JPH11246876A - Method for generating flammable gas, its device and hybrid power generator using the same gas - Google Patents

Method for generating flammable gas, its device and hybrid power generator using the same gas

Info

Publication number
JPH11246876A
JPH11246876A JP10050781A JP5078198A JPH11246876A JP H11246876 A JPH11246876 A JP H11246876A JP 10050781 A JP10050781 A JP 10050781A JP 5078198 A JP5078198 A JP 5078198A JP H11246876 A JPH11246876 A JP H11246876A
Authority
JP
Japan
Prior art keywords
subcritical
supercritical state
coal
heavy oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10050781A
Other languages
Japanese (ja)
Inventor
Masatoshi Hanzawa
正利 半沢
Shinichi Hasegawa
伸一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10050781A priority Critical patent/JPH11246876A/en
Publication of JPH11246876A publication Critical patent/JPH11246876A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a miniturized combustible gas generator having relatively little restriction in heat resistance without environmental pollution by simply and efficiently gasifying various kinds of coals or heavy crude oils at relatively low temperatures, easily bringing sulfur components included in coals and heavy crude oils into nontoxic inorganic salts and removing them, and a hybrid power generator by combining the said generator with a usual hybrid power generator. SOLUTION: This method for producing combustible gases is to decompose one or both of a coal slurry and a heavy oil emulsion by maintaining one or both of them in a subcritical or supercritical state, separate the oils and residues obtained from the decomposition process 11 in the subcritical or supercritical state, produce active hydrogen by adding an oxygen source to the residue in the subcritical or supercritical state separated in the separation process 12, feed the active hydrogen produced in the partial oxidation process 13 to a decomposing reaction process and produce high temperature and high pressure combustible gases in a gasification process 14 by reducing pressure or decreasing temperature of the oil components in the subcritical or supercritical state separated in the separation process 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭又は重質油を
亜臨界状態又は超臨界状態で分解し、この分解により生
じた油分を減圧又は降温して高温高圧の可燃ガスを生成
する方法及びその装置に関する。更に本発明はこの装置
により生成された高温高圧の可燃ガスにより発電する複
合発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing coal or heavy oil in a subcritical state or a supercritical state, and decompressing or lowering the temperature of the oil produced by the decomposition to produce a high-temperature and high-pressure combustible gas. Regarding the device. Furthermore, the present invention relates to a combined power generation device for generating electric power by using a high-temperature and high-pressure combustible gas generated by the device.

【0002】[0002]

【従来の技術】発電装置として、石炭、重質油、天然ガ
スなどの化石燃料の燃焼エネルギをボイラで蒸気に変え
て、この蒸気エネルギで蒸気タービンを駆動して発電す
る火力発電装置が周知である。この発電装置では化石燃
料に含まれる硫黄分等が不純物として多く発生する。こ
のためこの不純物が有害物質となって環境汚染を生じな
いように火力発電装置では複雑な浄化装置を必要とす
る。また高い発電効率が得られない問題点がある。この
発電効率を向上するために、図3に示すように、ガス化
装置1と脱硫装置2と複合発電設備3を備えた石炭ガス
化複合発電装置5が知られている。この発電装置5で
は、2段流動床型のガス化装置1の上段炉に粉砕及び乾
燥した石炭を供給し、この石炭を下段炉からの熱ガスと
上段に入るガス化剤である空気によってガス化する。こ
こでの生成ガスは熱交換した後、炉頂から粗成ガスとし
て取出される。ガス化しなかった未反応のチャーの粗粒
は逆L字状の溢流(図示せず)により、また粗成ガス中
の細粒はサイクロン1aで捕集され、これらはガス化装
置1の下段炉に回収されて再び空気と水蒸気によって燃
焼されガス化される。灰分は炉底より取出されタンク1
bに貯蔵される。
2. Description of the Related Art As a power generation device, a thermal power generation device that converts combustion energy of fossil fuels such as coal, heavy oil, and natural gas into steam by a boiler and drives a steam turbine with the steam energy to generate power is well known. is there. In this power generation device, a large amount of sulfur and the like contained in fossil fuel is generated as impurities. For this reason, a thermal power generator requires a complicated purification device so that these impurities do not become harmful substances and cause environmental pollution. There is also a problem that high power generation efficiency cannot be obtained. In order to improve the power generation efficiency, as shown in FIG. 3, there is known a coal gasification combined power generation device 5 including a gasification device 1, a desulfurization device 2, and a combined power generation device 3. In this power generation device 5, pulverized and dried coal is supplied to the upper furnace of the two-stage fluidized bed gasifier 1, and the coal is gasified by hot gas from the lower furnace and air as a gasifying agent entering the upper stage. Become The generated gas here is taken out from the furnace top as a crude gas after heat exchange. The unreacted char coarse particles that have not been gasified are collected by an inverted L-shaped overflow (not shown), and the fine particles in the coarse gas are collected by a cyclone 1a. The gas is recovered in the furnace and burned by air and steam again to be gasified. Ash is taken out from the furnace bottom and tank 1
b.

【0003】ガス化装置1から取出された粗成ガスは脱
硫装置2により硫黄化合物を酸化鉄と化合させて硫化鉄
の形態で硫黄が除去され、その際に発生するSO2ガス
は単体硫黄に還元されて回収される。脱硫装置2から取
出された粗成ガスは集塵器2aで除塵され、ダスト分離
器2bでダストを除去されて可燃ガスとなる。複合発電
設備3はガスタービン6と蒸気タービン7を備える。上
記可燃ガスは、先ずガスタービン圧縮器6aで圧縮され
た空気と混合され、ガスタービン燃焼器6bで燃焼す
る。この燃焼ガスはガスタービン6を駆動し、ガスター
ビン6と回転軸が直結している発電機8により発電す
る。次にガスタービン6からの排ガスは排熱回収ボイラ
9でその熱エネルギを蒸気エネルギとして回収される。
この蒸気エネルギは蒸気タービン7を駆動し、蒸気ター
ビン7と回転軸が直結している発電機8により発電す
る。
[0003] The crude gas taken out of the gasifier 1 is combined with a sulfur compound by iron oxide by a desulfurizer 2 to remove sulfur in the form of iron sulfide, and the SO 2 gas generated at that time is converted into elemental sulfur. It is reduced and collected. The crude gas taken out of the desulfurization device 2 is removed by a dust collector 2a and dust is removed by a dust separator 2b to become a combustible gas. The combined power generation facility 3 includes a gas turbine 6 and a steam turbine 7. The combustible gas is first mixed with air compressed by the gas turbine compressor 6a and burns in the gas turbine combustor 6b. The combustion gas drives the gas turbine 6 and generates electric power by a generator 8 having a rotating shaft directly connected to the gas turbine 6. Next, the exhaust gas from the gas turbine 6 is recovered by the exhaust heat recovery boiler 9 using the heat energy as steam energy.
This steam energy drives the steam turbine 7 and generates electricity by a generator 8 having a rotating shaft directly connected to the steam turbine 7.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記石炭ガス
化複合発電装置では、ガス化装置及び脱硫装置がそれぞ
れ比較的大型化で、その制御が複雑である不具合があ
る。また石炭のガス化が1000℃以上の温度で行われ
るため、このガス化装置は高温に耐え得るための多くの
厳しい条件で制約されるとともに熱エネルギロスも大き
くなる。本発明の目的は、比較的低温で効率良く、しか
も多種類の石炭又は重質油を簡単にガス化し得る可燃ガ
スの生成方法及びその装置を提供することにある。本発
明の別の目的は、石炭や重質油に含まれる硫黄分を容易
に無害な無機塩にして除去することにより環境汚染を生
じさせない可燃ガスの生成方法及びその装置を提供する
ことにある。本発明の別の目的は、耐熱上の制約が比較
的少なく、小型化し得る可燃ガスの生成装置を提供する
ことにある。本発明の更に別の目的は、従来の複合発電
設備と組合せて高い発電効率が得られる複合発電装置を
提供することにある。
However, in the above-mentioned integrated coal gasification combined cycle system, the gasification system and the desulfurization system are relatively large in size, and the control thereof is complicated. Further, since gasification of coal is performed at a temperature of 1000 ° C. or higher, the gasifier is restricted by many severe conditions for withstanding high temperatures, and thermal energy loss increases. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for producing a combustible gas which can efficiently gasify various types of coal or heavy oil at a relatively low temperature and efficiently. Another object of the present invention is to provide a method and an apparatus for producing a combustible gas which does not cause environmental pollution by easily removing a sulfur content contained in coal or heavy oil into a harmless inorganic salt and removing it. . Another object of the present invention is to provide a combustible gas generation device which has relatively few restrictions on heat resistance and can be downsized. Still another object of the present invention is to provide a combined power generation device that can achieve high power generation efficiency by being combined with a conventional combined power generation facility.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、微粉化した石炭と水のスラリー又は
重質油と水のエマルジョンの一方又は双方を亜臨界状態
又は超臨界状態に維持して石炭又は重質油の一方又は双
方を分解する分解反応工程11と、この分解反応工程1
1で得られた油分と残渣とを亜臨界状態又は超臨界状態
で分離する分離工程12と、この分離工程12で分離さ
れた亜臨界状態又は超臨界状態の残渣に酸素源を加えて
活性水素を生成し分解反応工程11に供給する部分酸化
工程13と、分離工程12で分離された亜臨界状態又は
超臨界状態の油分の圧力又は温度のいずれか一方又は双
方を低下させることにより高温高圧の可燃ガスを生成す
るガス化工程14とを含む可燃ガスの生成方法である。
The invention according to claim 1 is
As shown in FIG. 1, one or both of a slurry of finely divided coal and water or a heavy oil and water emulsion is maintained in a subcritical state or a supercritical state to decompose one or both of coal and heavy oil. Decomposition reaction step 11 and the decomposition reaction step 1
A separation step 12 for separating the oil component and the residue obtained in Step 1 in a subcritical or supercritical state, and adding an oxygen source to the subcritical or supercritical state separated in the separation step 12 to activate hydrogen. A partial oxidation step 13 for producing and supplying the same to the decomposition reaction step 11, and reducing one or both of the pressure and the temperature of the oil component in the subcritical state or the supercritical state separated in the separation step 12, thereby reducing the temperature and the temperature. And a gasification step 14 for generating combustible gas.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、スラリー又はエマルジョンの一方又は双方
とともにアルカリ水溶液を加える可燃ガスの生成方法で
ある。請求項3に係る発明は、請求項1又は2に係る発
明であって、ガス化工程14でガス化しなかった重質油
を分解反応工程11に再度供給する可燃ガスの生成方法
である。請求項4に係る発明は、ガス化工程14でガス
化しなかった重質油を燃焼して亜臨界状態又は超臨界状
態の高温を作り出すために用いる可燃ガスの生成方法で
ある。
The invention according to claim 2 is the invention according to claim 1, and is a method for producing a combustible gas by adding an aqueous alkali solution together with one or both of a slurry and an emulsion. The invention according to claim 3 is the invention according to claim 1 or 2, which is a method for generating a combustible gas that supplies the heavy oil that has not been gasified in the gasification step 14 to the cracking reaction step 11 again. The invention according to claim 4 is a method for producing a combustible gas used for burning heavy oil not gasified in the gasification step 14 to create a high temperature in a subcritical state or a supercritical state.

【0007】請求項5に係る発明は、図2に示すように
微粉化した石炭と水のスラリー又は重質油と水のエマル
ジョンの一方又は双方を貯えるタンク21と、スラリー
又はエマルジョンの一方又は双方を亜臨界状態又は超臨
界状態に維持して石炭又は重質油の一方又は双方を分解
する分解反応装置24と、この分解反応装置24で得ら
れた油分と残渣とを亜臨界状態又は超臨界状態で分離す
る分離装置26と、この分離装置26で分離された亜臨
界状態又は超臨界状態の残渣に酸素源を加えて活性水素
を生成し分解反応装置24に供給する部分酸化装置27
と、分離装置26で分離された亜臨界状態又は超臨界状
態の油分の圧力又は温度のいずれか一方又は双方を低下
させることにより高温高圧の可燃ガスを生成するガス化
装置28とを備えた可燃ガスの生成装置20である。
As shown in FIG. 2, the invention according to claim 5 comprises a tank 21 for storing one or both of a slurry of finely divided coal and water or an emulsion of heavy oil and water, and one or both of a slurry and an emulsion. Is maintained in a subcritical state or a supercritical state to decompose one or both of coal and heavy oil, and an oil component and a residue obtained by the decomposition reaction apparatus 24 are converted into a subcritical state or a supercritical state. And a partial oxidation device 27 which generates an active hydrogen by adding an oxygen source to the subcritical or supercritical residue separated by the separation device 26 and supplies it to the decomposition reactor 24.
And a gasifier 28 that generates a high-temperature and high-pressure combustible gas by reducing one or both of the pressure and the temperature of the oil component in the subcritical or supercritical state separated by the separation device 26. It is a gas generator 20.

【0008】請求項6に係る発明は、図2に示すように
請求項5記載の生成装置で生成された高温高圧の可燃ガ
スの燃焼エネルギで駆動されるガスタービン31と、ガ
スタービン31の排ガスの熱エネルギを蒸気エネルギと
して回収する排熱回収ボイラ33と、排熱回収ボイラ3
3で回収された蒸気エネルギで駆動される蒸気タービン
32,36と、ガスタービン31及び蒸気タービン3
2,36の回転エネルギにより発電する1又は2以上の
発電機34,37とを備えた複合発電装置である。
According to a sixth aspect of the present invention, as shown in FIG. 2, the gas turbine 31 driven by the combustion energy of the high-temperature and high-pressure combustible gas generated by the generating apparatus according to the fifth aspect, and the exhaust gas of the gas turbine 31 Heat recovery boiler 33 for recovering the heat energy of the steam as steam energy, and heat recovery steam generator 3
, Steam turbines 32 and 36 driven by the steam energy recovered in the gas turbine 31 and the steam turbine 3
This is a combined power generation apparatus including one or two or more generators 34 and 37 that generate electric power using rotational energy of 2, 36.

【0009】[0009]

【発明の実施の形態】本発明において、水の亜臨界状態
とは200〜374℃の温度でかつ160〜215kg
/cm2の圧力にある水の状態を意味する。また水の超
臨界状態とは374〜900℃の温度でかつ215〜3
00kg/cm2の圧力にある水の状態を意味する。亜
臨界状態における温度及び圧力の下限値未満では、反応
が遅く、分解効率が良くない。また超臨界状態における
温度及び圧力の上限値を超えると分解反応装置に負荷が
かかり過ぎ、これも効率的でない。請求項1に係る発明
では、図1に示すように、石炭スラリー又は重質油エマ
ルジョンのいずれか一方又は双方が分解反応工程11に
供給され、更に分離工程12及び部分酸化工程13を経
た後、ガス化工程14でガス化されて可燃ガスになる。
図1の符号15は亜臨界状態又は超臨界状態に維持され
る範囲を示す。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the subcritical state of water is a temperature of 200 to 374 ° C. and 160 to 215 kg.
Means the state of water at a pressure of / cm 2 . The supercritical state of water is a temperature of 374 to 900 ° C. and 215 to 3
It means the state of water at a pressure of 00 kg / cm 2 . If the temperature and pressure in the subcritical state are lower than the lower limits, the reaction is slow and the decomposition efficiency is not good. If the temperature and pressure in the supercritical state exceed the upper limits, the load on the decomposition reactor is too high, which is also inefficient. In the invention according to claim 1, as shown in FIG. 1, one or both of a coal slurry and a heavy oil emulsion are supplied to a decomposition reaction step 11, and further after a separation step 12 and a partial oxidation step 13, In the gasification step 14, it is gasified to become combustible gas.
Reference numeral 15 in FIG. 1 indicates a range maintained in a subcritical state or a supercritical state.

【0010】先ず原料が石炭の場合、分解反応工程11
において亜臨界状態又は超臨界状態の石炭スラリーに対
して、石炭の加水分解反応、石炭の熱分解反応及び
水素添加反応が起ると考えられる。即ち、高温水中で
は、石炭中の水素結合等の非共有性の結合が解離し、石
炭が膨張する。これにより石炭の分解液化反応がより有
効に進行する。石炭の加水分解反応では、石炭のベン
ゼン環をつないでいるヘテロ元素部分にH2OのOH-
びH+が付加され、石炭が低分子化される。石炭の熱
分解反応では、石炭が単純に熱分解し低分子化する。更
に水素添加反応では、上記の反応中に生成したラジ
カルにHが付加し、これにより熱分解種が安定する。ま
た熱分解しない安定な分子と水素との反応も生じる。こ
こで加水分解により生成した水酸基、カルボン酸基にも
水素添加反応が起こり得るが、上記ラジカルへの水素反
応の方が優位に起こる。上記〜の反応は個別的に行
われず、互いに併発して複合的に行われ、石炭の軽質化
が進行する。また原料が重質油の場合、この分解反応工
程11では重質油エマルジョンについても上記〜の
反応が同様に行われると考えられる。このようにして石
炭又は重質油のいずれか一方又は双方がこの亜臨界状態
又は超臨界状態により油分と残渣に分解される。
First, when the raw material is coal, a decomposition reaction step 11
It is considered that the hydrolysis reaction of coal, the thermal decomposition reaction of coal, and the hydrogenation reaction occur in the coal slurry in the subcritical state or supercritical state. That is, in high-temperature water, non-covalent bonds such as hydrogen bonds in coal are dissociated, and the coal expands. Thereby, the decomposition and liquefaction reaction of coal proceeds more effectively. In the coal hydrolysis reaction, OH and H + of H 2 O are added to a hetero element portion connecting the benzene ring of the coal, and the coal is reduced in molecular weight. In the thermal decomposition reaction of coal, the coal is simply pyrolyzed and decomposed. Further, in the hydrogenation reaction, H is added to the radical generated during the above reaction, whereby the thermally decomposed species is stabilized. In addition, a reaction between hydrogen and stable molecules that does not thermally decompose occurs. Here, a hydrogenation reaction can also occur in the hydroxyl group and the carboxylic acid group generated by the hydrolysis, but the hydrogen reaction to the above-mentioned radical occurs more predominantly. The above reactions (1) to (4) are not performed individually, but are performed simultaneously and in a complex manner, and lightening of coal proceeds. When the raw material is heavy oil, it is considered that the above-mentioned reactions (1) to (3) are similarly performed on the heavy oil emulsion in the decomposition reaction step 11. In this way, one or both of coal and heavy oil are decomposed into oil and residue by this subcritical or supercritical state.

【0011】分解された油分と残渣は亜臨界状態又は超
臨界状態で次の分離工程12で分離される。部分酸化工
程13でこの残渣に酸素源を加えると、次の式(1)に
示す反応を生じる。 2C + O2 → 2CO …… (1) 式(1)に示すように、石炭液化で生じた残渣であるチ
ャーを部分酸化して一酸化炭素にし、次の式(2)に示
す水性ガスシフト反応を起こさせて活性水素を生成す
る。式(2)の水性ガスシフト反応では部分酸化で生成
したCOは速やかにH2Oと反応させられる。ここでチ
ャーとは上記石炭の加水分解反応及び石炭の熱分解
反応で、それぞれ分解しきれなかったもの又は熱分解種
が再重合したものである。また重質油が分解しきれずに
発生した残渣も上記チャーに準じて部分酸化により一酸
化炭素を生じる。 CO + H2O → CO2 + H2 …… (2) 部分酸化工程13で式(2)に示すように生成された活
性水素は分解反応工程11に供給され、分解反応工程1
1における分解物中の重質油を更に軽質化する。同時に
分解反応で生じた残渣の後処理を軽減する。分離工程1
2で分離された亜臨界状態又は超臨界状態の油分はガス
化工程14でその圧力又は温度のいずれか一方又は双方
が低下され、一部分は重質油となるが大部分は可燃ガス
になる。この可燃ガスは複合発電設備30に設けられた
ガスタービンを駆動して発電した後、ガスタービンの排
熱を回収し、この排熱を蒸気エネルギに変え、この蒸気
エネルギにより蒸気タービンを駆動して発電する。
The cracked oil and residue are separated in a subcritical or supercritical state in the next separation step 12. When an oxygen source is added to this residue in the partial oxidation step 13, a reaction represented by the following equation (1) occurs. 2C + O 2 → 2CO (1) As shown in the equation (1), the char which is a residue produced by coal liquefaction is partially oxidized to carbon monoxide, and a water gas shift reaction shown in the following equation (2) To generate active hydrogen. In the water gas shift reaction of the formula (2), CO generated by partial oxidation is immediately reacted with H 2 O. Here, the char is the one that has not been completely decomposed or the one that has been re-polymerized by the pyrolysis reaction of the coal and the pyrolysis reaction of the coal. Residuals generated without heavy oil being completely decomposed also generate carbon monoxide by partial oxidation according to the char. CO 2 + H 2 O → CO 2 + H 2 (2) The active hydrogen generated in the partial oxidation step 13 as shown in the equation (2) is supplied to the decomposition reaction step 11 and the decomposition reaction step 1 is performed.
The heavy oil in the decomposition product in 1 is further lightened. At the same time, the post-treatment of the residue generated in the decomposition reaction is reduced. Separation process 1
In the gasification step 14, one or both of the pressure and the temperature of the subcritical or supercritical oil separated in 2 are reduced, and a part of the oil becomes heavy oil but a large part becomes a combustible gas. The combustible gas drives a gas turbine provided in the combined cycle power plant 30 to generate power, recovers exhaust heat of the gas turbine, converts the exhaust heat into steam energy, and drives the steam turbine with the steam energy. Generate electricity.

【0012】石炭又は重質油に硫黄分を含む場合、分解
反応工程11で硫黄酸化物(SOx)を経て超臨界状態
の水に溶解する。請求項2に係る発明では、スラリー又
はエマルジョンの一方又は双方とともにアルカリ水溶液
を加えて分解反応工程11に供給する。次の式(3)及
び(4)に示すように、例えばこのアルカリ(NaO
H)は硫黄酸化物(SO3)を無害な硫酸塩(Na2SO
4)にする。 SO3 + H2O → H2SO4 …… (3) H2SO4 + 2NaOH → Na2SO4 + 2H2O ……(4) 請求項3に係る発明では、ガス化工程14でガス化しな
かった重質油を分解反応工程11に再度供給し、より低
分子の中・軽質油にする。更に請求項4に係る発明で
は、ガス化工程14でガス化しなかった重質油を燃料と
して、これを燃焼しその熱エネルギにより分解反応装
置、分離装置及び部分酸化装置を亜臨界状態又は超臨界
状態の高温にする。これにより外部からこれらの装置に
供給するエネルギを節減できる。
When coal or heavy oil contains sulfur, it is dissolved in supercritical water via sulfur oxide (SOx) in a decomposition reaction step 11. According to the second aspect of the present invention, an aqueous alkali solution is added to one or both of the slurry and the emulsion and supplied to the decomposition reaction step 11. As shown in the following formulas (3) and (4), for example, this alkali (NaO
H) converts sulfur oxides (SO 3 ) into harmless sulfates (Na 2 SO
4 ) SO 3 + H 2 O → H 2 SO 4 (3) H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O (4) In the invention according to the third aspect, gas is used in the gasification step 14. The unconverted heavy oil is supplied again to the cracking reaction step 11 to make it a lower molecular weight medium / light oil. Further, in the invention according to claim 4, the heavy oil not gasified in the gasification step 14 is used as a fuel, which is burned, and the decomposition energy reactor, the separation device and the partial oxidation device are brought into a subcritical state or a supercritical state by the heat energy. Make the state high temperature. Thereby, the energy supplied to these devices from the outside can be reduced.

【0013】次に本発明の可燃ガスの生成装置及びこれ
を用いた複合発電装置を図面に基づいて説明する。図2
に示すように、複合発電装置は、高温高圧の可燃ガスを
生成する可燃ガスの生成装置20と、この装置20によ
り生成された高温高圧の可燃ガスにより発電する複合発
電設備30とを備える。可燃ガスの生成装置20は、微
粉化した石炭と水のスラリー又は重質油と水のエマルジ
ョンの一方又は双方を貯えるタンク21と、このタンク
21に貯えられた石炭と重質油を分解する分解反応装置
24と、この分解反応装置24で得られた油分と残渣と
を分離する分離装置26と、分離装置26で分離された
残渣に酸素源を加えて活性水素を生成し、これを分解反
応装置24に供給する部分酸化装置27と、分離装置2
6で分離された亜臨界状態又は超臨界状態の油分の圧力
又は温度のいずれか一方又は双方を低下させることによ
り高温高圧の可燃ガスを生成するガス化装置28とを備
える。分解反応装置24における石炭と重質油の分解、
分離装置26における油分と残渣との分離、及び部分酸
化装置27における活性水素の生成は、いずれも亜臨界
状態又は超臨界状態に維持して行われる。複合発電設備
30は生成装置20により生成された可燃性ガスの燃焼
エネルギで駆動するガスタービン31と、蒸気タービン
32と、ガスタービン31の排ガスの熱エネルギを回収
する排熱回収ボイラ33と、これらのタービン31及び
32により発電する発電機34を備える。
Next, a combustible gas generator according to the present invention and a combined power generator using the same will be described with reference to the drawings. FIG.
As shown in (1), the combined power generation device includes a combustible gas generation device 20 that generates a high-temperature and high-pressure combustible gas, and a combined power generation device 30 that generates power using the high-temperature and high-pressure combustible gas generated by the device 20. The combustible gas generator 20 includes a tank 21 for storing one or both of a slurry of finely divided coal and water or an emulsion of heavy oil and water, and a decomposition for decomposing the coal and heavy oil stored in the tank 21. A reaction device 24, a separation device 26 for separating oil and residue obtained by the decomposition reaction device 24, and an oxygen source added to the residue separated by the separation device 26 to generate active hydrogen, which is subjected to a decomposition reaction. A partial oxidation device 27 for supplying to the device 24 and a separation device 2
And a gasifier 28 that generates a high-temperature and high-pressure combustible gas by reducing one or both of the pressure and the temperature of the subcritical or supercritical oil separated in 6. Cracking of coal and heavy oil in the cracking reactor 24,
The separation of the oil and the residue in the separation device 26 and the generation of active hydrogen in the partial oxidation device 27 are all performed while maintaining the subcritical state or the supercritical state. The combined cycle power plant 30 includes a gas turbine 31 driven by the combustion energy of the combustible gas generated by the generator 20, a steam turbine 32, and an exhaust heat recovery boiler 33 that recovers thermal energy of exhaust gas from the gas turbine 31. And a generator 34 for generating electric power by the turbines 31 and 32.

【0014】このように構成された可燃ガスの生成装置
では、次の工程を経て可燃ガスが生成され、次いで複合
発電設備でこの可燃ガスにより発電する。 <分解反応工程>分解反応工程は微粉化した石炭と水の
スラリー又は重質油と水のエマルジョンの一方又は双方
を亜臨界状態又は超臨界状態に維持して石炭又は重質油
の一方又は双方を分解する工程である。この実施の形態
では、タンク21に微粉化した石炭と重質油と水とアル
カリ水溶液が均一混合されてスラリーの状態で貯えられ
る。石炭としては、草炭、褐炭、亜歴青炭、歴青炭、無
煙炭等が、またアルカリ水溶液としては、NaOH、K
OH、Ca(OH)2等の水溶液が例示される。石炭は予
め数mm以下の、好ましくはポンプの能力に応じて30
0μm以下の粒径に微粉砕される。スラリーにおける水
はスラリー濃度が好ましくは5〜60重量%になるよう
に添加される。スラリー濃度が5重量%未満では石炭の
分解効率に劣り、60重量%を越えるとスラリーが流動
性に欠け取扱いにくくなる。スラリー濃度は40〜55
重量%がより好ましい。
In the combustible gas generator configured as described above, the combustible gas is generated through the following steps, and then power is generated by the combustible gas in the combined power generation facility. <Decomposition reaction step> In the decomposition reaction step, one or both of coal or heavy oil is maintained by maintaining one or both of a slurry of finely divided coal and water or an emulsion of heavy oil and water in a subcritical or supercritical state. This is the step of decomposing. In this embodiment, finely divided coal, heavy oil, water and an aqueous alkaline solution are uniformly mixed and stored in a tank 21 in a slurry state. Examples of coal include grass coal, lignite, sub-bituminous coal, bituminous coal, anthracite, and the like.
An aqueous solution of OH, Ca (OH) 2 or the like is exemplified. Coal is preliminarily 30 mm or less, preferably 30 mm depending on the pump capacity.
Finely pulverized to a particle size of 0 μm or less. Water in the slurry is added so that the slurry concentration is preferably 5 to 60% by weight. If the slurry concentration is less than 5% by weight, the decomposition efficiency of coal is poor, and if it exceeds 60% by weight, the slurry lacks fluidity and is difficult to handle. Slurry concentration is 40-55
% Is more preferred.

【0015】タンク21から排出されたスラリーはポン
プ22により圧送され、加熱器23に送られる。加熱器
23ではスラリーを150〜350℃程度に加熱する。
加熱器13で加熱されたスラリーは分解反応装置24に
供給され、そこで更に昇圧・昇温され、ここでは超臨界
状態になる。分解反応装置24では、スラリーが300
〜800℃、平均密度0.4g/cm3の超臨界状態に
維持して、前述した〜の反応を互いに併発して複合
的に生じさせる。超臨界状態の水は、水素イオンと水酸
基イオンへの解離が通常の水よりも大きくまた高温であ
るので石炭及び重質油の加水分解反応を促進する。更に
超臨界状態の水は誘電率が小さいために石炭を膨張し、
石炭そのもの或いは重質油に対してある程度溶解力を持
ち、またガスとも均一に混合し得る。これらのことも軽
質化の促進に寄与する。また超臨界状態は硫黄酸化物の
溶解度を極端に低下させるため、硫黄酸化物は超臨界状
態の水に容易に溶解される。これにより、分解反応装置
24で硫黄分は前述した式(3)及び(4)の反応で無
害の無機塩になる。スラリーの分解物は重質油、中・軽
質油等からなる油分とチャーや無機塩を含む残渣であ
る。この油分と残渣は、分解反応装置24の排出側に設
けられた分離装置26により超臨界状態で分離される。
The slurry discharged from the tank 21 is pumped by a pump 22 and sent to a heater 23. In the heater 23, the slurry is heated to about 150 to 350 ° C.
The slurry heated by the heater 13 is supplied to a decomposition reaction device 24, where the pressure is further increased and the temperature is increased, and here, a supercritical state is established. In the decomposition reaction device 24, the slurry
While maintaining the supercritical state at 800800 ° C. and an average density of 0.4 g / cm 3 , the above-mentioned reactions 〜 occur concurrently with each other to form a complex. Water in a supercritical state promotes the hydrolysis reaction of coal and heavy oil because the dissociation into hydrogen ions and hydroxyl ions is larger than normal water and at a higher temperature. Furthermore, supercritical water expands coal due to its low dielectric constant,
It has some dissolving power to coal itself or heavy oil and can be uniformly mixed with gas. These also contribute to the promotion of lightening. Further, since the supercritical state extremely lowers the solubility of the sulfur oxide, the sulfur oxide is easily dissolved in water in the supercritical state. As a result, the sulfur content in the decomposition reactor 24 becomes a harmless inorganic salt in the above-described reactions of the formulas (3) and (4). The decomposition product of the slurry is a residue containing an oil component composed of heavy oil, medium / light oil, and the like, and char and inorganic salts. The oil and the residue are separated in a supercritical state by a separation device 26 provided on the discharge side of the decomposition reaction device 24.

【0016】<分離工程>分離工程は、分解反応工程で
得られた油分と残渣とを亜臨界状態又は超臨界状態で分
離する工程である。この分離は分離装置26により行わ
れ、分離装置26は分解反応装置24で生成した残渣を
除去するサイクロン26aとサイクロン26aで除去し
切れずに残留した残渣(ダスト)を除去するフィルタ2
6bとを備える。
<Separation Step> The separation step is a step of separating the oil and the residue obtained in the decomposition reaction step in a subcritical state or a supercritical state. This separation is performed by a separation device 26. The separation device 26 is a cyclone 26a for removing the residue generated in the decomposition reaction device 24 and a filter 2 for removing the residue (dust) remaining without being completely removed by the cyclone 26a.
6b.

【0017】<部分酸化工程>部分酸化工程は、分離工
程で分離された亜臨界状態又は超臨界状態の残渣に酸素
源を加えて活性水素を生成し、これを分解反応装置に供
給する工程である。この部分酸化は部分酸化装置27に
より行われる。部分酸化装置27では、サイクロン26
a及びフィルタ26bにより分離された残渣に超臨界状
態を維持したまま空気、過酸化水素、酸素等の酸素源を
加えることにより、前記式(1)に示すように、残渣中
の炭素分を一酸化炭素に部分酸化する。上述した式
(1)の反応でも、高密度の水中では活性化エネルギが
通常の1/3程度にまで減少することによって、熱分解
により生成するCOを迅速に反応させることにも寄与す
る。また部分酸化装置27では、前記式(2)に示す水
性ガスシフト反応を起こさせて活性水素を生成する。こ
の活性水素は分解反応装置24に送られて石炭の分解で
生じた重質油の軽質化をより一層促進する。上述した式
(1)の反応でも、高密度の水中では活部分酸化工程に
おける反応に必要な熱は、残渣の燃焼熱によりまかなう
ことができ、この燃焼熱が十分に高くて持続して発生す
れば、外部から特にエネルギを供給する必要はない。な
お、式(1)及び式(2)の反応において、CoMo/
Al23,NiW/Al23,NiW/ゼオライトのよ
うな触媒を使用し、軽質化或いは転換油の脱硫や脱窒素
を促進させることも可能である。部分酸化で反応しなか
った無機塩、灰分等はこの部分酸化装置27から取出さ
れ、処分される。
<Partial Oxidation Step> The partial oxidation step is a step in which an oxygen source is added to the subcritical or supercritical residue separated in the separation step to generate active hydrogen, and this is supplied to a decomposition reactor. is there. This partial oxidation is performed by a partial oxidation device 27. In the partial oxidation device 27, the cyclone 26
By adding an oxygen source such as air, hydrogen peroxide or oxygen to the residue separated by the filter a and the filter 26b while maintaining the supercritical state, the carbon content in the residue is reduced as shown in the above formula (1). Partially oxidizes to carbon oxide. Also in the reaction of the above formula (1), the activation energy in high-density water is reduced to about 1/3 of the usual value, which also contributes to prompt reaction of CO generated by thermal decomposition. In the partial oxidation device 27, active hydrogen is generated by causing a water gas shift reaction represented by the above formula (2). The active hydrogen is sent to the cracking reaction device 24 to further promote the lightening of heavy oil generated by the cracking of coal. Even in the reaction of the above formula (1), in high-density water, the heat necessary for the reaction in the active partial oxidation step can be covered by the combustion heat of the residue, and this combustion heat is sufficiently high and continuously generated. In this case, there is no need to supply energy from the outside. In the reaction of the formulas (1) and (2), CoMo /
It is also possible to use a catalyst such as Al 2 O 3 , NiW / Al 2 O 3 , NiW / zeolite to promote lightening or desulfurization or denitrification of the converted oil. Inorganic salts, ash, etc., which have not reacted in the partial oxidation, are removed from the partial oxidation device 27 and disposed.

【0018】<ガス化工程>ガス化工程は、分離工程で
分離された亜臨界状態又は超臨界状態の油分の圧力又は
温度のいずれか一方又は双方を低下させることにより高
温高圧の可燃ガスを生成する工程である。このガス化は
ガス化装置28により行われる。ガス化装置28はフィ
ルタ26bを通過した超臨界状態の油分の圧力を減じる
減圧弁28aとこの油分の温度を低下させるタンク28
bとを備える。所定の減圧及び降温により、タンク28
b内の油分から水分が抽出されかつ一部分は重質油にな
る。残りの大部分は高温高圧のメタン、エタン、ベンゼ
ン等を主成分とする可燃ガスになる。タンク28bから
取出された重質油の大部分は分解反応装置24に送ら
れ、ここで軽質化される。また重質油の一部分は分解反
応装置24、分離装置26及び部分酸化装置27を亜臨
界状態又は超臨界状態に維持するための温度制御用熱源
として使用される。水はタンク21に供給されて再利用
するか、或いは廃水として処分される。
<Gasification Step> In the gasification step, one or both of the pressure and the temperature of the subcritical or supercritical oil separated in the separation step are reduced to generate a high-temperature and high-pressure combustible gas. This is the step of performing This gasification is performed by a gasifier 28. The gasifier 28 includes a pressure reducing valve 28a for reducing the pressure of the supercritical oil passing through the filter 26b and a tank 28 for lowering the temperature of the oil.
b. By the predetermined pressure reduction and temperature reduction, the tank 28
Water is extracted from the oil content in b and a part of the oil becomes heavy oil. Most of the rest is flammable gas mainly composed of methane, ethane, benzene and the like at high temperature and pressure. Most of the heavy oil extracted from the tank 28b is sent to the cracking reactor 24, where it is lightened. A part of the heavy oil is used as a temperature control heat source for maintaining the cracking reaction device 24, the separation device 26, and the partial oxidation device 27 in a subcritical state or a supercritical state. The water is supplied to a tank 21 for reuse or disposed as waste water.

【0019】<複合発電>ガス化装置28からの高温高
圧のメタン、エタン、ベンゼン等を主成分とする可燃ガ
スは、複合発電設備30のガスタービン圧縮器31aで
圧縮された空気と混合され、ガスタービン燃焼器31b
で燃焼する。この燃焼ガスはガスタービン31を駆動
し、ガスタービン31と回転軸が直結している発電機3
4により発電する。次にガスタービン31からの排ガス
は排熱回収ボイラ33でその熱エネルギを蒸気エネルギ
として回収される。この蒸気エネルギは蒸気タービン3
2を駆動し、蒸気タービン32と回転軸が直結している
発電機34により発電する。排熱回収ボイラ33で生じ
た排ガスは煙突35から排出される。これにより高い発
電効率で発電が行われる。なお、図2に示すように蒸気
タービン32の代りに、蒸気タービン36を設け、この
蒸気タービン36と回転軸が直結している、発電機34
と別の発電機37により発電してもよい。
<Combined Power Generation> The high temperature and high pressure combustible gas from the gasifier 28 mainly containing methane, ethane, benzene, etc. is mixed with air compressed by the gas turbine compressor 31a of the combined power generation facility 30, Gas turbine combustor 31b
Combustion. This combustion gas drives the gas turbine 31, and the generator 3 has a rotating shaft directly connected to the gas turbine 31.
4 to generate electricity. Next, the exhaust gas from the gas turbine 31 is recovered by the exhaust heat recovery boiler 33 using the heat energy as steam energy. This steam energy is supplied to the steam turbine 3
2 is driven, and power is generated by a generator 34 having a rotating shaft directly connected to the steam turbine 32. The exhaust gas generated in the exhaust heat recovery boiler 33 is discharged from the chimney 35. Thereby, power generation is performed with high power generation efficiency. A steam turbine 36 is provided instead of the steam turbine 32 as shown in FIG.
Alternatively, power may be generated by another generator 37.

【0020】[0020]

【発明の効果】以上述べたように、本発明は石炭スラリ
ー又は重質油エマルジョンを亜臨界状態又は超臨界状態
で分解、分離して可燃ガスを生成させ、その可燃ガスの
燃焼エネルギを利用することにより、次の優れた効果を
有する。 (1) 従来のガス化装置と比較してガス化温度が低いた
め、装置を構成する材料における制約が少なく、生成さ
れる可燃ガスは高温高圧であるため、その状態でガスタ
ービンに供給することができ、ガスタービンのガス圧縮
化に要するエネルギを軽減することができる。 (2) 原料とともにアルカリ水溶液を添加すれば、石炭や
重質油に含まれる硫黄分を無機塩の形で除去することが
できる。このため従来の複合発電装置に使用されている
大形の脱硫装置を必要とせず、また比較的硫黄分の多い
低品位炭、重質油等を原料とすることができる。 (3) 高圧の超臨界水を利用して石炭又は重質油をガス化
するため、設備自体を比較的コンパクトに構築すること
が可能になる。また従来の複合発電装置におけるガス化
装置の代りに、又は追加設備として本発明の可燃ガスの
生成装置を設けることができる。
As described above, the present invention decomposes and separates a coal slurry or a heavy oil emulsion in a subcritical or supercritical state to generate a combustible gas, and utilizes the combustion energy of the combustible gas. This has the following excellent effects. (1) Since the gasification temperature is lower than that of conventional gasifiers, there are fewer restrictions on the materials that make up the unit, and the combustible gas generated is of high temperature and pressure. Thus, the energy required for gas compression of the gas turbine can be reduced. (2) If an alkaline aqueous solution is added together with the raw materials, sulfur contained in coal and heavy oil can be removed in the form of inorganic salts. For this reason, a large-sized desulfurization unit used in the conventional combined cycle power generation device is not required, and low-grade coal, heavy oil, or the like having a relatively high sulfur content can be used as a raw material. (3) Gasification of coal or heavy oil using high pressure supercritical water makes it possible to construct the equipment itself relatively compact. Further, the combustible gas generator of the present invention can be provided instead of the gasifier in the conventional combined cycle power generator or as an additional facility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の可燃ガスの生成工程とこの可燃ガスを
用いて発電する工程を示す図。
FIG. 1 is a view showing a process of generating a combustible gas of the present invention and a process of generating power using the combustible gas.

【図2】本発明の可燃ガスの生成装置と複合発電設備の
構成図。
FIG. 2 is a configuration diagram of a combustible gas generation device and a combined power generation facility of the present invention.

【図3】従来の石炭ガス化複合発電装置の構成図。FIG. 3 is a configuration diagram of a conventional integrated coal gasification combined cycle device.

【符号の説明】[Explanation of symbols]

11 分解反応工程 12 分離工程 13 部分酸化工程 14 ガス化工程 20 可燃ガスの生成装置 21 タンク 24 分解反応装置 26 分離装置 27 部分酸化装置 28 ガス化装置 30 複合発電設備 31 ガスタービン 32,36 蒸気タービン 33 排熱回収ボイラ 34,37 発電機 DESCRIPTION OF SYMBOLS 11 Decomposition reaction process 12 Separation process 13 Partial oxidation process 14 Gasification process 20 Combustible gas generator 21 Tank 24 Decomposition reaction device 26 Separation device 27 Partial oxidation device 28 Gasifier 30 Combined power generation facility 31 Gas turbine 32, 36 Steam turbine 33 Waste heat recovery boiler 34, 37 Generator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微粉化した石炭と水のスラリー又は重質
油と水のエマルジョンの一方又は双方を亜臨界状態又は
超臨界状態に維持して前記石炭又は重質油の一方又は双
方を分解する分解反応工程(11)と、 前記分解反応工程で得られた油分と残渣とを亜臨界状態
又は超臨界状態で分離する分離工程(12)と、 前記分離工程で分離された亜臨界状態又は超臨界状態の
残渣に酸素源を加えて活性水素を生成し前記分解反応工
程に供給する部分酸化工程(13)と、 前記分離工程で分離された亜臨界状態又は超臨界状態の
油分の圧力又は温度のいずれか一方又は双方を低下させ
ることにより高温高圧の可燃ガスを生成するガス化工程
(14)とを含む可燃ガスの生成方法。
1. Decomposing one or both of the coal or heavy oil by maintaining one or both of a finely divided coal and water slurry or a heavy oil and water emulsion in a subcritical or supercritical state. A cracking reaction step (11), a separation step (12) of separating the oil and the residue obtained in the cracking reaction step in a subcritical state or a supercritical state, and a subcritical state or a supercritical state separated in the separation step. A partial oxidation step (13) in which an oxygen source is added to the residue in the critical state to generate active hydrogen and supplied to the decomposition reaction step, and the pressure or temperature of the subcritical or supercritical oil separated in the separation step Gasification step of producing high-temperature, high-pressure combustible gas by reducing one or both of
(14) A method for producing combustible gas comprising:
【請求項2】 スラリー又はエマルジョンの一方又は双
方とともにアルカリ水溶液を加える請求項1記載の可燃
ガスの生成方法。
2. The method for producing a combustible gas according to claim 1, wherein an alkaline aqueous solution is added together with one or both of the slurry and the emulsion.
【請求項3】 ガス化工程(14)でガス化しなかった重質
油を分解反応工程(11)に再度供給する請求項1又は2記
載の可燃ガスの生成方法。
3. The method according to claim 1, wherein the heavy oil not gasified in the gasification step (14) is supplied again to the cracking reaction step (11).
【請求項4】 ガス化工程(14)でガス化しなかった重質
油を燃焼して亜臨界状態又は超臨界状態の高温を作り出
すために用いる請求項1ないし3いずれか記載の可燃ガ
スの生成方法。
4. The production of a combustible gas according to claim 1, wherein the heavy oil which has not been gasified in the gasification step (14) is burned to create a high temperature in a subcritical state or a supercritical state. Method.
【請求項5】 微粉化した石炭と水のスラリー又は重質
油と水のエマルジョンの一方又は双方を貯えるタンク(2
1)と、 前記スラリー又はエマルジョンの一方又は双方を亜臨界
状態又は超臨界状態に維持して前記石炭又は重質油の一
方又は双方を分解する分解反応装置(24)と、 前記分解反応装置(24)で得られた油分と残渣とを亜臨界
状態又は超臨界状態で分離する分離装置(26)と、 前記分離装置(26)で分離された亜臨界状態又は超臨界状
態の残渣に酸素源を加えて活性水素を生成し前記分解反
応装置(24)に供給する部分酸化装置(27)と、 前記分離装置(26)で分離された亜臨界状態又は超臨界状
態の油分の圧力又は温度のいずれか一方又は双方を低下
させることにより高温高圧の可燃ガスを生成するガス化
装置(28)とを備えた可燃ガスの生成装置。
5. A tank (2) for storing one or both of a slurry of finely divided coal and water or an emulsion of heavy oil and water.
1), a cracking reactor (24) that cracks one or both of the coal and heavy oil while maintaining one or both of the slurry and the emulsion in a subcritical or supercritical state, and the cracking reactor ( A separation device (26) for separating the oil and residue obtained in 24) in a subcritical or supercritical state, and an oxygen source for the subcritical or supercritical residue separated in the separation device (26). And a partial oxidation device (27) that generates active hydrogen and supplies it to the decomposition reaction device (24), and the pressure or temperature of the subcritical or supercritical oil separated by the separation device (26). A gasifier (28) for generating a high-temperature and high-pressure combustible gas by lowering one or both of them.
【請求項6】 請求項5記載の生成装置で生成された高
温高圧の可燃ガスの燃焼エネルギで駆動されるガスター
ビン(31)と、 前記ガスタービン(31)の排ガスの熱エネルギを蒸気エネ
ルギとして回収する排熱回収ボイラ(33)と、 前記排熱回収ボイラ(33)で回収された蒸気エネルギで駆
動される蒸気タービン(32,36)と、 前記ガスタービン(31)及び前記蒸気タービン(32,36)の
回転エネルギにより発電する1又は2以上の発電機(34,
37)とを備えた複合発電装置。
6. A gas turbine driven by the combustion energy of a high-temperature and high-pressure combustible gas generated by the generation device according to claim 5, and heat energy of exhaust gas of the gas turbine is converted into steam energy. An exhaust heat recovery boiler (33) to be recovered, a steam turbine (32, 36) driven by steam energy recovered by the exhaust heat recovery boiler (33), the gas turbine (31) and the steam turbine (32 , 36) and one or more generators (34,
37).
JP10050781A 1998-03-03 1998-03-03 Method for generating flammable gas, its device and hybrid power generator using the same gas Withdrawn JPH11246876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10050781A JPH11246876A (en) 1998-03-03 1998-03-03 Method for generating flammable gas, its device and hybrid power generator using the same gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10050781A JPH11246876A (en) 1998-03-03 1998-03-03 Method for generating flammable gas, its device and hybrid power generator using the same gas

Publications (1)

Publication Number Publication Date
JPH11246876A true JPH11246876A (en) 1999-09-14

Family

ID=12868381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10050781A Withdrawn JPH11246876A (en) 1998-03-03 1998-03-03 Method for generating flammable gas, its device and hybrid power generator using the same gas

Country Status (1)

Country Link
JP (1) JPH11246876A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264710B2 (en) 2002-03-08 2007-09-04 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7435330B2 (en) 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
JP2011504978A (en) * 2007-11-27 2011-02-17 アルストム テクノロジー リミテッド Apparatus and method for operating gas turbine equipment using second hydrogen-rich fuel
JP2013006938A (en) * 2011-06-23 2013-01-10 Hiroshima Univ Supercritical water gasification system for gasification of biomass slurry
KR101272166B1 (en) * 2011-10-31 2013-06-07 한국에너지기술연구원 Combustion-gasification of coal using supercritical water and method thereof
CN105820842A (en) * 2016-05-19 2016-08-03 中国科学院工程热物理研究所 Gasification supercritical CO2 cycle power generation system
CN108249393A (en) * 2018-03-28 2018-07-06 邓惠荣 Using the device and method of overcritical superheated steam water and coal slurry thermal cracking hydrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264710B2 (en) 2002-03-08 2007-09-04 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7767076B2 (en) 2002-03-08 2010-08-03 Hitachi, Ltd. Process and apparatus for treating heavy oil with supercritical water and power generation system equipped with heavy oil treating apparatus
US7435330B2 (en) 2003-10-07 2008-10-14 Hitachi, Ltd. Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
JP2011504978A (en) * 2007-11-27 2011-02-17 アルストム テクノロジー リミテッド Apparatus and method for operating gas turbine equipment using second hydrogen-rich fuel
JP2013006938A (en) * 2011-06-23 2013-01-10 Hiroshima Univ Supercritical water gasification system for gasification of biomass slurry
KR101272166B1 (en) * 2011-10-31 2013-06-07 한국에너지기술연구원 Combustion-gasification of coal using supercritical water and method thereof
CN105820842A (en) * 2016-05-19 2016-08-03 中国科学院工程热物理研究所 Gasification supercritical CO2 cycle power generation system
CN108249393A (en) * 2018-03-28 2018-07-06 邓惠荣 Using the device and method of overcritical superheated steam water and coal slurry thermal cracking hydrogen
CN108249393B (en) * 2018-03-28 2024-03-08 邓惠荣 Equipment and method for preparing hydrogen by adopting supercritical superheated steam water and coal slurry thermal cracking

Similar Documents

Publication Publication Date Title
US8038746B2 (en) Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
US8349504B1 (en) Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier
US6141796A (en) Use of carbonaceous fuels
KR101693865B1 (en) Carbon capture cooling system and method
JP2005502811A (en) Combustion turbine fuel inlet temperature control to maximize power generation
JP2000109850A (en) Process and device for converting heavy oil into fluid fuel for generating unit
US20020121093A1 (en) Utilization of COS hydrolysis in high pressure gasification
US20100024432A1 (en) Method for improved efficiency for IGCC
JP2008069017A (en) Method for producing hydrogen
JP2002206092A (en) Method and device for recovering energy from gas obtained by refuse gasification
JPH11246876A (en) Method for generating flammable gas, its device and hybrid power generator using the same gas
US6711903B1 (en) Integrated electric power and synthetic fuel plant
JP3947887B2 (en) Method and apparatus for converting coal into fuel for power generation facilities
WO1997005216A1 (en) Improvements in the use of carbonaceous fuels
KR102497426B1 (en) Waste pyrolytic gasification device and Energy system having the same
JPH1182991A (en) Method and device for drying and purging coal for power generation
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
JP2001294873A (en) Method for converting cola into fuel for power generation and equipment therefor
JP6008514B2 (en) Gas purification equipment for gasification gas
JP2001348578A (en) Apparatus and method for gasifying carbonaceous fossil fuel and biomass
JP2002059143A (en) Gasifying equipment for waste and gasification power equipment using the same
JP2001220584A (en) Modification of coke oven gas and process for recovering sensible heat
JP2000109858A (en) Process and device for generating combustible gas for electric power generating unit
CN101838558B (en) Mixed fuel coal water slurry entrained flow bed gasification system
JP6229115B2 (en) Power generation apparatus and power generation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510