condensed in the condenser 4A, and the condensed water is guided to the feed water heater 6A by the feed water pump 5A. Then, it is heated by the feed water heater 6A and returned to the exhaust heat recovery boiler 22. Further, the exhaust gas having undergone the heat exchange in the exhaust heat recovery boiler 22 is discharged out of the system via an exhaust gas device 23.

【0038】このように、改質器7で改質され分離器1
0で分離された改質燃料は、ガスタービン発電システム
のガス化炉19に導かれ燃料として使用される。従っ
て、一般に使用されているLNG燃料相当またはそれ以
上の有害物質のない燃料として、ガスタービン20に供
給されることになる。
As described above, the separator 1 reformed in the reformer 7
The reformed fuel separated at 0 is guided to the gasifier 19 of the gas turbine power generation system and used as fuel. Therefore, the fuel is supplied to the gas turbine 20 as a fuel free of harmful substances equivalent to or more than a commonly used LNG fuel.

【0039】これにより、石炭ガス化プラントに必要な
脱硫装置や排処理装置等の発生ガスの清浄化システムを
必要とせず、また、LNGに頼らない石炭を燃料とした
ガスタービン発電プラントが提供できる。
Thus, a gas turbine power plant using coal as a fuel which does not require a system for purifying generated gas such as a desulfurization device and an exhaust treatment device required for a coal gasification plant and which does not rely on LNG can be provided. .

【0040】次に、本発明の第3の実施の形態を説明す
る。図3は本発明の第3の実施の形態に係わる発電設備
の構成図である。この第3の実施の形態は、超臨界圧発
電プラントを有さない火力発電プラント(亜臨界圧発電
プラント)において、超臨界水発生装置24を設け、そ
の超臨界水発生装置24からの超臨界水を燃料供給系統
9からの燃料に混合し、改質器7で亜臨界圧ボイラ1A
の燃料を得るようにしたものである。
Next, a third embodiment of the present invention will be described. FIG. 3 is a configuration diagram of a power generation facility according to the third embodiment of the present invention. According to the third embodiment, a supercritical water generator 24 is provided in a thermal power plant (subcritical pressure power plant) having no supercritical pressure power plant, and supercritical water generated from the supercritical water generator 24 is provided. Water is mixed with the fuel from the fuel supply system 9 and the subcritical boiler 1A is
This is to obtain the fuel.

【0041】図3では、亜臨界圧発電プラントに、ガス
タービン発電プラント16とを併設し、ガスタービン発
電プラント16のガス化炉19にも改質燃料を供給する
ものを示している。
FIG. 3 shows an example in which a gas turbine power plant 16 is provided in addition to a subcritical pressure power plant, and reforming fuel is also supplied to a gasifier 19 of the gas turbine power plant 16.

【0042】改質器7は、燃料供給系統9からの燃料と
超臨界水発生装置24からの超臨界水とを混合し有害物
質を含まない燃料に改質する。分離器10は、改質器7
からの混合物から改質燃料を分離して抽出し亜臨界圧ボ
イラ1Aに供給すると共に、ガスタービン発電プラント
16のガス化炉19にも改質燃料を供給する。
The reformer 7 mixes the fuel from the fuel supply system 9 and the supercritical water from the supercritical water generator 24 to reform the fuel into a fuel containing no harmful substances. The separator 10 includes the reformer 7
The reformed fuel is separated and extracted from the mixture from the mixture, and supplied to the subcritical boiler 1A, and the reformed fuel is also supplied to the gasifier 19 of the gas turbine power plant 16.

【0043】このように、超臨界圧ボイラ1を有さない
発電プラントでは、超臨界水発生装置24を導入して超
臨界水を発生させ、超臨界水を用いて低品質の燃料の改
質を行う。また、同様に、燃料の改質をさらに高度化す
るために、給水加熱器6で加熱した後の高圧水を抽出
し、高圧水系統15を経由して高圧水素発生装置16に
導き、この高圧水素発生装置16で電気分解により水素
を発生させる。この高圧水素発生装置16で発生した高
圧水素は、水素供給系統17を経由して改質器7に送ら
れる。これにより、燃料の発熱量を高め超臨界圧発電プ
ラントの熱効率を高めることができる。
As described above, in the power plant without the supercritical pressure boiler 1, the supercritical water generator 24 is introduced to generate supercritical water, and the supercritical water is used to reform low-quality fuel. I do. Similarly, in order to further enhance the reforming of the fuel, high-pressure water heated by the feed water heater 6 is extracted and led to the high-pressure hydrogen generator 16 via the high-pressure water system 15. The hydrogen generator 16 generates hydrogen by electrolysis. The high-pressure hydrogen generated by the high-pressure hydrogen generator 16 is sent to the reformer 7 via the hydrogen supply system 17. Thereby, the calorific value of the fuel can be increased and the thermal efficiency of the supercritical power plant can be increased.

【0044】[0044]

【発明の効果】以上述べたように、本発明によれば、超
臨界圧発電プラントの超臨界圧ボイラから超臨界水を抽
出して、その超臨界水を用いて改質器で超臨界圧ボイラ
への低質の燃料を有害物質のない燃料に改質するので、
燃焼排ガスに含まれる有害物質が低減でき、脱硫装置や
灰処理装置等の付帯設備が縮減できる。
As described above, according to the present invention, supercritical water is extracted from the supercritical boiler of the supercritical power plant, and the supercritical water is extracted by the reformer using the supercritical water. Reforming the low-quality fuel to the boiler into fuel free of harmful substances,
The harmful substances contained in the flue gas can be reduced, and auxiliary equipment such as desulfurization equipment and ash treatment equipment can be reduced.

【0045】また、改質された燃料を使うので、超臨界
圧ボイラのイオウ腐食等が軽減され寿命向上が図れる。
さらに、ガスタービン発電システムに対しても、LNG
燃料並みの燃料として改質燃料を使用することができ
る。
Further, since the reformed fuel is used, sulfur corrosion and the like of the supercritical boiler are reduced, and the life can be improved.
Furthermore, for gas turbine power generation systems, LNG
A reformed fuel can be used as a fuel similar to the fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係わる発電設備の
構成図。
FIG. 1 is a configuration diagram of a power generation facility according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係わる発電設備の
構成図。
FIG. 2 is a configuration diagram of a power generation facility according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態に係わる発電設備の
構成図。
FIG. 3 is a configuration diagram of a power generation facility according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超臨界圧ボイラ 1A 亜臨界圧ボイラ 2 蒸気
タービン 3 発電機 4 復水器 5 給水ポンプ 6 給水加熱器 7 改
質器 8 超臨界水系統 9 燃料供給系統 10 分
離器 11 改質燃料供給系統 12 改質燃料供給装
置 13 有害物質排出系統 14 超臨界水戻し系統
15 高圧水系統 16 高圧水素発生装置 17
水素供給系統 18 ガスタービン発電システム 19
ガス化炉 20 ガスタービン 21 燃焼器 22
排熱回収ボイラ 23 排ガス装置 24 超臨界水
発生装置
Reference Signs List 1 supercritical pressure boiler 1A subcritical pressure boiler 2 steam turbine 3 generator 4 condenser 5 feedwater pump 6 feedwater heater 7 reformer 8 supercritical water system 9 fuel supply system 10 separator 11 reformed fuel supply system 12 Reformed fuel supply device 13 Hazardous substance discharge system 14 Supercritical water return system 15 High pressure water system 16 High pressure hydrogen generator 17
Hydrogen supply system 18 Gas turbine power generation system 19
Gasifier 20 Gas turbine 21 Combustor 22
Exhaust heat recovery boiler 23 Exhaust gas device 24 Supercritical water generator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F22D 11/00 F22D 11/00 B (72)発明者 山田 和矢 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 古谷 徹也 神奈川県横浜市鶴見区鶴見中央4丁目36番 5号 東芝ドキュメンツ株式会社内 Fターム(参考) 3G081 BA02 BA13 BA16 BB00 BC07 BC19 DA12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F22D 11/00 F22D 11/00 B (72) Inventor Kazuya Yamada 2nd Ukishimacho, Kawasaki-ku, Kawasaki-shi, Kawasaki-shi, Kanagawa No. 1 In the Toshiba Hamakawasaki Plant (72) Inventor Tetsuya Furuya 4-36-5, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term in Toshiba Documents Co., Ltd. 3G081 BA02 BA13 BA16 BB00 BC07 BC19 DA12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超臨界圧ボイラからの蒸気で発電機が接
続された蒸気タービンを駆動し前記蒸気タービンで仕事
を終え凝縮された水を給水過熱器で加熱して前記超臨界
圧ボイラに戻すようにした発電設備において、前記超臨
界圧ボイラから超臨界水を取り出す超臨界水系統と、前
記超臨界圧ボイラで燃焼させる有機物質の燃料を供給す
る燃料供給系統と、前記燃料供給系統からの燃料と前記
超臨界水系統からの超臨界水とを混合し有害物質を含ま
ない燃料に改質する改質器と、前記改質器からの混合物
から改質燃料を分離して抽出し前記超臨界圧ボイラに供
給する分離器とを備えたことを特徴とする発電設備。
1. A steam turbine connected to a generator is driven by steam from a supercritical boiler, and water condensed after finishing work in the steam turbine is heated by a feed water superheater and returned to the supercritical boiler. In such a power generation facility, a supercritical water system that takes out supercritical water from the supercritical pressure boiler, a fuel supply system that supplies a fuel of an organic substance burned in the supercritical pressure boiler, and a fuel supply system A reformer for mixing fuel and supercritical water from the supercritical water system and reforming the fuel into a fuel containing no harmful substances; separating and extracting a reformed fuel from the mixture from the reformer; A power generation facility comprising a separator for supplying to a critical pressure boiler.
【請求項2】 前記分離器は、前記改質器からの混合物
から、改質燃料、有害物質、超臨界水を別々に取り出
し、前記改質燃料および前記超臨界水は前記超臨界圧ボ
イラに供給し、前記有害物質は系外に排出することを特
徴とする請求項1に記載の発電設備。
2. The separator separates a reformed fuel, a harmful substance, and supercritical water from a mixture from the reformer, and separates the reformed fuel and the supercritical water into the supercritical pressure boiler. The power generation equipment according to claim 1, wherein the harmful substances are supplied and discharged outside the system.
【請求項3】 前記超臨界圧ボイラに供給する高圧水を
電気分解して高圧の水素を発生させ、その高圧の水素を
前記改質器に注入する高圧水素発生装置を備えたことを
特徴とする請求項1または請求項2に記載の発電設備。
3. A high-pressure hydrogen generator for electrolyzing high-pressure water supplied to the supercritical-pressure boiler to generate high-pressure hydrogen, and injecting the high-pressure hydrogen into the reformer. The power generation facility according to claim 1 or 2, wherein
【請求項4】 前記分離器で分離された改質燃料を、ガ
スタービン発電システムのガス化炉に導くことを特徴と
する請求項1に記載の発電設備。
4. The power generation equipment according to claim 1, wherein the reformed fuel separated by the separator is guided to a gasification furnace of a gas turbine power generation system.
【請求項5】 亜臨界圧ボイラからの蒸気で発電機が接
続された蒸気タービンを駆動し前記蒸気タービンで仕事
を終え凝縮された水を給水過熱器で加熱して前記亜臨界
圧ボイラに戻すようにした発電設備において、前記亜臨
界圧ボイラで燃焼させる有機物質の燃料を供給する燃料
供給系統と、前記亜臨界圧ボイラに供給する高圧水を抽
出し超臨界水を発生させる超臨界水発生装置と、前記燃
料供給系統からの燃料と前記超臨界水発生装置からの超
臨界水とを混合し有害物質を含まない燃料に改質する改
質器と、前記改質器からの混合物から改質燃料を分離し
て抽出し前記亜臨界ボイラに供給する分離器とを備えた
ことを特徴とする発電設備。
5. The steam from a subcritical boiler drives a steam turbine to which a generator is connected, heats condensed water after finishing work in the steam turbine, and returns the condensed water to the subcritical boiler by using a feedwater superheater. A fuel supply system for supplying fuel of an organic substance to be burned in the subcritical pressure boiler, and supercritical water generation for extracting high pressure water to be supplied to the subcritical pressure boiler to generate supercritical water. A reformer for mixing the fuel from the fuel supply system with the supercritical water from the supercritical water generator to reform the fuel into a fuel containing no harmful substances; And a separator for separating and extracting high-quality fuel and supplying the separated fuel to the subcritical boiler.
【請求項6】 前記亜臨界圧ボイラに供給する高圧水を
電気分解して高圧の水素を発生させ、その高圧の水素を
前記改質器に注入する高圧水素発生装置を備えたことを
特徴とする請求項5に記載の発電設備。
6. A high-pressure hydrogen generator for electrolyzing high-pressure water supplied to the subcritical boiler to generate high-pressure hydrogen and injecting the high-pressure hydrogen into the reformer. The power generation facility according to claim 5, wherein
【請求項7】 前記分離器で分離された改質燃料を、ガ
スタービン発電システムのガス化炉に導くことを特徴と
する請求項5に記載の発電設備。
7. The power generation equipment according to claim 5, wherein the reformed fuel separated by the separator is guided to a gasification furnace of a gas turbine power generation system.
JP22591099A 1999-08-10 1999-08-10 Power plant Withdrawn JP2001050010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22591099A JP2001050010A (en) 1999-08-10 1999-08-10 Power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22591099A JP2001050010A (en) 1999-08-10 1999-08-10 Power plant

Publications (1)

Publication Number Publication Date
JP2001050010A true JP2001050010A (en) 2001-02-23

Family

ID=16836815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22591099A Withdrawn JP2001050010A (en) 1999-08-10 1999-08-10 Power plant

Country Status (1)

Country Link
JP (1) JP2001050010A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264710B2 (en) 2002-03-08 2007-09-04 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7435330B2 (en) 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
WO2013090038A1 (en) * 2011-12-13 2013-06-20 Renmatix, Inc. Lignin fired supercritical or near critical water generator, system, and method
JP2020056358A (en) * 2018-10-02 2020-04-09 清水建設株式会社 Power generation system
CN112943396A (en) * 2021-02-07 2021-06-11 西安交通大学 Mixed working medium supercritical Brayton cycle system with adjustable working medium critical point and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264710B2 (en) 2002-03-08 2007-09-04 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7767076B2 (en) 2002-03-08 2010-08-03 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7435330B2 (en) 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
WO2013090038A1 (en) * 2011-12-13 2013-06-20 Renmatix, Inc. Lignin fired supercritical or near critical water generator, system, and method
US9518729B2 (en) 2011-12-13 2016-12-13 Renmatix, Inc. Lignin fired supercritical or near critical water generator, system and method
JP2020056358A (en) * 2018-10-02 2020-04-09 清水建設株式会社 Power generation system
CN112943396A (en) * 2021-02-07 2021-06-11 西安交通大学 Mixed working medium supercritical Brayton cycle system with adjustable working medium critical point and method

Similar Documents

Publication Publication Date Title
Cau et al. CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: Techno-economic analysis
US8110012B2 (en) System for hot solids combustion and gasification
JPH08501605A (en) Energy recovery method from combustible gas
JP4436068B2 (en) Coal gasification plant, coal gasification method, coal gasification power plant, and expansion facility for coal gasification plant
CA2726238C (en) Method and apparatus for generating electrical power
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP2010190214A (en) Post-combustion processing in power plant
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JP2001050010A (en) Power plant
Chu et al. Conversion of medical waste into value-added products using a novel integrated system with tail gas treatment: Process design, optimization, and thermodynamic analysis
WO2010057222A2 (en) High efficiency power generation integrated with chemical processes
JPH09317407A (en) Heavy oil firing compound power generation facility
CA2136829A1 (en) A process for recovering chemicals and energy from cellulose waste liquor
KR20190051493A (en) Steam power generation system with two-stage boiler and boiler used therein
CN209944283U (en) High-speed circulation combustion system
US11913360B2 (en) Method for operating a power plant in order to generate electrical energy by combustion of a carbonaceous combustible, and corresponding system for operating a power plant
CN210948818U (en) Waste incineration power generation system coupled with CO2 circulation and coal-fired power plant
JP2005194968A (en) Exhaust gas re-combustion plant and method for converting plant facility
KR102176087B1 (en) Steam power generation system with two-stage boiler and boiler used therein
RU2152526C1 (en) Method and power plant for generating electrical energy from shale
JP2018096359A (en) Power generating facility
KR101592765B1 (en) Combined cycle power generation system
Beér CO 2 Reduction and Coal-Based Electricity Generation
CN210683700U (en) Thermal power plant pyrolysis hydrogen production system
EP1382806B1 (en) Method and plant for the use of waste material in a thermoelectric power plant

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050324

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107