JP3947887B2 - Method and apparatus for converting coal into fuel for power generation facilities - Google Patents

Method and apparatus for converting coal into fuel for power generation facilities Download PDF

Info

Publication number
JP3947887B2
JP3947887B2 JP28488698A JP28488698A JP3947887B2 JP 3947887 B2 JP3947887 B2 JP 3947887B2 JP 28488698 A JP28488698 A JP 28488698A JP 28488698 A JP28488698 A JP 28488698A JP 3947887 B2 JP3947887 B2 JP 3947887B2
Authority
JP
Japan
Prior art keywords
coal
water
oil
residue
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28488698A
Other languages
Japanese (ja)
Other versions
JP2000109859A (en
Inventor
和明 太田
正利 半沢
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28488698A priority Critical patent/JP3947887B2/en
Publication of JP2000109859A publication Critical patent/JP2000109859A/en
Application granted granted Critical
Publication of JP3947887B2 publication Critical patent/JP3947887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and easily produce from coals (CWM) a fuel for generating units comprising a combustible gas and COM, which is easily handled as substitute fuels for heavy oils and causes no dust pollution, to inhibit environmental pollution by easily converting sulfuric components contained in coals into harmless inorganic salts and removing them, to allow relatively little limitation on heat resistant properties and to allow miniaturization and increase the electric power generation efficiency of electric power generating devices. SOLUTION: A CWM wherein a finely powdered coal is mixed with water is maintained at a temperature and pressure of the subcritical or supercritical state of water to decompose the coal in a decomposition reactor 14. The obtained decomposed product is maintained at a temperature and pressure equal to or below the subcritical state of water in a separator 16 to be separated into an oil component, a hydrocarbon gas, a residue and water, The separated oil component and residue are mixed in a mixer 31 to generate COM. The hydrocarbon gas and COM are gasified into a combustible gas mainly comprising CO and H2 in a gasification reactor 20.

Description

【0001】
【発明の属する技術分野】
本発明は、石炭・水ミクスチャー(以下、CWMという。)を亜臨界状態又は超臨界状態の水中で分解し、この分解により生じた分解生成物から可燃ガス及び石炭・油ミクスチャー(以下、COMという。)を生成する、石炭の発電設備用燃料への転換方法及びその装置に関するものである。
【0002】
【従来の技術】
微粉化した石炭に水を加えてスラリー状のCWMを調製し、これを重油代替燃料として使用するCWM化技術が開発され、実用化されている。しかしこのCWM化技術は燃料の流動化の目的で水を加えるため、良質の石炭を原料とした場合でも、発熱量の上限値が4500kcal/kg程度しかなく、通常の重油より発熱量が低下することはもちろん、原料の石炭と比較してもかなり発熱量が低下してしまう問題点がある。
【0003】
また発電装置として、石炭、重質油などの化石燃料の燃焼エネルギをボイラで蒸気に変えて、この蒸気エネルギで蒸気タービンを駆動して発電する火力発電装置が周知である。この発電装置では化石燃料に含まれる硫黄分等が不純物として多く発生する。このためこの不純物が有害物質となって環境汚染を生じないように火力発電装置では複雑な浄化装置を必要とする。また高い発電効率が得られない問題点がある。
この発電効率を向上するために、図4に示すように、ガス化反応炉1と脱硫装置2と複合発電設備3を備えた石炭ガス化複合発電装置5が知られている。この発電装置5では、2段流動床型のガス化反応炉1の上段炉に粉砕及び乾燥した石炭を供給し、この石炭を下段炉からの熱ガスと上段に入るガス化剤である空気によってガス化する。ここでの生成ガスは炉頂から粗成ガスとして取出された後、熱回収ボイラ1cに送られて熱が回収される。熱回収ボイラ1cを通過した粗成ガスはサイクロン1aに送られる。ガス化しなかった未反応のチャーの粗粒は逆L字状の溢流(図示せず)により、また粗成ガス中の細粒はサイクロン1aで捕集され、これらはガス化反応炉1の下段炉に回収されて再び空気と水蒸気によって燃焼されガス化される。灰分は炉底より取出されタンク1bに貯蔵される。サイクロン1aから取出された粗成ガスは脱硫装置2に送られ、ここで硫黄化合物を酸化鉄と化合させて硫化鉄の形態で硫黄が除去され、その際に発生するSO2ガスは単体硫黄に還元されて回収される。脱硫装置2から取出された粗成ガスは集塵器2aで除塵され、ダスト分離器2bでダストを除去されて可燃ガスとなる。
【0004】
複合発電設備3はガスタービン6a、蒸気タービン6b、廃熱回収ボイラ9、復水器7、第1発電機8a及び第2発電機8bを備える。ダスト分離器2bから取出された可燃ガスはガスタービン6aを駆動し、ガスタービン6aと回転軸が直結している第1発電機8aにより発電する。次にガスタービン6aからの排ガスは排熱回収ボイラ9でその熱エネルギを蒸気エネルギとして回収される。この蒸気エネルギは蒸気タービン6bを駆動し、蒸気タービン6bと回転軸が直結している第2発電機8bにより発電する。蒸気タービン6bから取出された蒸気は復水器7で冷却されて水を生じ、この水の一部は廃熱回収ボイラ9に給水される。復水器7から取出された水の残部は熱回収ボイラ1cに送られ、粗成ガスの熱で蒸気を発生する。この蒸気は蒸気タービン6bに送られて蒸気タービン6bを駆動する蒸気エネルギの一部として利用される。
【0005】
【発明が解決しようとする課題】
しかし、上記石炭ガス化複合発電装置におけるガス化反応炉では石炭の分解が必ずしも十分でなく、かなり多量のチャー(char:以下、残渣という)が発生し、この残渣を無駄にしないために二段でガス化するか、或いは残渣の燃焼などを行っており、設備が大型化しかつ制御が複雑になる。また石炭のガス化が石炭の熱分解により行われるため、反応温度は1000℃程度から1200℃以上の温度が要求される。これによりこのガス化反応炉は高温に耐え得るための多くの厳しい条件で制約されるとともに熱エネルギロスも大きくなる。
【0006】
本発明の目的は、6000〜9000kcal/kg程度の発熱量を有し、重油代替燃料として取扱いが容易で粉塵公害を生じない発電設備用燃料を石炭から転換する方法及びその装置を提供することにある。
本発明の別の目的は、従来より小型のガス化反応炉と組合せて、石炭を効率良く、簡単にガス化し得る石炭の発電設備用燃料への転換方法及びその装置を提供することにある。
本発明の別の目的は、石炭に含まれる硫黄分を容易に無害な無機塩にして除去することにより環境汚染を生じさせない石炭の発電設備用燃料への転換方法及びその装置を提供することにある。
本発明の更に別の目的は、発電装置の発電効率を高めることができる石炭の発電設備用燃料への転換方法及びその装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、微粉化した石炭と水を混合したCWMを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して石炭を分解する分解反応工程と、この分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、この分離工程で分離された油分及び残渣を混合してCOMを生成する工程と、上記分離工程で分離された炭化水素系ガスと上記COMをガス化反応炉に供給してCO及びH2を主成分とする可燃ガスにガス化する工程とを含む石炭の発電設備用燃料への転換方法である。
請求項3に係る発明は、微粉化した石炭と水を混合したCWMを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して石炭を分解する分解反応工程と、この分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、この分離工程で分離された油分及び残渣を混合してCOMを生成する工程と、上記分離工程で分離された炭化水素系ガスと上記COMをボイラに供給して燃焼する燃焼工程とを含む石炭の発電設備用燃料への転換方法である。
請求項5に係る発明は、微粉化した石炭と水を混合したCWMを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して石炭を分解する分解反応工程と、この分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、この分離工程で分離された油分と炭化水素系ガスをガス化反応炉に供給してCO及びH2を主成分とする可燃ガスにガス化する工程と、上記分離工程で分離された残渣をボイラに供給して燃焼する燃焼工程とを含む石炭の発電設備用燃料への転換方法である。
請求項2、4又は6に係る発明は、それぞれ請求項1、3又は5に係る発明であって、CWMにアルカリ水溶液を加える転換方法である。
【0008】
請求項7に係る発明は、図1に示すように、微粉化した石炭と水を混合したCWMを貯えるタンク11と、このCWMを水の亜臨界状態又は超臨界状態に維持して石炭を分解する分解反応装置14と、分解反応装置14で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置16と、分離装置16で分離された油分及び残渣を混合してCOMを生成する混合機31と、分離装置16で分離された炭化水素系ガスとCOMをCO及びH2を主成分とする可燃ガスにガス化するガス化反応炉20とを備えた石炭の発電設備用燃料への転換装置である。
請求項8に係る発明は、図2に示すように、微粉化した石炭と水を混合したCWMを貯えるタンク11と、このCWMを水の亜臨界状態又は超臨界状態に維持して石炭を分解する分解反応装置14と、分解反応装置14で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置16と、分離装置16で分離された油分及び残渣を混合してCOMを生成する混合機31と、このCOMと分離装置16で分離された炭化水素系ガスとを燃焼するボイラ23とを備えた石炭の発電設備用燃料への転換装置である。
請求項9に係る発明は、図3に示すように、微粉化した石炭と水を混合したCWMを貯えるタンク11と、このCWMを水の亜臨界状態又は超臨界状態に維持して石炭を分解する分解反応装置14と、分解反応装置14で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置16と、分離装置16で分離された油分と炭化水素系ガスをCO及びH2を主成分とする可燃ガスにガス化するガス化反応炉20と、分離装置16で分離された残渣を燃焼するボイラ23とを備えた石炭の発電設備用燃料への転換装置である。
【0009】
【発明の実施の形態】
本発明において、水の亜臨界状態とは200〜374℃の温度でかつ160〜215kg/cm2の圧力にある水の状態を意味する。また水の超臨界状態とは374〜900℃の温度でかつ215〜300kg/cm2の圧力にある水の状態を意味する。亜臨界状態における温度及び圧力の下限値未満では、反応が遅く、石炭の分解効率が良くない。また超臨界状態における温度及び圧力の上限値を超えると分解反応装置に負荷がかかり過ぎ、これも効率的でない。
図1に示すように、本発明の第1の実施の形態の石炭の発電設備用燃料への転換装置では、タンク11に微粉化した石炭と水を混合したスラリー状のCWMが貯えられる。石炭としては、草炭、褐炭、亜歴青炭、歴青炭、無煙炭等が例示される。石炭が硫黄分を含む場合、この硫黄分を取除くためにタンク11にはアルカリ水溶液が貯えられる。このアルカリ水溶液としては、NaOH、KOH、Ca(OH)2等の水溶液が例示される。石炭は予め数mm以下の、好ましくはポンプの能力に応じて300μm以下の粒径に微粉砕される。CWMにおける水はCWM濃度が好ましくは5〜60重量%になるように添加される。CWM濃度が5重量%未満では石炭の分解効率に劣り、60重量%を越えるとCWMが流動性に欠け取扱いにくくなる。CWM濃度は10〜55重量%がより好ましい。
このタンク11に貯えられたCWMはポンプ12により圧送され、ヒータ13によりこの圧送されたCWMは150〜350℃程度に加熱される。ヒータ13で加熱されたCWMは分解反応装置14に供給され、そこで更に昇圧・昇温され、亜臨界状態又は超臨界状態になる。好ましくは374〜900℃の温度でかつ215〜500kg/cm2の圧力、より好ましくは374〜600℃の温度でかつ215〜450kg/cm2の圧力の超臨界状態が採用される。
【0010】
分解反応装置14において亜臨界状態又は超臨界状態のCWMに対して、▲1▼石炭の加水分解反応、▲2▼石炭の熱分解反応及び▲3▼水素添加反応が起ると考えられる。即ち、高温水中では、石炭中の水素結合等の非共有性の結合が解離し、石炭が膨張する。これにより石炭の分解液化反応がより有効に進行する。
▲1▼石炭の加水分解反応では、石炭のベンゼン環をつないでいるヘテロ元素部分にH2OのOH-及びH+等が付加され、石炭が低分子化される。▲2▼石炭の熱分解反応では、石炭が単純に熱分解し低分子化する。更に▲3▼水素添加反応では、例えば上記▲2▼の反応中に生成したラジカルにHが付加し、これにより熱分解種が安定化する。また熱分解しない安定な分子と活性な水素との反応も生じる。上記▲1▼〜▲3▼の反応は個別的に行われず、互いに併発して複合的に行われ、石炭の軽質化が進行する。このようにして石炭はこの亜臨界状態又は超臨界状態により油分と残渣に分解される。超臨界状態の水は、水素イオンと水酸基イオンへの解離が通常の水よりも大きくまた高温であるので石炭の加水分解反応を促進する。更に超臨界状態の水は誘電率が小さいために、石炭そのものに対してある程度溶解力を持ち、またガスとも均一に混合し得る。これらのことも軽質化の促進に寄与する。CWMの分解物は重質油、中・軽質油等からなる油分と無機塩を含む残渣である。
【0011】
石炭が硫黄分を含む場合でCWMがアルカリ水溶液を含むときには、この硫黄分は分解反応装置14で硫黄酸化物(SOx)を経て超臨界状態の水に容易に溶解するともに、次の式(1)及び(2)の反応で無害の無機塩になる。

Figure 0003947887
即ち、タンク11のCWMが例えばNaOH水溶液を含む場合には、このアルカリ(NaOH)水溶液により硫黄酸化物(SO3)は無害な硫酸塩(Na2SO4)になる。
【0012】
分解反応装置14で分解された生成物は水の亜臨界状態又は超臨界状態の温度及び圧力を低くすることにより、油分及び炭化水素系ガスと残渣及び水に分離される。油分及び残渣は高温度の状態で分離した方が次の工程で加える熱エネルギが少なくて済むことから、分解生成物は主として減圧弁15でその圧力を減じた上で、分離装置16において水の亜臨界状態又は超臨界状態の高温を維持して分離されることが好ましい。この炭化水素系ガスは高温高圧の水素、メタン、エタン、ベンゼン等を主成分として含有する。その他に炭酸ガス(CO2)も分離装置16から分離されて大気中に放出される。また分離された水は分解反応装置14に供給され、リサイクルされる。
【0013】
分離装置16で分離された油分と残渣は混合機31に送られて混合されることによりCOMを生成する。このCOMはガス化反応炉20内にノズル(図示せず)などで噴射されることにより供給される。また分離装置16で分離された炭化水素系ガスもガス化反応炉20に供給される。ガス化反応炉20に供給されたCOM及び炭化水素系ガスはガス化剤としてガス化反応炉20に供給される空気と反応して高温高圧のCO及びH2を主成分とする可燃ガスになる。ガス化反応炉20の残渣である灰分はガス化反応炉20から取出され、処分される。ガス化反応炉20で生成した可燃ガスはガスタービン21に送られ、図示しない燃焼器で燃焼され、その燃焼エネルギによりガスタービン21を駆動する。ガスタービン21の回転エネルギにより第1発電機22が発電するようになる。これにより高い発電効率で発電が行われる。
【0014】
図2に示すように、本発明の第2の実施の形態の転換装置では、第1実施形態の場合と同様に、分解反応装置14で分解された生成物は分離装置16で油分及び炭化水素系ガスと残渣及び水に分離される。分離装置16で分離された油分と残渣は混合機31に送られて混合されることによりCOMを生成する。このCOMはボイラ23内にノズル(図示せず)などで噴射されることにより供給される。また分離装置16で分離された炭化水素系ガスもボイラ23に供給される。ボイラ23で上記COM及び炭化水素系ガスが燃焼され、その燃焼エネルギでボイラ23に別途に供給される水を加熱することにより蒸気エネルギを発生する。この蒸気エネルギは第1蒸気タービン24を駆動し、第1蒸気タービン24と回転軸が直結している第2発電機26により発電する。第1蒸気タービン24を通過した蒸気は復水器27で冷却されて再びボイラ23に給水される。
【0015】
図3に示すように、本発明の第3の実施の形態の転換装置では、第1実施形態の場合と同様に、分解反応装置14で分解された生成物は分離装置16で油分及び炭化水素系ガスと残渣及び水に分離される。分離装置16で分離された油分と炭化水素系ガスをガス化反応炉20に供給する。ガス化反応炉20に供給された油分及び炭化水素系ガスはガス化剤としてガス化反応炉20に供給される空気と反応して高温高圧のCO及びH2を主成分とする可燃ガスになる。ガス化反応炉20の残渣である灰分はガス化反応炉20から取出され、処分される。ガス化反応炉20で生成した可燃ガスはガスタービン21に送られ、図示しない燃焼器で燃焼され、その燃焼エネルギによりガスタービン21を駆動する。ガスタービン21の回転エネルギにより第1発電機22が発電するようになる。
分離装置16で分離された残渣はボイラ23に供給される。この残渣はボイラ23で燃焼され、その燃焼エネルギでボイラ23に別途に供給される水を加熱することにより蒸気エネルギを発生する。またガスタービン21の排ガスがボイラ23に供給され、この排ガスの熱エネルギでボイラ23に供給される上記水が更に加熱されて蒸気エネルギを発生する。これらの蒸気エネルギは第1蒸気タービン24を駆動し、第1蒸気タービン24と回転軸が直結している第2発電機26により発電する。第1蒸気タービン24を通過した蒸気は復水器27で冷却されて再びボイラ23に給水される。これにより第1発電機22とともに第2発電機26が運転され、有効に熱エネルギが発電に利用されるとともに、高効率で発電が行われる。
【0016】
【発明の効果】
以上述べたように、本発明はCWMを亜臨界状態又は超臨界状態で分解、分離して可燃ガス及びCOMを生成させ、この可燃ガス及びCOMの燃焼エネルギを利用することにより、次の優れた効果を有する。
(1) 従来のガス化反応炉と比較して本発明の分離装置で分離された油分は反応性が良好であり、ガス化反応炉において単独又は残渣と混合されたCOMの形態で比較的低い温度でかつ高速でガス化でき、二段のガス化が不要となるため、反応炉を小型化できるとともに反応炉を構成する材料における制約が少ない。
(2) 分離装置で分離された油分と残渣を混合したCOMはガス化反応炉に供給されて可燃ガスを生成するため、従来のガス化装置で必要としたスチームの供給は低減される。
【0017】
(3) 亜臨界又は超臨界反応で生成して分離装置から分離された油分は8000kcal/kg程度の高い熱量を有しているため、石炭の分解ガスのみを使用する従来のガス化反応炉と比較して著しくガスタービン効率を向上させることができ、燃焼排気温度も高くできる。この結果、排熱ボイラや蒸気タービン効率も向上し、複合発電全体の効率を向上できる。
(4) また亜臨界又は超臨界反応で生成して分離装置から分離された炭化水素系ガスは3000〜8000kcal/Nm程度の高い熱量を有しており、ボイラで燃焼させて蒸気発生に利用できる。
(5) 原料とともにアルカリ水溶液を添加すれば、石炭に含まれる硫黄分を無機塩の形で除去することができる。このため従来の複合発電装置に使用されている大形の脱硫装置を必要とせず、また比較的硫黄分の多い低品位炭、重質油等を原料とすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の石炭の発電設備用燃料への転換装置と発電装置の構成図。
【図2】本発明の第2の実施の形態の石炭の発電設備用燃料への転換装置と発電装置の構成図。
【図3】本発明の第3の実施の形態の石炭の発電設備用燃料への転換装置と発電装置の構成図。
【図4】従来の石炭ガス化複合発電装置の構成図。
【符号の説明】
11 タンク
13 ヒータ
14 分解反応装置
15 減圧弁
16 分離装置
20 ガス化反応炉
23 ボイラ
31 混合機[0001]
BACKGROUND OF THE INVENTION
In the present invention, a coal / water mixture (hereinafter referred to as CWM) is decomposed in subcritical or supercritical water, and a combustible gas and a coal / oil mixture (hereinafter referred to as COM) are decomposed from the decomposition products generated by the decomposition. .), And a method and apparatus for converting coal into fuel for power generation facilities.
[0002]
[Prior art]
A CWM technology has been developed and put into practical use in which water is added to finely pulverized coal to prepare a slurry-like CWM, which is used as an alternative fuel for heavy oil. However, since this CWM technology adds water for the purpose of fluidizing the fuel, even when high quality coal is used as the raw material, the upper limit of the calorific value is only about 4500 kcal / kg, and the calorific value is lower than that of ordinary heavy oil. Of course, there is a problem that the calorific value is considerably reduced even when compared with the raw material coal.
[0003]
As a power generation device, a thermal power generation device is known in which the combustion energy of fossil fuels such as coal and heavy oil is changed to steam by a boiler, and a steam turbine is driven by this steam energy to generate power. In this power generation device, a large amount of sulfur or the like contained in fossil fuel is generated as impurities. For this reason, the thermal power generation apparatus requires a complicated purification device so that the impurities do not become harmful substances and cause environmental pollution. There is also a problem that high power generation efficiency cannot be obtained.
In order to improve the power generation efficiency, as shown in FIG. 4, a coal gasification combined power generation device 5 including a gasification reaction furnace 1, a desulfurization device 2, and a combined power generation facility 3 is known. In this power generator 5, the pulverized and dried coal is supplied to the upper stage furnace of the two-stage fluidized bed gasification reactor 1, and the coal is heated by the hot gas from the lower stage furnace and the air that is the gasifying agent entering the upper stage. Gasify. The product gas here is taken out from the furnace top as a crude gas, and then sent to the heat recovery boiler 1c to recover heat. The crude gas that has passed through the heat recovery boiler 1c is sent to the cyclone 1a. Unreacted char coarse particles that have not been gasified are collected by an inverted L-shaped overflow (not shown), and fine particles in the crude gas are collected by the cyclone 1a. It is recovered in the lower furnace and burned again with air and water vapor to be gasified. Ash content is taken out from the furnace bottom and stored in the tank 1b. The crude gas taken out from the cyclone 1a is sent to the desulfurization unit 2, where the sulfur compound is combined with iron oxide to remove sulfur in the form of iron sulfide, and the SO 2 gas generated at that time is converted into elemental sulfur. Reduced and recovered. The crude gas taken out from the desulfurization apparatus 2 is removed by the dust collector 2a, and the dust is removed by the dust separator 2b to become a combustible gas.
[0004]
The combined power generation facility 3 includes a gas turbine 6a, a steam turbine 6b, a waste heat recovery boiler 9, a condenser 7, a first generator 8a, and a second generator 8b. The combustible gas taken out from the dust separator 2b drives the gas turbine 6a and generates power by the first generator 8a in which the gas turbine 6a and the rotating shaft are directly connected. Next, the exhaust gas from the gas turbine 6a is recovered by the exhaust heat recovery boiler 9 as its thermal energy as steam energy. This steam energy drives the steam turbine 6b and generates power by the second generator 8b in which the steam turbine 6b and the rotating shaft are directly connected. The steam taken out from the steam turbine 6 b is cooled by the condenser 7 to produce water, and a part of this water is supplied to the waste heat recovery boiler 9. The remainder of the water taken out from the condenser 7 is sent to the heat recovery boiler 1c, and steam is generated by the heat of the crude gas. This steam is sent to the steam turbine 6b and used as part of steam energy for driving the steam turbine 6b.
[0005]
[Problems to be solved by the invention]
However, in the gasification reactor in the above coal gasification combined cycle power plant, coal is not necessarily decomposed sufficiently, and a large amount of char (char: hereinafter referred to as residue) is generated, so that this residue is not wasted. Gasification or residue combustion is performed, which increases the size of the equipment and complicates the control. Further, since coal gasification is performed by thermal decomposition of coal, a reaction temperature of about 1000 ° C. to 1200 ° C. or more is required. As a result, this gasification reactor is restricted by many severe conditions to withstand high temperatures, and the thermal energy loss increases.
[0006]
An object of the present invention is to provide a method and apparatus for converting a fuel for power generation equipment from coal, which has a calorific value of about 6000 to 9000 kcal / kg, is easy to handle as a heavy oil substitute fuel, and does not cause dust pollution. is there.
Another object of the present invention is to provide a method and an apparatus for converting coal into a fuel for power generation equipment, which can efficiently and easily gasify coal in combination with a conventional gasification reactor.
Another object of the present invention is to provide a method and apparatus for converting coal into fuel for power generation equipment that does not cause environmental pollution by removing sulfur contained in coal as a harmless inorganic salt. is there.
Still another object of the present invention is to provide a method and apparatus for converting coal into fuel for power generation equipment that can increase the power generation efficiency of the power generation apparatus.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a decomposition reaction step of decomposing coal by maintaining CWM, which is a mixture of pulverized coal and water, at a temperature and pressure in a subcritical or supercritical state of water, and the decomposition reaction step. The separation product obtained is maintained in a subcritical state or lower temperature and pressure of water and separated into oil, hydrocarbon gas, residue and water, and the oil separated in this separation step And the residue are mixed to produce COM, and the hydrocarbon gas separated in the separation step and the COM are supplied to the gasification reactor to be gasified into a combustible gas mainly composed of CO and H 2 A method for converting coal into fuel for power generation equipment.
The invention according to claim 3 includes a decomposition reaction step of decomposing coal by maintaining CWM, which is a mixture of pulverized coal and water, at a temperature and pressure in a subcritical or supercritical state of water, and the decomposition reaction step. The separation product obtained is maintained in a subcritical state or lower temperature and pressure of water and separated into oil, hydrocarbon gas, residue and water, and the oil separated in this separation step A method for converting coal into a fuel for power generation equipment, comprising: a step of generating COM by mixing the residue and a hydrocarbon gas separated in the separation step; and a combustion step of supplying the COM to a boiler for combustion It is.
The invention according to claim 5 is a decomposition reaction step of decomposing coal by maintaining CWM, which is a mixture of pulverized coal and water, at a temperature and pressure in a subcritical or supercritical state of water, and the decomposition reaction step. The separation product obtained is maintained in a subcritical state or lower temperature and pressure of water and separated into oil, hydrocarbon gas, residue and water, and the oil separated in this separation step And a hydrocarbon gas supplied to a gasification reactor to gasify it into a combustible gas containing CO and H 2 as main components, and a combustion process in which the residue separated in the separation process is supplied to a boiler and burned This is a method for converting coal containing power to fuel for power generation facilities.
The invention according to claim 2, 4 or 6 is the invention according to claim 1, 3 or 5, respectively, and is a conversion method of adding an alkaline aqueous solution to CWM.
[0008]
As shown in FIG. 1, the invention according to claim 7 is a tank 11 for storing CWM in which finely divided coal and water are mixed, and the coal is decomposed by maintaining the CWM in a subcritical or supercritical state of water. The cracking reaction apparatus 14 and the decomposition product obtained in the decomposition reaction apparatus 14 are maintained at a temperature and pressure below or below the critical state of water and separated into oil, hydrocarbon gas, residue and water. Separation device 16, mixer 31 that mixes oil and residue separated by separation device 16 to produce COM, hydrocarbon-based gas and COM separated by separation device 16, and CO and H 2 as main components It is the conversion apparatus to the fuel for power generation equipment of coal provided with the gasification reaction furnace 20 gasified to the combustible gas which does.
As shown in FIG. 2, the invention according to claim 8 is a tank 11 for storing CWM in which finely divided coal and water are mixed, and the coal is decomposed by maintaining the CWM in a subcritical or supercritical state of water. The cracking reaction apparatus 14 and the decomposition product obtained in the decomposition reaction apparatus 14 are maintained at a temperature and pressure below or below the critical state of water and separated into oil, hydrocarbon gas, residue and water. Separation device 16, mixer 31 that mixes oil and residue separated by separation device 16 to generate COM, and boiler 23 that burns this COM and hydrocarbon-based gas separated by separation device 16 It is a device for converting coal to fuel for power generation facilities.
As shown in FIG. 3, the invention according to claim 9 is a tank 11 for storing CWM in which fine coal and water are mixed, and the CWM is maintained in a subcritical or supercritical state of water to decompose coal. The cracking reaction apparatus 14 and the decomposition product obtained in the decomposition reaction apparatus 14 are maintained at a temperature and pressure below or below the critical state of water and separated into oil, hydrocarbon gas, residue and water. Separation device 16, gasification reaction furnace 20 for gasifying the oil and hydrocarbon gas separated by separation device 16 into a combustible gas containing CO and H 2 as main components, and the residue separated by separation device 16 It is the conversion apparatus to the fuel for power generation equipment of coal provided with the boiler 23 which burns.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the subcritical state of water means a state of water at a temperature of 200 to 374 ° C. and a pressure of 160 to 215 kg / cm 2 . The supercritical state of water means a state of water at a temperature of 374 to 900 ° C. and a pressure of 215 to 300 kg / cm 2 . Below the lower limits of temperature and pressure in the subcritical state, the reaction is slow and the coal decomposition efficiency is not good. If the upper limit values of temperature and pressure in the supercritical state are exceeded, the cracking reaction apparatus is overloaded, which is also not efficient.
As shown in FIG. 1, in the apparatus for converting coal into fuel for power generation equipment according to the first embodiment of the present invention, slurry-like CWM in which finely pulverized coal and water are mixed is stored in a tank 11. Examples of the coal include grass charcoal, lignite, subbituminous coal, bituminous coal, anthracite. When coal contains a sulfur content, an alkaline aqueous solution is stored in the tank 11 in order to remove the sulfur content. Examples of the alkaline aqueous solution include aqueous solutions of NaOH, KOH, Ca (OH) 2 and the like. Coal is pulverized in advance to a particle size of several mm or less, preferably 300 μm or less depending on the capacity of the pump. The water in CWM is added so that the CWM concentration is preferably 5 to 60% by weight. If the CWM concentration is less than 5% by weight, the coal decomposition efficiency is inferior, and if it exceeds 60% by weight, the CWM is poor in fluidity and difficult to handle. The CWM concentration is more preferably 10 to 55% by weight.
The CWM stored in the tank 11 is pumped by the pump 12, and the pumped CWM is heated to about 150 to 350 ° C. by the heater 13. The CWM heated by the heater 13 is supplied to the decomposition reaction apparatus 14 where the pressure is further increased and the temperature is increased to enter a subcritical state or a supercritical state. A supercritical state is preferably employed at a temperature of 374 to 900 ° C. and a pressure of 215 to 500 kg / cm 2 , more preferably at a temperature of 374 to 600 ° C. and a pressure of 215 to 450 kg / cm 2 .
[0010]
It is considered that (1) coal hydrolysis reaction, (2) coal pyrolysis reaction, and (3) hydrogenation reaction occur in the subcritical or supercritical CWM in the cracking reactor 14. That is, in high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated, and coal expands. As a result, the coal decomposition and liquefaction reaction proceeds more effectively.
(1) In the hydrolysis reaction of coal, OH - and H + of H 2 O are added to the hetero element part connecting the benzene rings of the coal, thereby reducing the molecular weight of the coal. (2) In the pyrolysis reaction of coal, coal is simply pyrolyzed to lower its molecular weight. Further, in the (3) hydrogenation reaction, for example, H is added to the radical generated during the reaction (2) above, thereby stabilizing the thermal decomposition species. In addition, a reaction between a stable molecule that is not thermally decomposed and active hydrogen also occurs. The reactions {circle around (1)} to {circle around (3)} are not performed individually, but are performed in combination with each other, and the lightening of coal proceeds. In this way, coal is decomposed into oil and residue by this subcritical state or supercritical state. Since water in a supercritical state has a higher dissociation into hydrogen ions and hydroxyl ions than normal water and has a higher temperature, it promotes the hydrolysis reaction of coal. Furthermore, since water in a supercritical state has a small dielectric constant, it has a certain degree of dissolving power with respect to the coal itself, and can be mixed with gas evenly. These also contribute to the promotion of lightening. The decomposed product of CWM is a residue containing an inorganic component and an oil component composed of heavy oil, medium / light oil, and the like.
[0011]
When coal contains a sulfur content and the CWM contains an alkaline aqueous solution, the sulfur content is easily dissolved in supercritical water through sulfur oxides (SOx) in the decomposition reaction apparatus 14, and the following formula (1 ) And (2) to form harmless inorganic salts.
Figure 0003947887
That is, when the CWM in the tank 11 includes, for example, a NaOH aqueous solution, the sulfur oxide (SO 3 ) becomes harmless sulfate (Na 2 SO 4 ) by the alkali (NaOH) aqueous solution.
[0012]
The product decomposed in the cracking reactor 14 is separated into oil and hydrocarbon gas, residue and water by lowering the temperature and pressure in the subcritical or supercritical state of water. If the oil and residue are separated at a high temperature, less heat energy is applied in the next step. Therefore, the decomposition product mainly reduces the pressure by the pressure reducing valve 15 and then the water in the separation device 16. The separation is preferably performed while maintaining a high temperature in the subcritical state or the supercritical state. This hydrocarbon gas contains high-temperature and high-pressure hydrogen, methane, ethane, benzene and the like as main components. In addition, carbon dioxide (CO 2 ) is also separated from the separation device 16 and released into the atmosphere. The separated water is supplied to the decomposition reaction apparatus 14 and recycled.
[0013]
The oil and residue separated by the separation device 16 are sent to the mixer 31 and mixed to produce COM. This COM is supplied by being injected into the gasification reactor 20 with a nozzle (not shown) or the like. The hydrocarbon gas separated by the separation device 16 is also supplied to the gasification reactor 20. The COM and hydrocarbon-based gas supplied to the gasification reaction furnace 20 react with air supplied to the gasification reaction furnace 20 as a gasifying agent to become a combustible gas mainly composed of high-temperature and high-pressure CO and H 2. . The ash that is the residue of the gasification reactor 20 is taken out from the gasification reactor 20 and disposed of. The combustible gas produced | generated in the gasification reaction furnace 20 is sent to the gas turbine 21, is combusted with the combustor which is not shown in figure, and drives the gas turbine 21 with the combustion energy. The first generator 22 generates power by the rotational energy of the gas turbine 21. As a result, power generation is performed with high power generation efficiency.
[0014]
As shown in FIG. 2, in the conversion device according to the second embodiment of the present invention, as in the first embodiment, the product decomposed by the cracking reaction device 14 is separated into oil and hydrocarbons by the separation device 16. Separated into system gas and residue and water. The oil and residue separated by the separation device 16 are sent to the mixer 31 and mixed to produce COM. This COM is supplied by being injected into the boiler 23 by a nozzle (not shown) or the like. Further, the hydrocarbon gas separated by the separation device 16 is also supplied to the boiler 23. The COM and hydrocarbon gas are burned in the boiler 23, and steam energy is generated by heating water supplied separately to the boiler 23 with the combustion energy. This steam energy drives the first steam turbine 24 and generates power by the second generator 26 in which the first steam turbine 24 and the rotating shaft are directly connected. The steam that has passed through the first steam turbine 24 is cooled by the condenser 27 and supplied to the boiler 23 again.
[0015]
As shown in FIG. 3, in the conversion device according to the third embodiment of the present invention, as in the case of the first embodiment, the product decomposed by the decomposition reaction device 14 is separated into oil and hydrocarbons by the separation device 16. Separated into system gas and residue and water. The oil and hydrocarbon gas separated by the separation device 16 are supplied to the gasification reactor 20. The oil and hydrocarbon gas supplied to the gasification reaction furnace 20 react with air supplied to the gasification reaction furnace 20 as a gasifying agent to become a combustible gas mainly composed of high-temperature and high-pressure CO and H 2. . The ash that is the residue of the gasification reactor 20 is taken out from the gasification reactor 20 and disposed of. The combustible gas produced | generated in the gasification reaction furnace 20 is sent to the gas turbine 21, is combusted with the combustor which is not shown in figure, and drives the gas turbine 21 with the combustion energy. The first generator 22 generates power by the rotational energy of the gas turbine 21.
The residue separated by the separation device 16 is supplied to the boiler 23. This residue is burned in the boiler 23, and steam energy is generated by heating water separately supplied to the boiler 23 with the combustion energy. Further, the exhaust gas of the gas turbine 21 is supplied to the boiler 23, and the water supplied to the boiler 23 is further heated by the thermal energy of the exhaust gas to generate steam energy. These steam energies drive the first steam turbine 24 and generate power by the second generator 26 in which the first steam turbine 24 and the rotation shaft are directly connected. The steam that has passed through the first steam turbine 24 is cooled by the condenser 27 and supplied to the boiler 23 again. As a result, the second generator 26 is operated together with the first generator 22, the thermal energy is effectively used for power generation, and power generation is performed with high efficiency.
[0016]
【The invention's effect】
As described above, the present invention produces the combustible gas and the COM by decomposing and separating the CWM in the subcritical state or the supercritical state, and uses the combustion energy of the combustible gas and the COM. Has an effect.
(1) Compared with the conventional gasification reactor, the oil separated by the separation apparatus of the present invention has good reactivity and is relatively low in the form of COM alone or mixed with the residue in the gasification reactor. Since the gasification can be performed at a high temperature and at a high speed without the need for two-stage gasification, the reactor can be downsized and there are few restrictions on the materials constituting the reactor.
(2) Since the COM in which the oil and the residue separated by the separator are mixed is supplied to the gasification reactor to generate combustible gas, the supply of steam required in the conventional gasifier is reduced.
[0017]
(3) Since the oil produced by the subcritical or supercritical reaction and separated from the separator has a high calorific value of about 8000 kcal / kg, the conventional gasification reactor using only cracked coal gas In comparison, the gas turbine efficiency can be remarkably improved, and the combustion exhaust temperature can be increased. As a result, the efficiency of the exhaust heat boiler and the steam turbine can be improved, and the overall efficiency of the combined power generation can be improved.
(4) The hydrocarbon gas produced by the subcritical or supercritical reaction and separated from the separator has a high calorific value of about 3000 to 8000 kcal / Nm, and can be burned in a boiler and used for steam generation. .
(5) If an alkaline aqueous solution is added together with the raw material, sulfur contained in the coal can be removed in the form of an inorganic salt. For this reason, the large desulfurization apparatus currently used for the conventional combined power generation apparatus is not required, and low grade coal, heavy oil, etc. with a comparatively much sulfur content can be used as a raw material.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus for converting coal into fuel for power generation equipment and a power generation apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a device for converting coal into fuel for power generation equipment and a power generation device according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram of an apparatus for converting coal into fuel for power generation equipment and a power generation apparatus according to a third embodiment of the present invention.
FIG. 4 is a configuration diagram of a conventional coal gasification combined power generation device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Tank 13 Heater 14 Decomposition reaction apparatus 15 Pressure reducing valve 16 Separation apparatus 20 Gasification reaction furnace 23 Boiler 31 Mixer

Claims (9)

微粉化した石炭と水を混合した石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して前記石炭を分解する分解反応工程と、
前記分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、
前記分離工程で分離された油分及び残渣を混合して石炭・油ミクスチャーを生成する工程と、
前記分離工程で分離された炭化水素系ガスと前記石炭・油ミクスチャーをガス化反応炉に供給してCO及びH2を主成分とする可燃ガスにガス化する工程と
を含む石炭の発電設備用燃料への転換方法。
A cracking reaction step of decomposing the coal by maintaining a coal-water mixture in which pulverized coal and water are mixed at a temperature and pressure in a subcritical or supercritical state of water;
A separation step of separating the decomposition product obtained in the decomposition reaction step into oil, hydrocarbon gas, residue and water while maintaining the decomposition product in a subcritical state or lower temperature and pressure of water;
A step of mixing the oil and residue separated in the separation step to produce a coal / oil mixture;
For the power generation facility of coal, including the step of supplying the hydrocarbon gas separated in the separation step and the coal / oil mixture to a gasification reactor and gasifying them into a combustible gas mainly composed of CO and H 2 How to switch to fuel.
石炭・水ミクスチャーにアルカリ水溶液を加える請求項1記載の転換方法。The conversion method according to claim 1, wherein an alkaline aqueous solution is added to the coal / water mixture. 微粉化した石炭と水を混合した石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して前記石炭を分解する分解反応工程と、
前記分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、
前記分離工程で分離された油分及び残渣を混合して石炭・油ミクスチャーを生成する工程と、
前記分離工程で分離された炭化水素系ガスと前記石炭・油ミクスチャーをボイラに供給して燃焼する燃焼工程と
を含む石炭の発電設備用燃料への転換方法。
A cracking reaction step of decomposing the coal by maintaining a coal-water mixture in which pulverized coal and water are mixed at a temperature and pressure in a subcritical or supercritical state of water;
A separation step of separating the decomposition product obtained in the decomposition reaction step into oil, hydrocarbon gas, residue and water while maintaining the decomposition product in a subcritical state or lower temperature and pressure of water;
A step of mixing the oil and residue separated in the separation step to produce a coal / oil mixture;
A method for converting coal into fuel for power generation equipment, comprising: a hydrocarbon gas separated in the separation step; and a combustion step of supplying the coal / oil mixture to a boiler and burning it.
石炭・水ミクスチャーにアルカリ水溶液を加える請求項3記載の転換方法。4. The conversion method according to claim 3, wherein an alkaline aqueous solution is added to the coal / water mixture. 微粉化した石炭と水を混合した石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態の温度及び圧力に維持して前記石炭を分解する分解反応工程と、
前記分解反応工程で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離工程と、
前記分離工程で分離された油分と炭化水素系ガスをガス化反応炉に供給してCO及びH2を主成分とする可燃ガスにガス化する工程と、
前記分離工程で分離された残渣をボイラに供給して燃焼する燃焼工程と
を含む石炭の発電設備用燃料への転換方法。
A cracking reaction step of decomposing the coal by maintaining a coal-water mixture in which pulverized coal and water are mixed at a temperature and pressure in a subcritical or supercritical state of water;
A separation step of separating the decomposition product obtained in the decomposition reaction step into oil, hydrocarbon gas, residue and water while maintaining the decomposition product in a subcritical state or lower temperature and pressure of water;
Supplying the oil and hydrocarbon gas separated in the separation step to a gasification reaction furnace and gasifying them into a combustible gas mainly composed of CO and H 2 ;
A method of converting coal into fuel for power generation equipment, comprising a combustion step of supplying the residue separated in the separation step to a boiler and burning it.
石炭・水ミクスチャーにアルカリ水溶液を加える請求項5記載の転換方法。6. The conversion method according to claim 5, wherein an alkaline aqueous solution is added to the coal / water mixture. 微粉化した石炭と水を混合した石炭・水ミクスチャーを貯えるタンク(11)と、
前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態に維持して前記石炭を分解する分解反応装置(14)と、
前記分解反応装置(14)で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置(16)と、
前記分離装置(16)で分離された油分及び残渣を混合して石炭・油ミクスチャーを生成する混合機(31)と、
前記分離装置(16)で分離された炭化水素系ガスと前記石炭・油ミクスチャーをCO及びH2を主成分とする可燃ガスにガス化するガス化反応炉(20)と
を備えた石炭の発電設備用燃料への転換装置。
A tank (11) for storing a coal / water mixture in which fine coal and water are mixed;
A cracking reactor (14) for decomposing the coal while maintaining the coal-water mixture in a subcritical or supercritical state of water;
A separation device (16) for maintaining the decomposition product obtained in the decomposition reaction device (14) at a temperature and pressure below or below the subcritical state of water and separating it into oil, hydrocarbon gas, residue and water. )When,
A mixer (31) for mixing the oil and residue separated by the separator (16) to produce a coal / oil mixture;
Coal power generation comprising a hydrocarbon gas separated by the separator (16) and a gasification reactor (20) for gasifying the coal / oil mixture into a combustible gas mainly containing CO and H 2 Equipment for conversion to facility fuel.
微粉化した石炭と水を混合した石炭・水ミクスチャーを貯えるタンク(11)と、
前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態に維持して前記石炭を分解する分解反応装置(14)と、
前記分解反応装置(14)で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置(16)と、
前記分離装置(16)で分離された油分及び残渣を混合して石炭・油ミクスチャーを生成する混合機(31)と、
前記石炭・油ミクスチャーと前記分離装置(16)で分離された炭化水素系ガスとを燃焼するボイラ(23)と
を備えた石炭の発電設備用燃料への転換装置。
A tank (11) for storing a coal / water mixture in which fine coal and water are mixed;
A cracking reactor (14) for decomposing the coal while maintaining the coal-water mixture in a subcritical or supercritical state of water;
A separation device (16) for maintaining the decomposition product obtained in the decomposition reaction device (14) at a temperature and pressure below or below the subcritical state of water and separating it into oil, hydrocarbon gas, residue and water. )When,
A mixer (31) for mixing the oil and residue separated by the separator (16) to produce a coal / oil mixture;
An apparatus for converting coal into fuel for power generation equipment, comprising a boiler (23) for burning the coal / oil mixture and the hydrocarbon-based gas separated by the separator (16).
微粉化した石炭と水を混合した石炭・水ミクスチャーを貯えるタンク(11)と、
前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界状態に維持して前記石炭を分解する分解反応装置(14)と、
前記分解反応装置(14)で得られた分解生成物を水の亜臨界状態又はそれ以下の温度及び圧力に維持して油分と、炭化水素系ガスと、残渣及び水に分離する分離装置(16)と、
前記分離装置(16)で分離された油分と炭化水素系ガスをCO及びH2を主成分とする可燃ガスにガス化するガス化反応炉(20)と、
前記分離工程で分離された残渣を燃焼するボイラ(23)と
を備えた石炭の発電設備用燃料への転換装置。
A tank (11) for storing a coal / water mixture in which fine coal and water are mixed;
A cracking reactor (14) for decomposing the coal while maintaining the coal-water mixture in a subcritical or supercritical state of water;
A separation device (16) for maintaining the decomposition product obtained in the decomposition reaction device (14) at a temperature and pressure below or below the subcritical state of water and separating it into oil, hydrocarbon gas, residue and water. )When,
A gasification reactor (20) for gasifying the oil and hydrocarbon gas separated by the separator (16) into a combustible gas mainly composed of CO and H 2 ;
An apparatus for converting coal into fuel for power generation equipment, comprising a boiler (23) for burning the residue separated in the separation step.
JP28488698A 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities Expired - Fee Related JP3947887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28488698A JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28488698A JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Publications (2)

Publication Number Publication Date
JP2000109859A JP2000109859A (en) 2000-04-18
JP3947887B2 true JP3947887B2 (en) 2007-07-25

Family

ID=17684320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28488698A Expired - Fee Related JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Country Status (1)

Country Link
JP (1) JP3947887B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578907B2 (en) 2010-03-29 2014-08-27 三菱重工業株式会社 Coal gasification combined power plant
CN102989409A (en) * 2012-10-11 2013-03-27 田原宇 Double-reaction-tube circulation bed device for heavy oil pyrolysis and gasification coupling
CN112594695A (en) * 2020-11-17 2021-04-02 光大环境科技(中国)有限公司 Supercritical water gasification device for industrial garbage
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Also Published As

Publication number Publication date
JP2000109859A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
CN1167896C (en) Method and device for treating refuse by gasification
US6141796A (en) Use of carbonaceous fuels
CZ2004440A3 (en) Method for controlling temperature of combustion turbine inlet fuel in order to achieve maximum power output
US20080155899A1 (en) Methods for feedstock pretreatment and transport to gasification
US20080103220A1 (en) Synthetic fuel production using coal and nuclear energy
JP3572176B2 (en) Combined cycle power generation method and power generation device
ZA200400170B (en) Method for producing clean energy from coal.
KR102256515B1 (en) Gasification system of bio crude oil containing tar-reducing reformer
KR20100099261A (en) Method and apparatus to facilitate substitute natural gas production
CN104059705B (en) Overall steam gasification and entrained flow gasification system and method for inferior fuel
JP2000109850A (en) Process and device for converting heavy oil into fluid fuel for generating unit
AU2012229849A1 (en) Complex system for utilizing coal in manufacture of char and raw material gas and electric power generation
JP2002155288A (en) Method for coal gasification
JP2002206092A (en) Method and device for recovering energy from gas obtained by refuse gasification
JP3947887B2 (en) Method and apparatus for converting coal into fuel for power generation facilities
KR102032823B1 (en) Circulating Fluidized Bed Gasifier Equipped with Heat Exchanger Therein
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
CN114276837A (en) Biomass gasification process
JP3722960B2 (en) Method and apparatus for drying and purging coal for power generation
WO1997005216A1 (en) Improvements in the use of carbonaceous fuels
KR101482574B1 (en) Integrated coal gasification combined cycle power generating system
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
JP2001294873A (en) Method for converting cola into fuel for power generation and equipment therefor
JP3676041B2 (en) Combined cycle power generation method and power generation apparatus
JPS59155492A (en) Manufacture of clean and alkali-free fuel gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees