JP2000109859A - Process and device for converting coal into fuel for generating unit - Google Patents

Process and device for converting coal into fuel for generating unit

Info

Publication number
JP2000109859A
JP2000109859A JP10284886A JP28488698A JP2000109859A JP 2000109859 A JP2000109859 A JP 2000109859A JP 10284886 A JP10284886 A JP 10284886A JP 28488698 A JP28488698 A JP 28488698A JP 2000109859 A JP2000109859 A JP 2000109859A
Authority
JP
Japan
Prior art keywords
coal
water
oil
residue
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10284886A
Other languages
Japanese (ja)
Other versions
JP3947887B2 (en
Inventor
Kazuaki Ota
和明 太田
Masatoshi Hanzawa
正利 半沢
Akira Tanaka
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28488698A priority Critical patent/JP3947887B2/en
Publication of JP2000109859A publication Critical patent/JP2000109859A/en
Application granted granted Critical
Publication of JP3947887B2 publication Critical patent/JP3947887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and easily produce from coals (CWM) a fuel for generating units comprising a combustible gas and COM, which is easily handled as substitute fuels for heavy oils and causes no dust pollution, to inhibit environmental pollution by easily converting sulfuric components contained in coals into harmless inorganic salts and removing them, to allow relatively little limitation on heat resistant properties and to allow miniaturization and increase the electric power generation efficiency of electric power generating devices. SOLUTION: A CWM wherein a finely powdered coal is mixed with water is maintained at a temperature and pressure of the subcritical or supercritical state of water to decompose the coal in a decomposition reactor 14. The obtained decomposed product is maintained at a temperature and pressure equal to or below the subcritical state of water in a separator 16 to be separated into an oil component, a hydrocarbon gas, a residue and water, The separated oil component and residue are mixed in a mixer 31 to generate COM. The hydrocarbon gas and COM are gasified into a combustible gas mainly comprising CO and H2 in a gasification reactor 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭・水ミクスチ
ャー(以下、CWMという。)を亜臨界状態又は超臨界
状態の水中で分解し、この分解により生じた分解生成物
から可燃ガス及び石炭・油ミクスチャー(以下、COM
という。)を生成する、石炭の発電設備用燃料への転換
方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention decomposes coal / water mixture (hereinafter referred to as CWM) in subcritical or supercritical water, and decomposes combustible gas and coal / water from decomposition products generated by the decomposition. Oil mixture (hereinafter COM)
That. ), And a method and an apparatus for converting coal into fuel for power generation equipment.

【0002】[0002]

【従来の技術】微粉化した石炭に水を加えてスラリー状
のCWMを調製し、これを重油代替燃料として使用する
CWM化技術が開発され、実用化されている。しかしこ
のCWM化技術は燃料の流動化の目的で水を加えるた
め、良質の石炭を原料とした場合でも、発熱量の上限値
が4500kcal/kg程度しかなく、通常の重油よ
り発熱量が低下することはもちろん、原料の石炭と比較
してもかなり発熱量が低下してしまう問題点がある。
2. Description of the Related Art A CWM technology for preparing slurry CWM by adding water to pulverized coal and using it as a fuel alternative to heavy oil has been developed and put into practical use. However, in this CWM technology, water is added for the purpose of fluidizing the fuel. Therefore, even when high-quality coal is used as a raw material, the upper limit of the calorific value is only about 4500 kcal / kg, which is lower than that of ordinary heavy oil. Of course, there is a problem that the calorific value is considerably reduced as compared with the raw material coal.

【0003】また発電装置として、石炭、重質油などの
化石燃料の燃焼エネルギをボイラで蒸気に変えて、この
蒸気エネルギで蒸気タービンを駆動して発電する火力発
電装置が周知である。この発電装置では化石燃料に含ま
れる硫黄分等が不純物として多く発生する。このためこ
の不純物が有害物質となって環境汚染を生じないように
火力発電装置では複雑な浄化装置を必要とする。また高
い発電効率が得られない問題点がある。この発電効率を
向上するために、図4に示すように、ガス化反応炉1と
脱硫装置2と複合発電設備3を備えた石炭ガス化複合発
電装置5が知られている。この発電装置5では、2段流
動床型のガス化反応炉1の上段炉に粉砕及び乾燥した石
炭を供給し、この石炭を下段炉からの熱ガスと上段に入
るガス化剤である空気によってガス化する。ここでの生
成ガスは炉頂から粗成ガスとして取出された後、熱回収
ボイラ1cに送られて熱が回収される。熱回収ボイラ1
cを通過した粗成ガスはサイクロン1aに送られる。ガ
ス化しなかった未反応のチャーの粗粒は逆L字状の溢流
(図示せず)により、また粗成ガス中の細粒はサイクロ
ン1aで捕集され、これらはガス化反応炉1の下段炉に
回収されて再び空気と水蒸気によって燃焼されガス化さ
れる。灰分は炉底より取出されタンク1bに貯蔵され
る。サイクロン1aから取出された粗成ガスは脱硫装置
2に送られ、ここで硫黄化合物を酸化鉄と化合させて硫
化鉄の形態で硫黄が除去され、その際に発生するSO2
ガスは単体硫黄に還元されて回収される。脱硫装置2か
ら取出された粗成ガスは集塵器2aで除塵され、ダスト
分離器2bでダストを除去されて可燃ガスとなる。
[0003] As a power generation device, a thermal power generation device that converts combustion energy of fossil fuels such as coal and heavy oil into steam by a boiler and drives a steam turbine with the steam energy to generate power is known. In this power generation device, a large amount of sulfur and the like contained in fossil fuel is generated as impurities. For this reason, a thermal power generator requires a complicated purification device so that these impurities do not become harmful substances and cause environmental pollution. There is also a problem that high power generation efficiency cannot be obtained. In order to improve the power generation efficiency, as shown in FIG. 4, there is known a coal gasification combined power generation device 5 including a gasification reactor 1, a desulfurization device 2, and a combined power generation facility 3. In this power generation device 5, pulverized and dried coal is supplied to the upper furnace of the two-stage fluidized-bed type gasification reactor 1, and this coal is mixed with hot gas from the lower furnace and air as a gasifying agent entering the upper stage. Gasify. After the generated gas is taken out from the furnace top as a crude gas, it is sent to a heat recovery boiler 1c to recover heat. Heat recovery boiler 1
The crude gas that has passed through c is sent to the cyclone 1a. Unreacted char coarse particles that have not been gasified are collected by an inverted L-shaped overflow (not shown), and fine particles in the coarse gas are collected by a cyclone 1a. It is collected in the lower furnace and is burned again by air and steam to be gasified. Ash is taken out of the furnace bottom and stored in the tank 1b. The crude gas extracted from the cyclone 1a is sent to a desulfurizer 2, where a sulfur compound is combined with iron oxide to remove sulfur in the form of iron sulfide, and SO 2 generated at that time is removed.
The gas is reduced to elemental sulfur and recovered. The crude gas taken out of the desulfurization device 2 is removed by a dust collector 2a and dust is removed by a dust separator 2b to become a combustible gas.

【0004】複合発電設備3はガスタービン6a、蒸気
タービン6b、廃熱回収ボイラ9、復水器7、第1発電
機8a及び第2発電機8bを備える。ダスト分離器2b
から取出された可燃ガスはガスタービン6aを駆動し、
ガスタービン6aと回転軸が直結している第1発電機8
aにより発電する。次にガスタービン6aからの排ガス
は排熱回収ボイラ9でその熱エネルギを蒸気エネルギと
して回収される。この蒸気エネルギは蒸気タービン6b
を駆動し、蒸気タービン6bと回転軸が直結している第
2発電機8bにより発電する。蒸気タービン6bから取
出された蒸気は復水器7で冷却されて水を生じ、この水
の一部は廃熱回収ボイラ9に給水される。復水器7から
取出された水の残部は熱回収ボイラ1cに送られ、粗成
ガスの熱で蒸気を発生する。この蒸気は蒸気タービン6
bに送られて蒸気タービン6bを駆動する蒸気エネルギ
の一部として利用される。
The combined power generation facility 3 includes a gas turbine 6a, a steam turbine 6b, a waste heat recovery boiler 9, a condenser 7, a first generator 8a, and a second generator 8b. Dust separator 2b
The combustible gas extracted from the gas turbine drives the gas turbine 6a,
First generator 8 whose rotation axis is directly connected to gas turbine 6a
The power is generated by a. Next, the exhaust gas from the gas turbine 6a is recovered by the exhaust heat recovery boiler 9 using the heat energy as steam energy. This steam energy is transferred to the steam turbine 6b.
And the second turbine 8b, whose rotating shaft is directly connected to the steam turbine 6b, generates electric power. The steam extracted from the steam turbine 6b is cooled by the condenser 7 to produce water, and a part of the water is supplied to the waste heat recovery boiler 9. The remainder of the water taken out of the condenser 7 is sent to the heat recovery boiler 1c, and generates steam by the heat of the crude gas. This steam is supplied to the steam turbine 6
b and is used as a part of the steam energy for driving the steam turbine 6b.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記石炭ガス
化複合発電装置におけるガス化反応炉では石炭の分解が
必ずしも十分でなく、かなり多量のチャー(char:以
下、残渣という)が発生し、この残渣を無駄にしないた
めに二段でガス化するか、或いは残渣の燃焼などを行っ
ており、設備が大型化しかつ制御が複雑になる。また石
炭のガス化が石炭の熱分解により行われるため、反応温
度は1000℃程度から1200℃以上の温度が要求さ
れる。これによりこのガス化反応炉は高温に耐え得るた
めの多くの厳しい条件で制約されるとともに熱エネルギ
ロスも大きくなる。
However, in the gasification reactor in the integrated coal gasification combined cycle power plant, the decomposition of coal is not always sufficient, and a considerably large amount of char (hereinafter, referred to as residue) is generated. In order not to waste the residue, gasification is performed in two stages, or combustion of the residue is performed, so that the equipment becomes large and the control becomes complicated. Further, since gasification of coal is performed by thermal decomposition of coal, the reaction temperature is required to be about 1000 ° C. to 1200 ° C. or more. This limits the gasification reactor to many severe conditions to withstand high temperatures and increases thermal energy loss.

【0006】本発明の目的は、6000〜9000kc
al/kg程度の発熱量を有し、重油代替燃料として取
扱いが容易で粉塵公害を生じない発電設備用燃料を石炭
から転換する方法及びその装置を提供することにある。
本発明の別の目的は、従来より小型のガス化反応炉と組
合せて、石炭を効率良く、簡単にガス化し得る石炭の発
電設備用燃料への転換方法及びその装置を提供すること
にある。本発明の別の目的は、石炭に含まれる硫黄分を
容易に無害な無機塩にして除去することにより環境汚染
を生じさせない石炭の発電設備用燃料への転換方法及び
その装置を提供することにある。本発明の更に別の目的
は、発電装置の発電効率を高めることができる石炭の発
電設備用燃料への転換方法及びその装置を提供すること
にある。
It is an object of the present invention to provide a 6000 to 9000 kc
An object of the present invention is to provide a method and an apparatus for converting fuel for power generation equipment from coal, which has a calorific value of about al / kg, is easy to handle as a heavy oil alternative fuel, and does not cause dust pollution, and its coal.
Another object of the present invention is to provide a method and an apparatus for converting coal into fuel for power generation equipment, which can efficiently and easily gasify coal in combination with a gasification reactor which is smaller than before. Another object of the present invention is to provide a method and an apparatus for converting coal into power generation facility fuel which does not cause environmental pollution by easily removing harmful inorganic salts contained in coal into harmless inorganic salts. is there. Still another object of the present invention is to provide a method for converting coal into fuel for power generation equipment and an apparatus thereof, which can enhance the power generation efficiency of the power generation device.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
微粉化した石炭と水を混合したCWMを水の亜臨界状態
又は超臨界状態の温度及び圧力に維持して石炭を分解す
る分解反応工程と、この分解反応工程で得られた分解生
成物を水の亜臨界状態又はそれ以下の温度及び圧力に維
持して油分と、炭化水素系ガスと、残渣及び水に分離す
る分離工程と、この分離工程で分離された油分及び残渣
を混合してCOMを生成する工程と、上記分離工程で分
離された炭化水素系ガスと上記COMをガス化反応炉に
供給してCO及びH2を主成分とする可燃ガスにガス化
する工程とを含む石炭の発電設備用燃料への転換方法で
ある。請求項3に係る発明は、微粉化した石炭と水を混
合したCWMを水の亜臨界状態又は超臨界状態の温度及
び圧力に維持して石炭を分解する分解反応工程と、この
分解反応工程で得られた分解生成物を水の亜臨界状態又
はそれ以下の温度及び圧力に維持して油分と、炭化水素
系ガスと、残渣及び水に分離する分離工程と、この分離
工程で分離された油分及び残渣を混合してCOMを生成
する工程と、上記分離工程で分離された炭化水素系ガス
と上記COMをボイラに供給して燃焼する燃焼工程とを
含む石炭の発電設備用燃料への転換方法である。請求項
5に係る発明は、微粉化した石炭と水を混合したCWM
を水の亜臨界状態又は超臨界状態の温度及び圧力に維持
して石炭を分解する分解反応工程と、この分解反応工程
で得られた分解生成物を水の亜臨界状態又はそれ以下の
温度及び圧力に維持して油分と、炭化水素系ガスと、残
渣及び水に分離する分離工程と、この分離工程で分離さ
れた油分と炭化水素系ガスをガス化反応炉に供給してC
O及びH2を主成分とする可燃ガスにガス化する工程
と、上記分離工程で分離された残渣をボイラに供給して
燃焼する燃焼工程とを含む石炭の発電設備用燃料への転
換方法である。請求項2、4又は6に係る発明は、それ
ぞれ請求項1、3又は5に係る発明であって、CWMに
アルカリ水溶液を加える転換方法である。
The invention according to claim 1 is
A decomposition reaction step of decomposing the coal by maintaining the CWM obtained by mixing the pulverized coal and water at a temperature and pressure in a subcritical or supercritical state of water; and decomposing the decomposition product obtained in the decomposition reaction step into water. A separation step of separating the oil, hydrocarbon-based gas, residue and water by maintaining the temperature and pressure at or below the subcritical state, and mixing the oil and residue separated in this separation step to form COM. Power generation of coal including a step of producing and a step of supplying the hydrocarbon-based gas separated in the separation step and the COM to a gasification reactor to gasify the mixture into a combustible gas containing CO and H 2 as main components. This is a method of switching to equipment fuel. The invention according to claim 3 is a decomposition reaction step of decomposing coal while maintaining the temperature and pressure of water in a subcritical state or a supercritical state of water mixed with finely divided coal and water; A separation step of separating the obtained decomposition products into water, a subcritical state of water or a temperature and pressure lower than that, to separate oil, hydrocarbon-based gas, residue and water, and an oil separated in this separation step. A method for converting coal into fuel for power generation equipment, comprising: a step of mixing the residue and the residue to generate COM; and a step of supplying the hydrocarbon-based gas separated in the separation step and the COM to a boiler and burning the same. It is. The invention according to claim 5 is a CWM in which pulverized coal and water are mixed.
A decomposition reaction step of decomposing coal by maintaining the temperature and pressure of water in a subcritical or supercritical state, and decomposing the decomposition product obtained in this decomposition reaction step at a temperature and a temperature lower than or equal to the subcritical state of water. A separation step of separating oil, hydrocarbon-based gas, residue and water while maintaining the pressure, and supplying the oil and hydrocarbon-based gas separated in this separation step to a gasification reactor,
A method for converting coal to fuel for power generation equipment, comprising a step of gasifying into a combustible gas containing O and H 2 as a main component and a combustion step of supplying a residue separated in the separation step to a boiler and burning the residue is there. The invention according to claim 2, 4, or 6 is the invention according to claim 1, 3, or 5, respectively, and is a conversion method of adding an alkaline aqueous solution to CWM.

【0008】請求項7に係る発明は、図1に示すよう
に、微粉化した石炭と水を混合したCWMを貯えるタン
ク11と、このCWMを水の亜臨界状態又は超臨界状態
に維持して石炭を分解する分解反応装置14と、分解反
応装置14で得られた分解生成物を水の亜臨界状態又は
それ以下の温度及び圧力に維持して油分と、炭化水素系
ガスと、残渣及び水に分離する分離装置16と、分離装
置16で分離された油分及び残渣を混合してCOMを生
成する混合機31と、分離装置16で分離された炭化水
素系ガスとCOMをCO及びH2を主成分とする可燃ガ
スにガス化するガス化反応炉20とを備えた石炭の発電
設備用燃料への転換装置である。請求項8に係る発明
は、図2に示すように、微粉化した石炭と水を混合した
CWMを貯えるタンク11と、このCWMを水の亜臨界
状態又は超臨界状態に維持して石炭を分解する分解反応
装置14と、分解反応装置14で得られた分解生成物を
水の亜臨界状態又はそれ以下の温度及び圧力に維持して
油分と、炭化水素系ガスと、残渣及び水に分離する分離
装置16と、分離装置16で分離された油分及び残渣を
混合してCOMを生成する混合機31と、このCOMと
分離装置16で分離された炭化水素系ガスとを燃焼する
ボイラ23とを備えた石炭の発電設備用燃料への転換装
置である。請求項9に係る発明は、図3に示すように、
微粉化した石炭と水を混合したCWMを貯えるタンク1
1と、このCWMを水の亜臨界状態又は超臨界状態に維
持して石炭を分解する分解反応装置14と、分解反応装
置14で得られた分解生成物を水の亜臨界状態又はそれ
以下の温度及び圧力に維持して油分と、炭化水素系ガス
と、残渣及び水に分離する分離装置16と、分離装置1
6で分離された油分と炭化水素系ガスをCO及びH2
主成分とする可燃ガスにガス化するガス化反応炉20
と、分離装置16で分離された残渣を燃焼するボイラ2
3とを備えた石炭の発電設備用燃料への転換装置であ
る。
As shown in FIG. 1, the invention according to claim 7 includes a tank 11 for storing CWM in which finely divided coal and water are mixed, and maintaining the CWM in a subcritical state or a supercritical state of water. A cracking reactor 14 for cracking coal; and maintaining the cracked product obtained in the cracking reactor 14 in a subcritical state of water or at a temperature and pressure lower than that, oil, hydrocarbon gas, residue and water. A separator 31 that mixes the oil component and the residue separated by the separator 16 to generate COM, and a hydrocarbon-based gas and COM separated by the separator 16 into CO and H 2 . This is a device for converting coal into fuel for power generation equipment, comprising a gasification reactor 20 that gasifies into a combustible gas as a main component. As shown in FIG. 2, the invention according to claim 8 comprises a tank 11 for storing a CWM in which pulverized coal and water are mixed, and maintaining the CWM in a subcritical state or a supercritical state of water to decompose coal. And the decomposition product obtained in the decomposition reactor 14 is separated into oil, hydrocarbon-based gas, residue and water while maintaining the temperature and pressure of water in a subcritical state or lower. The separator 16, a mixer 31 that mixes the oil component and the residue separated by the separator 16 to generate COM, and a boiler 23 that burns the COM and the hydrocarbon-based gas separated by the separator 16. This is a device for converting the provided coal into fuel for power generation facilities. The invention according to claim 9 is, as shown in FIG.
Tank 1 for storing CWM mixed with pulverized coal and water
1, a decomposition reactor 14 for decomposing coal by maintaining this CWM in a subcritical or supercritical state of water, and a decomposition product obtained in the decomposition A separator 16 for separating oil, hydrocarbon-based gas, residue and water while maintaining the temperature and pressure, and a separator 1
Gasification reactor 20 for gasifying the oil and hydrocarbon-based gas separated in 6 into a combustible gas containing CO and H 2 as main components.
Boiler 2 that burns the residue separated by the separation device 16
3 for converting coal into fuel for power generation equipment.

【0009】[0009]

【発明の実施の形態】本発明において、水の亜臨界状態
とは200〜374℃の温度でかつ160〜215kg
/cm2の圧力にある水の状態を意味する。また水の超
臨界状態とは374〜900℃の温度でかつ215〜3
00kg/cm2の圧力にある水の状態を意味する。亜
臨界状態における温度及び圧力の下限値未満では、反応
が遅く、石炭の分解効率が良くない。また超臨界状態に
おける温度及び圧力の上限値を超えると分解反応装置に
負荷がかかり過ぎ、これも効率的でない。図1に示すよ
うに、本発明の第1の実施の形態の石炭の発電設備用燃
料への転換装置では、タンク11に微粉化した石炭と水
を混合したスラリー状のCWMが貯えられる。石炭とし
ては、草炭、褐炭、亜歴青炭、歴青炭、無煙炭等が例示
される。石炭が硫黄分を含む場合、この硫黄分を取除く
ためにタンク11にはアルカリ水溶液が貯えられる。こ
のアルカリ水溶液としては、NaOH、KOH、Ca
(OH)2等の水溶液が例示される。石炭は予め数mm以
下の、好ましくはポンプの能力に応じて300μm以下
の粒径に微粉砕される。CWMにおける水はCWM濃度
が好ましくは5〜60重量%になるように添加される。
CWM濃度が5重量%未満では石炭の分解効率に劣り、
60重量%を越えるとCWMが流動性に欠け取扱いにく
くなる。CWM濃度は10〜55重量%がより好まし
い。このタンク11に貯えられたCWMはポンプ12に
より圧送され、ヒータ13によりこの圧送されたCWM
は150〜350℃程度に加熱される。ヒータ13で加
熱されたCWMは分解反応装置14に供給され、そこで
更に昇圧・昇温され、亜臨界状態又は超臨界状態にな
る。好ましくは374〜900℃の温度でかつ215〜
500kg/cm2の圧力、より好ましくは374〜6
00℃の温度でかつ215〜450kg/cm2の圧力
の超臨界状態が採用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the subcritical state of water is a temperature of 200 to 374 ° C. and 160 to 215 kg.
Means the state of water at a pressure of / cm 2 . The supercritical state of water is a temperature of 374 to 900 ° C. and 215 to 3
It means the state of water at a pressure of 00 kg / cm 2 . If the temperature and pressure in the subcritical state are less than the lower limits, the reaction is slow and the coal decomposition efficiency is not good. If the temperature and pressure in the supercritical state exceed the upper limits, the load on the decomposition reactor is too high, which is also inefficient. As shown in FIG. 1, in the apparatus for converting coal to fuel for power generation equipment according to the first embodiment of the present invention, a tank 11 stores a slurry-like CWM in which finely divided coal and water are mixed. Examples of coal include grass coal, lignite, sub-bituminous coal, bituminous coal, anthracite, and the like. When the coal contains sulfur, an alkaline aqueous solution is stored in the tank 11 to remove the sulfur. As the alkaline aqueous solution, NaOH, KOH, Ca
An aqueous solution such as (OH) 2 is exemplified. The coal is finely ground in advance to a particle size of a few mm or less, preferably 300 μm or less depending on the capacity of the pump. The water in the CWM is added so that the CWM concentration is preferably 5 to 60% by weight.
If the CWM concentration is less than 5% by weight, the coal decomposition efficiency is poor,
If it exceeds 60% by weight, CWM lacks fluidity and becomes difficult to handle. The CWM concentration is more preferably from 10 to 55% by weight. The CWM stored in the tank 11 is pressure-fed by the pump 12, and the CWM pressure-fed by the heater 13.
Is heated to about 150 to 350 ° C. The CWM heated by the heater 13 is supplied to a decomposition reactor 14, where it is further pressurized and heated to a subcritical state or a supercritical state. Preferably at a temperature of 374-900 ° C. and 215-
500 kg / cm 2 pressure, more preferably 374-6
A supercritical state at a temperature of 00 ° C. and a pressure of 215 to 450 kg / cm 2 is employed.

【0010】分解反応装置14において亜臨界状態又は
超臨界状態のCWMに対して、石炭の加水分解反応、
石炭の熱分解反応及び水素添加反応が起ると考えら
れる。即ち、高温水中では、石炭中の水素結合等の非共
有性の結合が解離し、石炭が膨張する。これにより石炭
の分解液化反応がより有効に進行する。 石炭の加水分解反応では、石炭のベンゼン環をつない
でいるヘテロ元素部分にH2OのOH-及びH+等が付加
され、石炭が低分子化される。石炭の熱分解反応で
は、石炭が単純に熱分解し低分子化する。更に水素添
加反応では、例えば上記の反応中に生成したラジカル
にHが付加し、これにより熱分解種が安定化する。また
熱分解しない安定な分子と活性な水素との反応も生じ
る。上記〜の反応は個別的に行われず、互いに併発
して複合的に行われ、石炭の軽質化が進行する。このよ
うにして石炭はこの亜臨界状態又は超臨界状態により油
分と残渣に分解される。超臨界状態の水は、水素イオン
と水酸基イオンへの解離が通常の水よりも大きくまた高
温であるので石炭の加水分解反応を促進する。更に超臨
界状態の水は誘電率が小さいために、石炭そのものに対
してある程度溶解力を持ち、またガスとも均一に混合し
得る。これらのことも軽質化の促進に寄与する。CWM
の分解物は重質油、中・軽質油等からなる油分と無機塩
を含む残渣である。
[0010] In the cracking reaction device 14, the CWM in a subcritical state or a supercritical state is subjected to a hydrolysis reaction of coal,
It is considered that a thermal decomposition reaction and a hydrogenation reaction of coal occur. That is, in high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated, and the coal expands. Thereby, the decomposition and liquefaction reaction of coal proceeds more effectively. In the coal hydrolysis reaction, OH and H + of H 2 O are added to the hetero element portion connecting the benzene ring of the coal, and the coal is reduced in molecular weight. In the thermal decomposition reaction of coal, the coal is simply pyrolyzed and decomposed. Further, in the hydrogenation reaction, for example, H is added to the radical generated during the above reaction, whereby the thermally decomposed species is stabilized. In addition, a reaction occurs between a stable molecule that does not thermally decompose and active hydrogen. The above reactions (1) to (4) are not performed individually, but are performed simultaneously and in a complex manner, and lightening of coal proceeds. In this way, the coal is decomposed into oil and residue by the subcritical or supercritical state. Water in a supercritical state promotes the hydrolysis reaction of coal because the dissociation into hydrogen ions and hydroxyl ions is larger than normal water and at a higher temperature. Further, since water in a supercritical state has a small dielectric constant, it has a certain dissolving power in coal itself and can be uniformly mixed with gas. These also contribute to the promotion of lightening. CWM
Is a residue containing an oil component composed of heavy oil, medium / light oil and the like and an inorganic salt.

【0011】石炭が硫黄分を含む場合でCWMがアルカ
リ水溶液を含むときには、この硫黄分は分解反応装置1
4で硫黄酸化物(SOx)を経て超臨界状態の水に容易
に溶解するともに、次の式(1)及び(2)の反応で無
害の無機塩になる。 SO3 + H2O → H2SO4 …… (1) H2SO4 + 2NaOH → Na2SO4 + 2H2O ……(2) 即ち、タンク11のCWMが例えばNaOH水溶液を含
む場合には、このアルカリ(NaOH)水溶液により硫
黄酸化物(SO3)は無害な硫酸塩(Na2SO4)にな
る。
When the coal contains sulfur and the CWM contains an aqueous alkaline solution, the sulfur is supplied to the decomposition reactor 1
In step 4, the compound easily dissolves in water in a supercritical state via sulfur oxide (SOx) and becomes a harmless inorganic salt by the reaction of the following formulas (1) and (2). SO 3 + H 2 O → H 2 SO 4 (1) H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O (2) That is, when the CWM of the tank 11 contains, for example, an aqueous solution of NaOH. The sulfur oxide (SO 3 ) is converted into harmless sulfate (Na 2 SO 4 ) by the alkali (NaOH) aqueous solution.

【0012】分解反応装置14で分解された生成物は水
の亜臨界状態又は超臨界状態の温度及び圧力を低くする
ことにより、油分及び炭化水素系ガスと残渣及び水に分
離される。油分及び残渣は高温度の状態で分離した方が
次の工程で加える熱エネルギが少なくて済むことから、
分解生成物は主として減圧弁15でその圧力を減じた上
で、分離装置16において水の亜臨界状態又は超臨界状
態の高温を維持して分離されることが好ましい。この炭
化水素系ガスは高温高圧の水素、メタン、エタン、ベン
ゼン等を主成分として含有する。その他に炭酸ガス(C
2)も分離装置16から分離されて大気中に放出され
る。また分離された水は分解反応装置14に供給され、
リサイクルされる。
The product decomposed in the decomposition reactor 14 is separated into oil and hydrocarbon gas, residue and water by lowering the temperature and pressure in the subcritical or supercritical state of water. Separating oil and residue at a high temperature requires less heat energy in the next step.
The decomposition products are preferably separated mainly by reducing the pressure thereof by the pressure reducing valve 15 and maintaining the subcritical or supercritical water at a high temperature in the separation device 16. This hydrocarbon-based gas contains high-temperature and high-pressure hydrogen, methane, ethane, benzene, and the like as main components. In addition, carbon dioxide (C
O 2 ) is also separated from the separation device 16 and released into the atmosphere. The separated water is supplied to the decomposition reactor 14,
Recycled.

【0013】分離装置16で分離された油分と残渣は混
合機31に送られて混合されることによりCOMを生成
する。このCOMはガス化反応炉20内にノズル(図示
せず)などで噴射されることにより供給される。また分
離装置16で分離された炭化水素系ガスもガス化反応炉
20に供給される。ガス化反応炉20に供給されたCO
M及び炭化水素系ガスはガス化剤としてガス化反応炉2
0に供給される空気と反応して高温高圧のCO及びH2
を主成分とする可燃ガスになる。ガス化反応炉20の残
渣である灰分はガス化反応炉20から取出され、処分さ
れる。ガス化反応炉20で生成した可燃ガスはガスター
ビン21に送られ、図示しない燃焼器で燃焼され、その
燃焼エネルギによりガスタービン21を駆動する。ガス
タービン21の回転エネルギにより第1発電機22が発
電するようになる。これにより高い発電効率で発電が行
われる。
The oil and the residue separated by the separation device 16 are sent to a mixer 31 where they are mixed to generate COM. This COM is supplied by being injected into the gasification reactor 20 by a nozzle (not shown) or the like. The hydrocarbon-based gas separated by the separation device 16 is also supplied to the gasification reactor 20. CO supplied to the gasification reactor 20
M and hydrocarbon gases are used as gasifying agents in gasification reactor 2
And CO 2 and H 2 at high temperature and pressure
Becomes a combustible gas whose main component is. Ash, which is a residue of the gasification reactor 20, is taken out of the gasification reactor 20 and disposed. The combustible gas generated in the gasification reactor 20 is sent to the gas turbine 21 and burned by a combustor (not shown), and the combustion energy drives the gas turbine 21. The first generator 22 generates power by the rotational energy of the gas turbine 21. Thereby, power generation is performed with high power generation efficiency.

【0014】図2に示すように、本発明の第2の実施の
形態の転換装置では、第1実施形態の場合と同様に、分
解反応装置14で分解された生成物は分離装置16で油
分及び炭化水素系ガスと残渣及び水に分離される。分離
装置16で分離された油分と残渣は混合機31に送られ
て混合されることによりCOMを生成する。このCOM
はボイラ23内にノズル(図示せず)などで噴射される
ことにより供給される。また分離装置16で分離された
炭化水素系ガスもボイラ23に供給される。ボイラ23
で上記COM及び炭化水素系ガスが燃焼され、その燃焼
エネルギでボイラ23に別途に供給される水を加熱する
ことにより蒸気エネルギを発生する。この蒸気エネルギ
は第1蒸気タービン24を駆動し、第1蒸気タービン2
4と回転軸が直結している第2発電機26により発電す
る。第1蒸気タービン24を通過した蒸気は復水器27
で冷却されて再びボイラ23に給水される。
As shown in FIG. 2, in the conversion apparatus according to the second embodiment of the present invention, as in the first embodiment, the products decomposed by the decomposition reaction device 14 are separated into oil by the separation device 16. And hydrocarbon-based gas, residue and water. The oil component and the residue separated by the separation device 16 are sent to a mixer 31 and mixed to generate COM. This COM
Is supplied by being injected into the boiler 23 by a nozzle (not shown) or the like. The hydrocarbon-based gas separated by the separation device 16 is also supplied to the boiler 23. Boiler 23
The COM and the hydrocarbon-based gas are combusted, and steam energy is generated by heating water separately supplied to the boiler 23 with the combustion energy. This steam energy drives the first steam turbine 24 and the first steam turbine 2
The power is generated by the second generator 26, which is directly connected to the rotating shaft 4. The steam that has passed through the first steam turbine 24 is
And the water is supplied to the boiler 23 again.

【0015】図3に示すように、本発明の第3の実施の
形態の転換装置では、第1実施形態の場合と同様に、分
解反応装置14で分解された生成物は分離装置16で油
分及び炭化水素系ガスと残渣及び水に分離される。分離
装置16で分離された油分と炭化水素系ガスをガス化反
応炉20に供給する。ガス化反応炉20に供給された油
分及び炭化水素系ガスはガス化剤としてガス化反応炉2
0に供給される空気と反応して高温高圧のCO及びH2
を主成分とする可燃ガスになる。ガス化反応炉20の残
渣である灰分はガス化反応炉20から取出され、処分さ
れる。ガス化反応炉20で生成した可燃ガスはガスター
ビン21に送られ、図示しない燃焼器で燃焼され、その
燃焼エネルギによりガスタービン21を駆動する。ガス
タービン21の回転エネルギにより第1発電機22が発
電するようになる。分離装置16で分離された残渣はボ
イラ23に供給される。この残渣はボイラ23で燃焼さ
れ、その燃焼エネルギでボイラ23に別途に供給される
水を加熱することにより蒸気エネルギを発生する。また
ガスタービン21の排ガスがボイラ23に供給され、こ
の排ガスの熱エネルギでボイラ23に供給される上記水
が更に加熱されて蒸気エネルギを発生する。これらの蒸
気エネルギは第1蒸気タービン24を駆動し、第1蒸気
タービン24と回転軸が直結している第2発電機26に
より発電する。第1蒸気タービン24を通過した蒸気は
復水器27で冷却されて再びボイラ23に給水される。
これにより第1発電機22とともに第2発電機26が運
転され、有効に熱エネルギが発電に利用されるととも
に、高効率で発電が行われる。
As shown in FIG. 3, in the conversion apparatus according to the third embodiment of the present invention, similarly to the first embodiment, the products decomposed by the decomposition reaction device 14 are separated by the separation device 16 into oil components. And hydrocarbon-based gas, residue and water. The oil component and the hydrocarbon-based gas separated by the separation device 16 are supplied to the gasification reactor 20. The oil and hydrocarbon gas supplied to the gasification reactor 20 are used as a gasifying agent in the gasification reactor 2.
And CO 2 and H 2 at high temperature and pressure
Becomes a combustible gas whose main component is. Ash, which is a residue of the gasification reactor 20, is taken out of the gasification reactor 20 and disposed. The combustible gas generated in the gasification reactor 20 is sent to the gas turbine 21 and burned by a combustor (not shown), and the combustion energy drives the gas turbine 21. The first generator 22 generates power by the rotational energy of the gas turbine 21. The residue separated by the separation device 16 is supplied to the boiler 23. The residue is burned in the boiler 23, and steam energy is generated by heating water separately supplied to the boiler 23 with the combustion energy. Further, the exhaust gas of the gas turbine 21 is supplied to the boiler 23, and the water supplied to the boiler 23 is further heated by the thermal energy of the exhaust gas to generate steam energy. These steam energies drive the first steam turbine 24 and generate electric power by the second generator 26 having a rotating shaft directly connected to the first steam turbine 24. The steam that has passed through the first steam turbine 24 is cooled by the condenser 27 and supplied to the boiler 23 again.
As a result, the second generator 26 is operated together with the first generator 22, so that heat energy is effectively used for power generation and power generation is performed with high efficiency.

【0016】[0016]

【発明の効果】以上述べたように、本発明はCWMを亜
臨界状態又は超臨界状態で分解、分離して可燃ガス及び
COMを生成させ、この可燃ガス及びCOMの燃焼エネ
ルギを利用することにより、次の優れた効果を有する。 (1) 従来のガス化反応炉と比較して本発明の分離装置で
分離された油分は反応性が良好であり、ガス化反応炉に
おいて単独又は残渣と混合されたCOMの形態で比較的
低い温度でかつ高速でガス化でき、二段のガス化が不要
となるため、反応炉を小型化できるとともに反応炉を構
成する材料における制約が少ない。 (2) 分離装置で分離された油分と残渣を混合したCOM
はガス化反応炉に供給されて可燃ガスを生成するため、
従来のガス化装置で必要としたスチームの供給は低減さ
れる。
As described above, the present invention decomposes and separates CWM in a subcritical or supercritical state to generate combustible gas and COM, and utilizes the combustion energy of this combustible gas and COM. Has the following excellent effects. (1) Compared with the conventional gasification reactor, the oil separated by the separation device of the present invention has good reactivity, and is relatively low in the form of COM alone or mixed with the residue in the gasification reactor. Since gasification can be performed at high temperature and at high speed, and gasification in two stages is not required, the size of the reaction furnace can be reduced, and there are few restrictions on the materials constituting the reaction furnace. (2) COM mixed oil and residue separated by separation device
Is supplied to the gasification reactor to produce combustible gas,
The supply of steam required by conventional gasifiers is reduced.

【0017】(3) 亜臨界又は超臨界反応で生成して分離
装置から分離された油分は8000kcal/kg程度
の高い熱量を有しているため、石炭の分解ガスのみを使
用する従来のガス化反応炉と比較して著しくガスタービ
ン効率を向上させることができ、燃焼排気温度も高くで
きる。この結果、排熱ボイラや蒸気タービン効率も向上
し、複合発電全体の効率を向上できる。 (4) また亜臨界又は超臨界反応で生成して分離装置から
分離された炭化水素系ガスは3000〜8000kca
l/Nm程度の高い熱量を有しており、ボイラで燃焼さ
せて蒸気発生に利用できる。 (5) 原料とともにアルカリ水溶液を添加すれば、石炭に
含まれる硫黄分を無機塩の形で除去することができる。
このため従来の複合発電装置に使用されている大形の脱
硫装置を必要とせず、また比較的硫黄分の多い低品位
炭、重質油等を原料とすることができる。
(3) Since the oil produced by the subcritical or supercritical reaction and separated from the separator has a high calorific value of about 8000 kcal / kg, the conventional gasification using only the cracked gas of coal The gas turbine efficiency can be remarkably improved as compared with the reactor, and the combustion exhaust temperature can be increased. As a result, the efficiency of the waste heat boiler and the steam turbine is also improved, and the efficiency of the entire combined cycle power generation can be improved. (4) The hydrocarbon-based gas generated by the subcritical or supercritical reaction and separated from the separation device is 3000 to 8000 kca.
It has a high calorific value of about 1 / Nm and can be burned in a boiler and used for steam generation. (5) If an alkaline aqueous solution is added together with the raw materials, the sulfur content in the coal can be removed in the form of an inorganic salt.
For this reason, a large-sized desulfurization unit used in the conventional combined cycle power generation device is not required, and low-grade coal, heavy oil, or the like having a relatively high sulfur content can be used as a raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の石炭の発電設備用
燃料への転換装置と発電装置の構成図。
FIG. 1 is a configuration diagram of an apparatus for converting coal into fuel for power generation equipment and a power generation apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の石炭の発電設備用
燃料への転換装置と発電装置の構成図。
FIG. 2 is a configuration diagram of an apparatus for converting coal into fuel for power generation equipment and a power generation apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の石炭の発電設備用
燃料への転換装置と発電装置の構成図。
FIG. 3 is a configuration diagram of an apparatus for converting coal into fuel for power generation equipment and a power generation apparatus according to a third embodiment of the present invention.

【図4】従来の石炭ガス化複合発電装置の構成図。FIG. 4 is a configuration diagram of a conventional integrated coal gasification combined cycle device.

【符号の説明】[Explanation of symbols]

11 タンク 13 ヒータ 14 分解反応装置 15 減圧弁 16 分離装置 20 ガス化反応炉 23 ボイラ 31 混合機 DESCRIPTION OF SYMBOLS 11 Tank 13 Heater 14 Decomposition reaction device 15 Pressure reducing valve 16 Separation device 20 Gasification reaction furnace 23 Boiler 31 Mixer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 皓 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 Fターム(参考) 3G081 BA02 BA13 BA15 BB00 BC07 BD00 DA14 DA22 4D002 AA02 AC10 BA02 CA13 CA20 DA01 DA05 DA12 DA35 EA01 FA02 FA04 FA05 GA03 GB03 GB04 GB06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akira Tanaka 1-3-25 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Materials Corporation System Business Center F-term (reference) 3G081 BA02 BA13 BA15 BB00 BC07 BD00 DA14 DA22 4D002 AA02 AC10 BA02 CA13 CA20 DA01 DA05 DA12 DA35 EA01 FA02 FA04 FA05 GA03 GB03 GB04 GB06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを水の亜臨界状態又は超臨界状態の温度及
び圧力に維持して前記石炭を分解する分解反応工程と、 前記分解反応工程で得られた分解生成物を水の亜臨界状
態又はそれ以下の温度及び圧力に維持して油分と、炭化
水素系ガスと、残渣及び水に分離する分離工程と、 前記分離工程で分離された油分及び残渣を混合して石炭
・油ミクスチャーを生成する工程と、 前記分離工程で分離された炭化水素系ガスと前記石炭・
油ミクスチャーをガス化反応炉に供給してCO及びH2
を主成分とする可燃ガスにガス化する工程とを含む石炭
の発電設備用燃料への転換方法。
A decomposition reaction step of decomposing the coal by maintaining a coal / water mixture obtained by mixing finely divided coal and water at a temperature and pressure in a subcritical or supercritical state of water; and the decomposition reaction step Separation step of separating the decomposition product obtained in step 2 into oil, hydrocarbon-based gas, residue and water by maintaining the temperature and pressure of water in a subcritical state or lower, and separated in the separation step Mixing oil and residue to produce a coal-oil mixture, and the hydrocarbon-based gas separated in the separation step and the coal / oil mixture.
The oil mixture is supplied to the gasification reactor to supply CO and H 2
Converting coal into fuel for power generation equipment, comprising:
【請求項2】 石炭・水ミクスチャーにアルカリ水溶液
を加える請求項1記載の転換方法。
2. The conversion method according to claim 1, wherein an alkaline aqueous solution is added to the coal / water mixture.
【請求項3】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを水の亜臨界状態又は超臨界状態の温度及
び圧力に維持して前記石炭を分解する分解反応工程と、 前記分解反応工程で得られた分解生成物を水の亜臨界状
態又はそれ以下の温度及び圧力に維持して油分と、炭化
水素系ガスと、残渣及び水に分離する分離工程と、 前記分離工程で分離された油分及び残渣を混合して石炭
・油ミクスチャーを生成する工程と、 前記分離工程で分離された炭化水素系ガスと前記石炭・
油ミクスチャーをボイラに供給して燃焼する燃焼工程と
を含む石炭の発電設備用燃料への転換方法。
3. A decomposition reaction step of decomposing the coal by maintaining a coal / water mixture obtained by mixing finely divided coal and water at a temperature and pressure in a subcritical or supercritical state of water; and the decomposition reaction step. Separation step of separating the decomposition product obtained in step 2 into oil, hydrocarbon-based gas, residue and water by maintaining the temperature and pressure of water in a subcritical state or lower, and separated in the separation step Mixing oil and residue to produce a coal-oil mixture, and the hydrocarbon-based gas separated in the separation step and the coal / oil mixture.
A method for converting coal to fuel for power generation equipment, comprising: a combustion step of supplying oil mixture to a boiler and burning it.
【請求項4】 石炭・水ミクスチャーにアルカリ水溶液
を加える請求項3記載の転換方法。
4. The conversion method according to claim 3, wherein an alkaline aqueous solution is added to the coal / water mixture.
【請求項5】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを水の亜臨界状態又は超臨界状態の温度及
び圧力に維持して前記石炭を分解する分解反応工程と、 前記分解反応工程で得られた分解生成物を水の亜臨界状
態又はそれ以下の温度及び圧力に維持して油分と、炭化
水素系ガスと、残渣及び水に分離する分離工程と、 前記分離工程で分離された油分と炭化水素系ガスをガス
化反応炉に供給してCO及びH2を主成分とする可燃ガ
スにガス化する工程と、 前記分離工程で分離された残渣をボイラに供給して燃焼
する燃焼工程とを含む石炭の発電設備用燃料への転換方
法。
5. A decomposition reaction step of decomposing the coal while maintaining the temperature and pressure of water in a subcritical or supercritical state of a coal / water mixture obtained by mixing finely divided coal and water; and the decomposition reaction step. Separation step of separating the decomposition product obtained in step 2 into oil, hydrocarbon-based gas, residue and water by maintaining the temperature and pressure of water in a subcritical state or lower, and separated in the separation step A step of supplying an oil component and a hydrocarbon-based gas to a gasification reactor to gasify it into a combustible gas containing CO and H 2 as a main component; and a step of supplying a residue separated in the separation step to a boiler and burning the residue. And a method for converting coal into fuel for power generation equipment.
【請求項6】 石炭・水ミクスチャーにアルカリ水溶液
を加える請求項5記載の転換方法。
6. The conversion method according to claim 5, wherein an alkaline aqueous solution is added to the coal / water mixture.
【請求項7】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを貯えるタンク(11)と、 前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界
状態に維持して前記石炭を分解する分解反応装置(14)
と、 前記分解反応装置(14)で得られた分解生成物を水の亜臨
界状態又はそれ以下の温度及び圧力に維持して油分と、
炭化水素系ガスと、残渣及び水に分離する分離装置(16)
と、 前記分離装置(16)で分離された油分及び残渣を混合して
石炭・油ミクスチャーを生成する混合機(31)と、 前記分離装置(16)で分離された炭化水素系ガスと前記石
炭・油ミクスチャーをCO及びH2を主成分とする可燃
ガスにガス化するガス化反応炉(20)とを備えた石炭の発
電設備用燃料への転換装置。
7. A tank (11) for storing a coal / water mixture in which pulverized coal and water are mixed, and decomposing the coal while maintaining the coal / water mixture in a subcritical state or a supercritical state of water. Decomposition reactor (14)
And maintaining the decomposition product obtained in the decomposition reaction device (14) in a subcritical state of water or at a temperature and pressure lower than that, and an oil component;
Separation device for separating hydrocarbon-based gas, residue and water (16)
A mixer (31) for mixing the oil component and the residue separated by the separation device (16) to generate a coal-oil mixture, and a hydrocarbon-based gas and the coal separated by the separation device (16). An apparatus for converting coal into fuel for power generation equipment, comprising a gasification reactor (20) for gasifying oil mixture into a combustible gas containing CO and H 2 as main components.
【請求項8】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを貯えるタンク(11)と、 前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界
状態に維持して前記石炭を分解する分解反応装置(14)
と、 前記分解反応装置(14)で得られた分解生成物を水の亜臨
界状態又はそれ以下の温度及び圧力に維持して油分と、
炭化水素系ガスと、残渣及び水に分離する分離装置(16)
と、 前記分離装置(16)で分離された油分及び残渣を混合して
石炭・油ミクスチャーを生成する混合機(31)と、 前記石炭・油ミクスチャーと前記分離装置(16)で分離さ
れた炭化水素系ガスとを燃焼するボイラ(23)とを備えた
石炭の発電設備用燃料への転換装置。
8. A tank (11) for storing a coal / water mixture in which pulverized coal and water are mixed, and decomposing the coal while maintaining the coal / water mixture in a subcritical or supercritical state of water. Decomposition reactor (14)
And maintaining the decomposition product obtained in the decomposition reaction device (14) in a subcritical state of water or at a temperature and pressure lower than that, and an oil component;
Separation device for separating hydrocarbon-based gas, residue and water (16)
A mixer (31) for mixing the oil component and the residue separated by the separation device (16) to produce a coal-oil mixture, and a carbonization device separated by the coal-oil mixture and the separation device (16). An apparatus for converting coal into fuel for power generation equipment, comprising a boiler (23) for burning hydrogen-based gas.
【請求項9】 微粉化した石炭と水を混合した石炭・水
ミクスチャーを貯えるタンク(11)と、 前記石炭・水ミクスチャーを水の亜臨界状態又は超臨界
状態に維持して前記石炭を分解する分解反応装置(14)
と、 前記分解反応装置(14)で得られた分解生成物を水の亜臨
界状態又はそれ以下の温度及び圧力に維持して油分と、
炭化水素系ガスと、残渣及び水に分離する分離装置(16)
と、 前記分離装置(16)で分離された油分と炭化水素系ガスを
CO及びH2を主成分とする可燃ガスにガス化するガス
化反応炉(20)と、 前記分離工程で分離された残渣を燃焼するボイラ(23)と
を備えた石炭の発電設備用燃料への転換装置。
9. A tank (11) for storing a coal / water mixture in which pulverized coal and water are mixed, and decomposing the coal while maintaining the coal / water mixture in a subcritical or supercritical state of water. Decomposition reactor (14)
And maintaining the decomposition product obtained in the decomposition reaction device (14) in a subcritical state of water or at a temperature and pressure lower than that, and an oil component;
Separation device for separating hydrocarbon-based gas, residue and water (16)
When, with the separation device gasification reactor to gasify the combustible gas and separated with oil hydrocarbon gas mainly composed of CO and H 2 (16) (20), separated by the separation step An apparatus for converting coal to fuel for power generation equipment, comprising a boiler (23) for burning residues.
JP28488698A 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities Expired - Fee Related JP3947887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28488698A JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28488698A JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Publications (2)

Publication Number Publication Date
JP2000109859A true JP2000109859A (en) 2000-04-18
JP3947887B2 JP3947887B2 (en) 2007-07-25

Family

ID=17684320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28488698A Expired - Fee Related JP3947887B2 (en) 1998-10-07 1998-10-07 Method and apparatus for converting coal into fuel for power generation facilities

Country Status (1)

Country Link
JP (1) JP3947887B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208513A (en) * 2010-03-29 2011-10-20 Mitsubishi Heavy Ind Ltd Coal gasification combined-cycle power generation plant
CN102989409A (en) * 2012-10-11 2013-03-27 田原宇 Double-reaction-tube circulation bed device for heavy oil pyrolysis and gasification coupling
CN112594695A (en) * 2020-11-17 2021-04-02 光大环境科技(中国)有限公司 Supercritical water gasification device for industrial garbage
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208513A (en) * 2010-03-29 2011-10-20 Mitsubishi Heavy Ind Ltd Coal gasification combined-cycle power generation plant
US9261020B2 (en) 2010-03-29 2016-02-16 Mitsubishi Heavy Industries, Ltd. Integrated coal gasification combined cycle plant
CN102989409A (en) * 2012-10-11 2013-03-27 田原宇 Double-reaction-tube circulation bed device for heavy oil pyrolysis and gasification coupling
CN112594695A (en) * 2020-11-17 2021-04-02 光大环境科技(中国)有限公司 Supercritical water gasification device for industrial garbage
US11808206B2 (en) 2022-02-24 2023-11-07 Richard Alan Callahan Tail gas recycle combined cycle power plant

Also Published As

Publication number Publication date
JP3947887B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
CZ2004440A3 (en) Method for controlling temperature of combustion turbine inlet fuel in order to achieve maximum power output
US20080155899A1 (en) Methods for feedstock pretreatment and transport to gasification
CN104059705B (en) Overall steam gasification and entrained flow gasification system and method for inferior fuel
JP2000109850A (en) Process and device for converting heavy oil into fluid fuel for generating unit
US20020121093A1 (en) Utilization of COS hydrolysis in high pressure gasification
JP2002155288A (en) Method for coal gasification
JP2008069017A (en) Method for producing hydrogen
JP2002206092A (en) Method and device for recovering energy from gas obtained by refuse gasification
KR102032823B1 (en) Circulating Fluidized Bed Gasifier Equipped with Heat Exchanger Therein
JP3947887B2 (en) Method and apparatus for converting coal into fuel for power generation facilities
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
CN114276837A (en) Biomass gasification process
WO1997005216A1 (en) Improvements in the use of carbonaceous fuels
JP2004217868A (en) Coal thermal hydrocracking process
JP3776692B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
KR20200005825A (en) System of distributed energy production plant using cal
JP2001294873A (en) Method for converting cola into fuel for power generation and equipment therefor
JP2000109858A (en) Process and device for generating combustible gas for electric power generating unit
CN101838558B (en) Mixed fuel coal water slurry entrained flow bed gasification system
JPS59155492A (en) Manufacture of clean and alkali-free fuel gas
JPH11349963A (en) Method and device for producing flammable gas and generator using the gas
JP2002155289A (en) Gas-flowing bed type method for gasifying coal
JP2001348578A (en) Apparatus and method for gasifying carbonaceous fossil fuel and biomass
JPH10130662A (en) Method for recycling waste into resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees