JP2002355697A - Supercritical water oxidative decomposition apparatus and method - Google Patents

Supercritical water oxidative decomposition apparatus and method

Info

Publication number
JP2002355697A
JP2002355697A JP2001163986A JP2001163986A JP2002355697A JP 2002355697 A JP2002355697 A JP 2002355697A JP 2001163986 A JP2001163986 A JP 2001163986A JP 2001163986 A JP2001163986 A JP 2001163986A JP 2002355697 A JP2002355697 A JP 2002355697A
Authority
JP
Japan
Prior art keywords
water
organic substance
scale
supercritical
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163986A
Other languages
Japanese (ja)
Inventor
Hiroaki Miwa
宏明 三羽
Shigeru Machida
茂 町田
Hiroshi Suzugaki
裕志 鈴垣
Shinji Ito
新治 伊藤
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Organo Corp
Original Assignee
Japan Sewage Works Agency
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Organo Corp, Japan Organo Co Ltd filed Critical Japan Sewage Works Agency
Priority to JP2001163986A priority Critical patent/JP2002355697A/en
Publication of JP2002355697A publication Critical patent/JP2002355697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water oxidative decomposition apparatus for sewage sludge or the like capable of eliminating the defect of a conventional supercritical water oxidative decomposition apparatus for sewage sludge or the like, generating no pressure loss even if scale adheres and enabling the easy peeling of scale and stable continuous operation. SOLUTION: In the apparatus wherein organic matter containing inorganic matter is reacted with an oxidizing agent in supercritical water to be subjected to supercritical water oxidative decomposition, pressure supply means 26 and 28 for supplying organic matter, water and an oxidizing agent under pressure not less than the critical pressure of water, a reactor 10 for performing the supercritical water oxidation reaction of a mixed fluid to be treated consisting of the organic matter, water and the oxidizing agent supplied under pressure from the pressure supply means, a cooling means 16 for cooling the treated fluid after reaction flowing out of the reactor and taking-out means 20 and 22 for taking out the treated fluid flowing out of the reactor are provided. A preheating means 12 for preheating the mixed fluid to be treated to <200 deg.C is provided to the front stage of the reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スケールの防止に
有効な超臨界水酸化分解装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical hydroxylation / decomposition apparatus effective for preventing scale.

【0002】[0002]

【従来の技術】従来、下水汚泥等を酸化処理する方法と
して、主に焼却による方法が一般的であった。しかしな
がら、下水汚泥は水分含有量が97〜98%と高いた
め、下水汚泥を焼却処理するためには、予め下水汚泥を
スクリュープレス型脱水機等の脱水手段により脱水し、
焼却可能な範囲までその水分量を低減させる必要があっ
た。
2. Description of the Related Art Heretofore, as a method of oxidizing sewage sludge and the like, a method of mainly incineration has been generally used. However, since the sewage sludge has a high water content of 97 to 98%, in order to incinerate the sewage sludge, the sewage sludge is previously dehydrated by a dehydration means such as a screw press type dehydrator.
It was necessary to reduce the water content to the extent that it could be incinerated.

【0003】一方近年になり、超臨界状態の水を用い
て、下水汚泥を直接酸化処理する方法が提案されてい
る。
On the other hand, in recent years, a method of directly oxidizing sewage sludge using water in a supercritical state has been proposed.

【0004】しかしながら、下水汚泥を超臨界水酸化処
理する場合、汚泥中に含まれる無機物質が固形物として
沈降すると超臨界水酸化装置の配管が閉塞する可能性が
あり、安定的に超臨界水酸化処理を行うことができな
い。閉塞を防ぐためには、固形物が沈降しないように、
被処理物混合流体の流速をある一定以上にする必要があ
る。そのため、流体の流路は反応器も含めて一定の太さ
にする必要がある。
[0004] However, when the sewage sludge is subjected to the supercritical water oxidation treatment, if the inorganic substances contained in the sludge settle as solids, there is a possibility that the pipe of the supercritical water oxidation apparatus may be clogged, and the supercritical water may be stably superposed. Oxidation treatment cannot be performed. To prevent blockage, ensure that solids do not settle,
It is necessary to make the flow velocity of the mixed fluid of the object to be processed at least a certain value. Therefore, the flow path of the fluid needs to have a certain thickness including the reactor.

【0005】また、下水汚泥は含まれる有機物の濃度が
薄く、発熱量が大きくないため、下水汚泥を超臨界水で
酸化するためには、下水汚泥を予熱することが必要とな
る。
[0005] Further, sewage sludge has a low concentration of organic substances contained therein and does not generate a large amount of heat. Therefore, in order to oxidize sewage sludge with supercritical water, it is necessary to preheat the sewage sludge.

【0006】図7を参照して、従来の下水汚泥を超臨界
水酸化する超臨界水酸化装置を説明する。図7は従来の
超臨界水酸化装置の構成を示すフローシートである。従
来の超臨界水酸化装置50は、図7に示すように、超臨
界水酸化反応を行う反応器として、チューブラー状の長
い耐圧密閉型反応器51を備え、反応器51の上流に
は、下水汚泥を供給する下水汚泥ポンプ59と酸素を供
給する空気圧縮機60と反応物を予熱する二重管式熱交
換器52を、反応器51の下流には、反応生成物を冷却
する熱交換器53及び冷却器54を備えている。熱交換
器53で反応生成物を冷却することにより、熱媒は高温
となり、二重管式熱交換器52で被処理物混合流体を予
熱する熱源として使用される。更に、超臨界水酸化装置
50は、反応器51内の圧力を制御する圧力制御弁55
を冷却器54の下流に、反応生成物をガスとスラリーと
に気液分離する気液分離器56を圧力制御弁55の下流
に、及び、スラリー状の反応生成物を固液分離して、無
機固形物を反応生成物から分離する固液分離器57を備
えている。固液分離器57で分離された無機固形物は、
主として、反応物中に含まれ、反応に寄与しなかったも
のであって、加えて、超臨界水酸化反応により生成した
塩を含むこともある。
Referring to FIG. 7, a conventional supercritical water oxidation apparatus for supercritical water oxidation of sewage sludge will be described. FIG. 7 is a flow sheet showing a configuration of a conventional supercritical water oxidation apparatus. As shown in FIG. 7, the conventional supercritical water oxidation apparatus 50 includes a tubular long pressure-resistant closed reactor 51 as a reactor for performing a supercritical water oxidation reaction, and upstream of the reactor 51, A sewage sludge pump 59 for supplying sewage sludge, an air compressor 60 for supplying oxygen, and a double-pipe heat exchanger 52 for preheating the reactants are provided downstream of the reactor 51. A vessel 53 and a cooler 54 are provided. By cooling the reaction product in the heat exchanger 53, the temperature of the heat medium becomes high, and the heat medium is used as a heat source in the double-tube heat exchanger 52 for preheating the mixed fluid to be processed. Further, the supercritical water oxidation device 50 includes a pressure control valve 55 for controlling the pressure in the reactor 51.
Downstream of the cooler 54, a gas-liquid separator 56 for gas-liquid separation of the reaction product into gas and slurry, downstream of the pressure control valve 55, and solid-liquid separation of the slurry-like reaction product, A solid-liquid separator 57 for separating an inorganic solid from a reaction product is provided. The inorganic solid separated by the solid-liquid separator 57 is
It is mainly contained in the reaction product and has not contributed to the reaction, and may additionally contain a salt generated by the supercritical hydroxylation reaction.

【0007】図7に示したように、予熱部を含む反応器
は同一径の配管であり、予熱には二重管式熱交換器52
が用いられ、内管に下水汚泥と酸素の被処理混合物が流
れ、外管に高温の熱媒が流れている。
[0007] As shown in FIG. 7, the reactor including the preheating section is a pipe having the same diameter.
Is used, a mixture to be treated of sewage sludge and oxygen flows through the inner tube, and a high-temperature heat medium flows through the outer tube.

【0008】この場合、予熱部の二重管式熱交換器52
の外管に高温の熱媒が流れるため、内管には半径方向に
熱勾配が生じ、内管の内壁近傍が最も高温となってい
る。
In this case, the double tube heat exchanger 52 of the preheating section is used.
Since a high-temperature heat medium flows through the outer tube, a thermal gradient is generated in the inner tube in the radial direction, and the temperature near the inner wall of the inner tube is the highest.

【0009】一方下水汚泥中には無機物質として各種の
スケール成分が含まれており、なかでもCa塩等は温度
の上昇とともに溶解度が減少し、析出する性質を有して
いる。従って、内管の内壁では最もスケール成分の析出
が進行する。溶解していたスケール成分が配管の内壁で
析出すると、スケールとして配管の内壁に付着し管径が
減少する。さらに、付着したスケールが種結晶となり、
さらにスケール成分の析出・付着を促進する。
On the other hand, sewage sludge contains various scale components as inorganic substances. Among them, Ca salts and the like have a property of decreasing in solubility with increasing temperature and precipitating. Therefore, deposition of the scale component proceeds most on the inner wall of the inner tube. When the dissolved scale component precipitates on the inner wall of the pipe, it adheres to the inner wall of the pipe as a scale, and the pipe diameter decreases. Furthermore, the attached scale becomes a seed crystal,
Further, it promotes deposition and adhesion of scale components.

【0010】このように、超臨界水酸化装置の予熱部分
ではスケールが生成し付着しやすいため、結果的に伝熱
効率の低下や管径の減少に伴う管圧力損失の増大を引き
起こし、安定に超臨界水酸化装置を連続運転することが
困難になる。
[0010] As described above, scale is easily formed and adhered in the preheating portion of the supercritical water oxidation apparatus, and as a result, the heat transfer efficiency is reduced and the pipe pressure loss is increased due to the decrease in the pipe diameter. It becomes difficult to continuously operate the critical water oxidation apparatus.

【0011】なお下水汚泥にスケール防止剤を添加する
ことも考えられるが、スケール防止剤を添加した場合、
スケールの発生温度が多少上昇する程度で、スケール生
成を防止することはできない。
It is also conceivable to add a scale inhibitor to the sewage sludge, but when the scale inhibitor is added,
The generation of scale cannot be prevented only when the temperature at which the scale is generated slightly increases.

【0012】[0012]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の下水汚泥等の超臨界水酸化装置の欠
点を解消し、スケールの付着を防止し、またスケールが
付着しても圧力損失がなく、容易にスケールを剥離する
ことができ、安定に連続運転が可能な下水汚泥等の超臨
界水酸化装置を提供することにある。
The problem to be solved by the present invention is to solve the problems of the conventional supercritical water oxidation apparatus such as sewage sludge, to prevent the adhesion of scale, and to prevent the adhesion of scale. An object of the present invention is to provide a supercritical water oxidation apparatus for sewage sludge or the like that can easily remove scale without pressure loss and that can be stably operated continuously.

【0013】[0013]

【課題を解決するための手段】本発明者らは、下水汚泥
を超臨界水酸化処理する方法におけるスケール生成のメ
カニズムを研究し、予熱部分において、液体温度が20
0〜350℃程度の部分で集中的にスケールが発生する
ことを見出した。
Means for Solving the Problems The present inventors have studied the mechanism of scale formation in the method of supercritical water oxidation of sewage sludge, and have found that the liquid temperature is less than 20 in the preheating section.
It has been found that scale is intensively generated in a portion of about 0 to 350 ° C.

【0014】スケールは主に溶解していたスケール成分
が配管壁で析出することにより生成する。既に析出して
いたスケール成分については、その付着性にもよるが、
流体中に懸濁物として浮遊しているため、スケールとし
て配管に付着しにくい。
The scale is formed mainly by dissolving scale components which precipitate on the pipe wall. For scale components that have already been deposited, depending on their adhesion,
Since it is suspended as a suspension in the fluid, it does not easily adhere to the pipe as a scale.

【0015】350℃ではスケール成分がほとんど全て
析出しているため、スケールとして内管壁に付着せず、
350℃を超える温度ではスケール生成が顕著でなかっ
たものと考えられる。
At 350 ° C., since almost all of the scale components are precipitated, they do not adhere to the inner tube wall as scale.
It is considered that scale formation was not remarkable at a temperature exceeding 350 ° C.

【0016】本発明は、上記知見に基づいてなされたも
のであり、予熱部分での加熱を200℃未満に抑えてス
ケールの生成を防止すること、および予備予熱部分での
加熱を200℃未満に抑えた後、200〜350℃に予
熱または保持して積極的にスケールを析出させる部分を
設けることを特徴とするものである。
The present invention has been made on the basis of the above-described findings, and is intended to prevent the formation of scale by suppressing the heating in the preheating portion to less than 200 ° C. and to reduce the heating in the preheating portion to less than 200 ° C. After the suppression, a portion for pre-heating or holding at 200 to 350 ° C. to positively precipitate the scale is provided.

【0017】すなわち、上記課題を解決するための請求
項1に記載の本発明は、超臨界水中で無機物を含む有機
物および酸化剤を反応させ、有機物を超臨界水酸化分解
する装置において、該有機物、水および酸化剤を水の臨
界圧力以上に加圧供給する加圧供給手段と、該加圧供給
手段から加圧供給された有機物、水および酸化剤からな
る被処理物混合流体の超臨界水酸化反応を行う反応器
と、該反応器から流出する反応後の処理流体を冷却する
冷却手段と、該冷却手段から流出する冷却された処理流
体を取り出す取り出し手段を備えた超臨界水酸化分解装
置であって、反応器の前段に被処理物混合流体を200
℃未満に予熱する予備予熱手段を設けたことを特徴とす
る無機物を含む有機物の超臨界水酸化分解装置に関する
ものである。
That is, in order to solve the above-mentioned problem, the present invention is directed to an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically hydrolyze the organic substance. Pressurizing and supplying means for pressurizing water and an oxidizing agent at a pressure equal to or higher than the critical pressure of water; A supercritical hydroxylation decomposition apparatus comprising: a reactor for performing an oxidation reaction; cooling means for cooling the processed fluid flowing out of the reactor after the reaction; and take-out means for removing the cooled processing fluid flowing from the cooling means. The mixed fluid to be treated is placed at a stage before the reactor for 200 hours.
The present invention relates to an apparatus for supercritically hydrolyzing and decomposing an organic substance containing an inorganic substance, which is provided with a preheating means for preheating the organic substance to a temperature lower than 0 ° C.

【0018】上記課題を解決するための請求項2に記載
の本発明は、超臨界水中で無機物を含む有機物および酸
化剤を反応させ、有機物を超臨界水酸化分解する装置に
おいて、該有機物、水、酸化剤およびスケール防止剤を
水の臨界圧力以上に加圧供給する加圧供給手段と、該加
圧供給手段から加圧供給された有機物、水、酸化剤およ
びスケール防止剤からなる被処理物混合流体の超臨界水
酸化反応を行う反応器と、該反応器から流出する反応後
の処理流体を冷却する冷却手段と、該冷却手段から流出
する冷却された処理流体を取り出す取り出し手段を備え
た超臨界水酸化分解装置であって、反応器の前段に被処
理物混合流体を300℃未満に予熱する予備予熱手段を
設けたことを特徴とする無機物を含む有機物の超臨界水
酸化分解装置に関するものである。
According to a second aspect of the present invention, there is provided an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically hydrolyze the organic substance. Supply means for pressurizing and supplying an oxidizing agent and a scale inhibitor to a pressure higher than the critical pressure of water, and an object to be treated comprising an organic substance, water, an oxidizing agent and a scale inhibitor supplied by pressure from the pressure supplying means A reactor for performing a supercritical water oxidation reaction of the mixed fluid, cooling means for cooling the processed processing fluid flowing out of the reactor, and removing means for taking out the cooled processing fluid flowing out of the cooling means are provided. A supercritical hydroxylation / decomposition apparatus, wherein a pre-heating means for preheating the mixed fluid to be treated to a temperature of less than 300 ° C. is provided in a preceding stage of the reactor. Seki Is shall.

【0019】上記課題を解決するための請求項3に記載
の本発明は、超臨界水中で無機物を含む有機物および酸
化剤を反応させ、有機物を超臨界水酸化分解する装置に
おいて、該有機物、水および酸化剤を水の臨界圧力以上
に加圧供給する加圧供給手段と、該加圧供給手段から加
圧供給された有機物、水および酸化剤からなる被処理物
混合流体の超臨界水酸化反応を行う反応器と、該反応器
から流出する反応後の処理流体を冷却する冷却手段と、
該冷却手段から流出する冷却された処理流体を取り出す
取り出し手段を備えた超臨界水酸化分解装置であって、
反応器の前段に被処理物混合流体を200℃未満に予熱
する予備予熱手段と、該予備予熱手段から流出する被処
理物混合流体を下向流として流路径の大きな流路に流通
させて200〜350℃に予熱してスケール成分を析出
させるスケール成分析出手段を設けたことを特徴とする
無機物を含む有機物の超臨界水酸化分解装置に関するも
のである。
According to a third aspect of the present invention, there is provided an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically hydrolyze the organic substance. Supply means for pressurizing and supplying an oxidizing agent at a pressure equal to or higher than the critical pressure of water, and a supercritical water oxidation reaction of a mixture fluid to be treated comprising an organic substance, water and an oxidizing agent pressurized and supplied from the pressurizing supply means And a cooling means for cooling the reaction fluid after the reaction flowing out of the reactor,
A supercritical hydroxylation decomposition apparatus comprising a take-out means for taking out a cooled processing fluid flowing out of the cooling means,
A pre-heating means for preheating the mixed fluid to be treated to a temperature of less than 200 ° C. in a stage preceding the reactor; The present invention relates to an apparatus for supercritically decomposing organic substances including inorganic substances, which is provided with a scale component precipitation means for preheating to 350 ° C. to deposit scale components.

【0020】上記課題を解決するための請求項4に記載
の本発明は、前記スケール成分析出手段から流出する被
処理物混合流体をさらに350℃以上に予熱する予熱手
段を設けたことを特徴とする請求項3に記載の超臨界水
酸化分解装置に関するものである。
According to a fourth aspect of the present invention, there is provided a preheating means for preheating the mixed fluid flowing out of the scale component precipitation means to 350 ° C. or higher. The present invention relates to a supercritical hydroxylation decomposition apparatus according to claim 3.

【0021】上記課題を解決するための請求項5に記載
の本発明は、超臨界水中で無機物を含む有機物および酸
化剤を反応させ、有機物を超臨界水酸化分解する装置に
おいて、該有機物、水および酸化剤を水の臨界圧力以上
に加圧供給する被処理物供給手段と、該被処理物供給手
段から加圧供給された有機物、水および酸化剤からなる
被処理物混合流体の超臨界水酸化反応を行う反応器と、
該反応器から流出する反応後の処理流体を冷却する冷却
手段と、該冷却手段から流出する冷却された処理流体を
取り出す取り出し手段を備えた超臨界水酸化分解装置で
あって、反応器の前段に被処理物混合流体を200℃未
満に予熱する予備予熱手段と、該予備予熱手段から流出
する被処理物混合流体を下向流として流路径の大きな流
路に流通させて200℃近傍に保持してスケール成分を
析出させるスケール成分析出手段と、該スケール成分析
出手段から流出した被処理物混合流体を所定温度に予熱
する予熱手段を設けたことを特徴とする無機物を含む有
機物の超臨界水酸化分解装置に関するものである。
According to a fifth aspect of the present invention, there is provided an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically decompose the organic substance, the method comprising the steps of: And an oxidizing agent for pressurizing the oxidizing agent to a pressure equal to or higher than the critical pressure of water, and a supercritical water of a mixed fluid of the treating object comprising the organic substance, water, and the oxidizing agent pressurized and supplied from the object supplying unit. A reactor for performing an oxidation reaction;
A supercritical hydroxylation cracking apparatus comprising: a cooling means for cooling a process fluid after reaction flowing out of the reactor, and a take-out means for taking out a cooled process fluid flowing from the cooling means, wherein Preheating means for preheating the mixed fluid to be processed to less than 200 ° C., and flowing the mixed fluid flowing out of the preheating means as a downward flow through a flow path having a large diameter to maintain the temperature around 200 ° C. A scale component depositing means for depositing a scale component and a preheating means for preheating a mixture fluid to be processed flowing out of the scale component depositing means to a predetermined temperature. It relates to a critical hydroxylation decomposition apparatus.

【0022】上記課題を解決するための請求項6に記載
の本発明は、前記スケール成分析出手段に、内壁に析出
したスケールを掻き取るスケール掻き取り手段を設けた
ことを特徴とする請求項3ないし請求項5のいずれか1
項に記載の超臨界水酸化分解装置に関するものである。
According to a sixth aspect of the present invention, there is provided the present invention, wherein the scale component depositing means is provided with a scale scraping means for scraping scale deposited on the inner wall. Any one of claims 3 to 5
The present invention relates to the supercritical hydroxylation decomposition apparatus described in the section.

【0023】上記課題を解決するための請求項7に記載
の本発明は、超臨界水中で無機物を含む有機物および酸
化剤を反応させ、有機物を超臨界水酸化分解する方法に
おいて、該有機物、水および酸化剤を水の臨界圧力以上
に加圧供給し、有機物、水および酸化剤からなる被処理
物混合流体を反応器内で超臨界水酸化反応する超臨界水
酸化分解方法であって、加圧供給された反応前の被処理
物混合流体を200℃未満に予備予熱することを特徴と
する無機物を含む有機物の超臨界水酸化分解方法に関す
るものである。
According to a seventh aspect of the present invention, there is provided a method for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically decompose the organic substance. A supercritical hydroxylation decomposition method in which a mixed fluid of an organic substance, water and an oxidizing agent is supercritically hydroxylated in a reactor by pressurizing and supplying an oxidizing agent at a pressure higher than the critical pressure of water. The present invention relates to a method for supercritically hydrolyzing an organic substance containing an inorganic substance, which comprises pre-heating a pressure-supplied mixed fluid to be processed before a reaction to less than 200 ° C.

【0024】上記課題を解決するための請求項8に記載
の本発明は、前記予備予熱した被処理物混合流体を、2
00〜350℃に保持もしくは予熱して、スケール成分
を析出させた後、反応器内で超臨界水酸化反応させるこ
とを特徴とする請求項7に記載の超臨界水酸化分解方法
に関するものである。
[0024] In order to solve the above-mentioned problem, the present invention as set forth in claim 8, is characterized in that the premixed pre-heated mixed fluid of the object is mixed with 2 fluids.
The supercritical hydroxylation decomposition method according to claim 7, wherein a supercritical hydroxylation reaction is performed in a reactor after preserving or preheating at 00 to 350C to precipitate scale components. .

【0025】[0025]

【発明の実施の形態】本発明の超臨界水酸化分解装置
は、超臨界状態の水と酸化剤の存在下に無機物を含む有
機物の酸化分解を行う反応器を備えたものである。反応
器において行なわれる超臨界水酸化反応は、水を超臨界
状態とする温度、圧力条件であれば特に限定されるもの
ではないが、例えば、温度374℃以上、好ましくは5
00〜650℃、かつ圧力22MPa以上、好ましくは
22〜25MPaの条件とすればよい。酸化剤として
は、例えば空気、純酸素、過酸化水素、液体酸素を挙げ
ることができ、これらの酸化剤は化学量論要求量以上用
いればよい。超臨界水酸化分解を行う反応器は、パイプ
(管状)型、ベッセル型のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The supercritical hydroxylation decomposition apparatus of the present invention is provided with a reactor for oxidatively decomposing organic substances including inorganic substances in the presence of supercritical water and an oxidizing agent. The supercritical hydroxylation reaction performed in the reactor is not particularly limited as long as the temperature and pressure conditions bring water into a supercritical state.
The temperature may be in the range of 00 to 650 ° C. and the pressure of 22 MPa or more, preferably 22 to 25 MPa. Examples of the oxidizing agent include air, pure oxygen, hydrogen peroxide, and liquid oxygen. These oxidizing agents may be used in a stoichiometrically required amount or more. The reactor for performing the supercritical hydroxylation decomposition may be any of a pipe (tubular) type and a vessel type.

【0026】水は、超臨界状態では、有機物やガス状物
質に対して良好な溶媒となるため、反応器内では超臨界
水、有機物および酸化剤は均一相を形成し、超臨界水酸
化反応が進行し、極めて短時間のうちに有機物は酸化分
解される。
Since water is a good solvent for organic substances and gaseous substances in the supercritical state, the supercritical water, organic substances and oxidizing agent form a homogeneous phase in the reactor, and the supercritical water oxidation reaction The organic matter is oxidatively decomposed in a very short time.

【0027】(第1実施形態)第1の実施形態は、無機
物を含む有機物を超臨界水中で酸化処理する反応器の前
段に、被処理物混合流体を200℃未満に予熱する予備
予熱手段を設けたことを特徴とするものである。予熱部
における加熱温度を200℃未満とすることにより、ス
ケールの発生を抑制し、予熱手段にスケールが付着する
ことを防ぐものである。予備予熱手段における被処理物
混合流体の温度は、200℃未満、好ましくは150〜
180℃である。予備予熱手段における加熱温度を20
0℃未満とすることにより、顕著なスケール生成が抑制
され、伝熱効率の低下や圧力損失の増大を抑制し、長時
間の連続運転が可能になる。
(First Embodiment) In the first embodiment, a preheating means for preheating a mixed fluid to be processed to less than 200 ° C. is provided before a reactor for oxidizing an organic substance containing an inorganic substance in supercritical water. It is characterized by having been provided. By setting the heating temperature in the preheating section to less than 200 ° C., the generation of scale is suppressed, and the scale is prevented from adhering to the preheating means. The temperature of the mixed fluid in the pre-heating means is less than 200 ° C., preferably 150 to
180 ° C. Set the heating temperature in the preheating means to 20
By setting the temperature to less than 0 ° C., remarkable scale generation is suppressed, a decrease in heat transfer efficiency and an increase in pressure loss are suppressed, and a long-time continuous operation becomes possible.

【0028】流路内を流れる被処理物混合流体の温度は
圧力の変動や被処理物の濃度等の変動によって変化し、
その温度を厳密に制御することは困難である。従って、
本発明における200℃未満とは、被処理物混合流体の
温度が概ね200℃未満となる温度であればよく、例え
ば200±20℃を下回ればよい。
The temperature of the mixture fluid to be processed flowing in the flow path changes due to fluctuations in pressure, concentration of the processing object, and the like.
It is difficult to control the temperature exactly. Therefore,
The term “less than 200 ° C.” in the present invention may be a temperature at which the temperature of the mixed fluid to be treated is generally less than 200 ° C., for example, less than 200 ± 20 ° C.

【0029】予備予熱手段で被処理物混合流体を200
℃未満に加熱する方法は特に限定されないが、例えば反
応器から流出する処理流体の熱を熱交換器で回収して利
用すればよい。
[0029] The mixed fluid of the object to be treated is 200
There is no particular limitation on the method of heating the mixture to a temperature lower than ℃, but for example, the heat of the processing fluid flowing out of the reactor may be recovered by a heat exchanger and used.

【0030】予備予熱手段としては、二重管式熱交換器
を挙げることができ、反応器の後段に設ける冷却手段も
二重管式熱交換器とし、両者を配管で接続し、熱媒を流
すことにより熱交換を行って、被処理混合物流体の予熱
および反応後の処理流体の冷却を行えばよい。
As the pre-heating means, a double-pipe heat exchanger can be mentioned, and the cooling means provided at the latter stage of the reactor is also a double-pipe heat exchanger, both of which are connected by piping, and the heat medium is supplied. Heat exchange may be performed by flowing the fluid to preheat the mixture fluid to be treated and cool the treated fluid after the reaction.

【0031】図1のフロー図により、本発明の第1実施
形態を説明する。
The first embodiment of the present invention will be described with reference to the flowchart of FIG.

【0032】本発明の超臨界水酸化装置は、図1に示す
ように、超臨界水酸化反応を行う反応器として、チュー
ブラー状の長い耐圧密閉型反応器10を備え、反応器1
0の上流には、下水汚泥等の被処理物流体を加圧供給す
る被処理物供給ポンプ26と酸化剤を加圧供給する酸化
剤供給ポンプ28と被処理物混合流体を予熱する二重管
式熱交換器の予備予熱器12を、反応器10の下流に
は、二重管式の熱交換器14と、処理流体を冷却する冷
却器16を備えている。更に、超臨界水酸化分解装置
は、反応器10内の圧力を制御する圧力制御弁18を冷
却器16の下流に、処理流体をガスとスラリーとに気液
分離する気液分離器20を圧力制御弁18の下流に、及
び、スラリー状の反応生成物を固液分離して、無機固形
物を反応生成物から分離する固液分離器22を備えてい
る。固液分離器22で分離された無機固形物は、主とし
て、反応物中に含まれ、反応に寄与しなかったものであ
って、加えて、超臨界水酸化反応により生成した塩を含
むこともある。
As shown in FIG. 1, the supercritical water oxidation apparatus of the present invention comprises a long tubular pressure-resistant closed reactor 10 as a reactor for performing a supercritical water oxidation reaction.
Upstream of 0, an object supply pump 26 for supplying an object fluid such as sewage sludge under pressure, an oxidant supply pump 28 for supplying an oxidant under pressure, and a double pipe for preheating the object mixture fluid A preheater 12 of the type heat exchanger is provided, and a downstream heat exchanger 14 of a double tube type and a cooler 16 for cooling the processing fluid are provided downstream of the reactor 10. Further, the supercritical hydroxylation decomposition apparatus includes a pressure control valve 18 for controlling the pressure in the reactor 10 downstream of the cooler 16 and a gas-liquid separator 20 for gas-liquid separation of the processing fluid into gas and slurry. A solid-liquid separator 22 is provided downstream of the control valve 18 and separates a solid reaction product from the reaction product by solid-liquid separation of a slurry-like reaction product. The inorganic solid separated by the solid-liquid separator 22 is mainly contained in the reaction product and has not contributed to the reaction, and may also contain a salt generated by the supercritical water oxidation reaction. is there.

【0033】予備予熱器12は、被処理物と酸化剤から
なる被処理物混合流体が流れる内管と、被処理物混合流
体を加熱する外管からなる二重管式熱交換器である。予
備予熱器12では、スケールの発生を抑制するために、
被処理物混合流体の温度を200℃未満に制御する必要
がある。
The pre-heater 12 is a double-pipe heat exchanger comprising an inner pipe through which a mixed fluid of the processing object and an oxidant flows, and an outer pipe for heating the mixed fluid of the processing object. In the pre-heater 12, in order to suppress the generation of scale,
It is necessary to control the temperature of the mixture fluid to be processed to less than 200 ° C.

【0034】200℃未満に予備予熱された被処理物混
合流体は、反応器10内で超臨界水酸化される。被処理
物が下水汚泥等の場合、熱量が足りず反応器10内で臨
界温度に達しないときは、被処理物に予め補助燃料の有
機物を加え、超臨界水酸化が進行するようにすればよ
い。
The mixed fluid pre-heated to less than 200 ° C. is supercritically hydroxylated in the reactor 10. In the case where the object to be treated is sewage sludge, etc., when the calorific value is insufficient and the temperature does not reach the critical temperature in the reactor 10, an organic substance as an auxiliary fuel is added to the object to be treated in advance, so that supercritical water oxidation proceeds. Good.

【0035】超臨界水中、酸化剤の存在下で、被処理物
中の有機物は、速やかに酸化されて二酸化炭素、水等に
分解される。分解生成物、無機物および超臨界水からな
る処理流体は反応器10から流出する。
In supercritical water, in the presence of an oxidizing agent, organic substances in the object to be treated are quickly oxidized and decomposed into carbon dioxide, water and the like. A processing fluid consisting of decomposition products, inorganic substances and supercritical water flows out of the reactor 10.

【0036】高温高圧の処理流体は、反応器10の下流
に設けられた二重管式の熱交換器14により、熱の一部
が回収される。熱交換器14と予備予熱器12は配管2
4で接続され、熱媒が循環しており、加熱された熱媒は
予備予熱器12へ供給され被処理物混合流体を200℃
未満へ加熱する。
A part of the heat of the high-temperature and high-pressure processing fluid is recovered by a double-pipe heat exchanger 14 provided downstream of the reactor 10. The heat exchanger 14 and the preliminary preheater 12 are connected to the pipe 2
4, the heating medium is circulated, and the heated heating medium is supplied to the pre-heater 12 and the mixed fluid at 200 ° C.
Heat to less than.

【0037】熱の一部が回収された処理流体は、冷却器
16で常温まで冷却される。冷却された処理流体は取り
出し手段により、処理液、無機固形物及び排ガスとして
取り出される。取り出し手段としては、冷却された処理
流体の圧力を制御する圧力制御弁18と、大気圧に開放
された処理流体を分離する気液分離器20、固液分離器
22を挙げることができる。
The processing fluid from which part of the heat has been recovered is cooled by the cooler 16 to room temperature. The cooled processing fluid is extracted as a processing liquid, an inorganic solid, and an exhaust gas by an extracting unit. Examples of the extracting means include a pressure control valve 18 for controlling the pressure of the cooled processing fluid, a gas-liquid separator 20 for separating the processing fluid released to the atmospheric pressure, and a solid-liquid separator 22.

【0038】予備予熱手段から流出する被処理物混合流
体の温度が200℃を超えると、スケールが生成し、低
くなりすぎるとより大量に補助燃料が必要となるため、
予備予熱手段から流出する被処理物混合流体の温度を約
200℃に厳密に制御する必要がある。
If the temperature of the mixed fluid flowing out of the preheating means exceeds 200 ° C., scale is generated, and if it is too low, a larger amount of auxiliary fuel is required.
It is necessary to strictly control the temperature of the mixed fluid flowing out of the preheating means to about 200 ° C.

【0039】図2のフロー図により、被処理物混合流体
の温度を200℃未満に制御するための一例を示す。
An example for controlling the temperature of the fluid mixture to be processed to less than 200 ° C. is shown in the flow chart of FIG.

【0040】被処理物混合流体は熱媒の温度以上に加熱
されることがないため、まず熱媒の最高温度を200℃
に制御し、伝熱効率やスケールによる伝熱低下に応じ
て、熱媒の最高温度を増加させることが有効である。こ
の熱媒の温度制御を行うためには、熱媒として水を用
い、その圧力および流量を制御する。
Since the mixed fluid to be processed is not heated to a temperature higher than the temperature of the heat medium, first, the maximum temperature of the heat medium is set to 200 ° C.
It is effective to increase the maximum temperature of the heat medium according to the heat transfer efficiency and the heat transfer due to the scale. In order to control the temperature of the heat medium, water is used as the heat medium, and its pressure and flow rate are controlled.

【0041】水は蒸発する際に大量の蒸発潜熱を必要と
するため、予備予熱器12において、熱媒の最高温度を
沸点近傍に制御することは比較的容易である。沸点近傍
より温度が高い場合は流量を増加させ、低い場合には流
量を減少させればよい。また、沸点は圧力により制御可
能である。
Since a large amount of latent heat of evaporation is required for water to evaporate, it is relatively easy to control the maximum temperature of the heating medium in the pre-heater 12 to be close to the boiling point. When the temperature is higher than near the boiling point, the flow rate may be increased, and when the temperature is lower than the boiling point, the flow rate may be decreased. Further, the boiling point can be controlled by the pressure.

【0042】図2に示したように、被処理物混合流体の
温度を200℃未満に制御するために、予備予熱器12
から流出する被処理物混合流体の温度を計測する温度計
31、予備予熱器12の入口における熱媒の温度を計測
する温度計32、予備予熱器12の出口における熱媒の
温度を計測する温度計34、熱媒の圧力を制御するため
の圧力制御弁37、熱媒をプールする熱媒タンク38、
熱媒を循環させるための熱媒循環ポンプ39、熱媒循環
ポンプ39の入口の温度、圧力を測定するための温度計
33、圧力計36および熱媒循環ポンプ39の出口の圧
力を測定する圧力計35、熱媒の流量を測定する流量計
を備えている。
As shown in FIG. 2, in order to control the temperature of the fluid mixture to be processed to less than 200.degree.
Thermometer 31 that measures the temperature of the mixed fluid flowing out of the processing object, thermometer 32 that measures the temperature of the heat medium at the inlet of the pre-heater 12, and temperature that measures the temperature of the heat medium at the outlet of the pre-heater 12. A pressure control valve 37 for controlling the pressure of the heat medium, a heat medium tank 38 for pooling the heat medium,
A heat medium circulation pump 39 for circulating the heat medium, a thermometer 33 for measuring the temperature and pressure at the inlet of the heat medium circulation pump 39, a pressure gauge 36, and a pressure for measuring the pressure at the outlet of the heat medium circulation pump 39. The total 35 includes a flow meter for measuring the flow rate of the heat medium.

【0043】具体的には、熱媒循環ポンプ39の熱媒の
吐出圧を圧力計35で、予備予熱器12の入口の熱媒温
度を温度計32で測定する。予備予熱器12の入口温度
が熱媒の吐出圧における沸点よりも低い場合は、熱媒循
環ポンプ39の吐出量を減らし、高い場合には熱媒循環
ポンプ39の吐出量を大きくする。さらに、温度計31
で測定した被処理混合物の予熱器出口温度が約200℃
未満の場合には、熱媒循環ポンプ39の吐出圧を大きく
し、200℃を超える場合には、吐出圧を小さくさす
る。このような制御により、厳密な温度制御が可能とな
る。
Specifically, the pressure of the heat medium discharged from the heat medium circulation pump 39 is measured by the pressure gauge 35, and the temperature of the heat medium at the inlet of the pre-heater 12 is measured by the thermometer 32. When the inlet temperature of the preheater 12 is lower than the boiling point at the discharge pressure of the heat medium, the discharge amount of the heat medium circulation pump 39 is reduced, and when it is higher, the discharge amount of the heat medium circulation pump 39 is increased. Further, a thermometer 31
The preheater outlet temperature of the mixture to be treated measured in
If it is lower than 200 ° C., the discharge pressure of the heat medium circulation pump 39 is increased, and if it exceeds 200 ° C., the discharge pressure is reduced. Such control enables strict temperature control.

【0044】なお、本実施態様において、被処理物にア
クリル酸系ポリマー、マレイン酸系ポリマー、ホスホン
酸誘導体等のスケール防止剤を添加した場合は予備予熱
器12の温度を300℃未満に上昇させることが可能で
ある。
In this embodiment, when a scale inhibitor such as an acrylic acid polymer, a maleic acid polymer, or a phosphonic acid derivative is added to the object to be treated, the temperature of the preheater 12 is raised to less than 300 ° C. It is possible.

【0045】スケール防止剤の添加による分散効果によ
ってスケール発生温度はある程度上昇するが、スケール
発生を根本的に防止することはできない。例えば分子量
が1万以下のアクリル酸ポリマーを使用した場合は25
0℃までスケール発生温度が上昇し、分子量が1万を超
えるアクリル酸ポリマーを使用した場合は300℃近く
までスケール発生温度が上昇する。従って、使用するス
ケール防止剤の性能に応じて予備予熱器12の温度を設
定すればよい。
Although the temperature at which scale is generated increases to some extent due to the dispersing effect of the addition of the scale inhibitor, scale generation cannot be fundamentally prevented. For example, when an acrylic acid polymer having a molecular weight of 10,000 or less is used, 25
The scale generation temperature rises to 0 ° C., and when an acrylic acid polymer having a molecular weight exceeding 10,000 is used, the scale generation temperature rises to nearly 300 ° C. Therefore, the temperature of the pre-heater 12 may be set according to the performance of the scale inhibitor used.

【0046】(第2実施形態)図3に本発明の第2実施
形態のフロー図を示す。第1実施形態と同一の構成要素
には同一の符号を付し、詳細な説明は省略する。
(Second Embodiment) FIG. 3 shows a flowchart of a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0047】第2実施形態が第1実施形態と異なる点
は、予備熱交換器12と反応器10の間に、予備予熱器
12から流出する被処理物混合流体を、下向流とし、2
00〜350℃に加熱してスケール成分を析出させるス
ケール成分析出手段(スケール成分析出部)11を設け
た点である。
The second embodiment is different from the first embodiment in that the mixed fluid flowing out of the pre-heater 12 between the pre-heat exchanger 12 and the reactor 10 is a downward flow,
This is the point that a scale component deposition means (scale component deposition section) 11 for heating to 00 to 350 ° C. and depositing the scale component is provided.

【0048】予備予熱手段で200℃未満に予熱する方
法と、スケール成分析出部で200〜350℃に予熱す
る方法は特に限定されないが、例えば反応器から流出す
る処理流体の熱を熱交換器で回収して利用すればよい。
The method of preheating to less than 200 ° C. by the preliminary preheating means and the method of preheating to 200 to 350 ° C. in the scale component precipitation section are not particularly limited. For example, the heat of the processing fluid flowing out of the reactor is transferred to the heat exchanger. It can be collected and used.

【0049】スケール成分析出部を流れる被処理物混合
流体の温度を200〜350℃に厳密に制御することは
困難であり、本発明における200〜350℃とは、被
処理物混合流体の温度が概ね200〜350℃となる温
度であり、例えば200±20〜350±35℃であれ
ばよい。
It is difficult to strictly control the temperature of the mixed fluid flowing through the scale component deposition section to 200 to 350 ° C. In the present invention, 200 to 350 ° C. refers to the temperature of the mixed mixed fluid. Is about 200 to 350 ° C., for example, 200 ± 20 to 350 ± 35 ° C.

【0050】超臨界水酸化分解装置の配管部分は、無機
固形物の沈降を防ぐため、常温部で流速0.5m/s以
上を確保できる管径としている。これに対して予熱手段
のスケール成分を析出させる部分(以下、スケール成分
析出部と略称する)の管径は前述の管径より50mm以
上太くすることが好ましい。スケール成分析出手段にお
ける被処理物混合流体の流路径を大きくすることによ
り、たとえスケール成分析出部にスケールが付着しても
圧力損失の増大を抑えることができる。
The pipe portion of the supercritical hydroxylation decomposition apparatus has a pipe diameter capable of securing a flow rate of 0.5 m / s or more at room temperature in order to prevent sedimentation of inorganic solids. On the other hand, it is preferable that the pipe diameter of the portion of the preheating means where the scale component is deposited (hereinafter, abbreviated as the scale component deposition portion) is made 50 mm or more larger than the above-mentioned pipe diameter. By increasing the flow path diameter of the mixture fluid to be treated in the scale component deposition means, even if the scale adheres to the scale component deposition portion, an increase in pressure loss can be suppressed.

【0051】図3に示したように、スケール成分析出手
段11は、二重管式熱交換器であり、加熱部分の管径を
大きくし、下向流としてスケール成分析出部とする。図
3に示すように、予熱器11の被処理物混合流体の出口
側は無機固形物が堆積する部分をなくすため、コーン状
とすることが好ましい。予熱器11の出口以降では、配
管内の無機固形物の沈降を防止するために、元の管径と
同一もしくはこれに近いものとすることにより、一定の
流速が確保できるようにする。これにより、無機固形物
の沈降による配管の閉塞を防ぐことができる。
As shown in FIG. 3, the scale component precipitation means 11 is a double-pipe heat exchanger, in which the diameter of the heated portion is increased, and the scale component deposition section is used as a downward flow. As shown in FIG. 3, it is preferable that the outlet side of the pre-heater 11 for the mixed fluid to be treated has a cone shape in order to eliminate the portion where the inorganic solid matter is deposited. After the outlet of the preheater 11, a constant flow rate can be secured by making the pipe diameter the same as or close to the original pipe diameter in order to prevent sedimentation of the inorganic solid matter in the pipe. Thereby, the blockage of the pipe due to the sedimentation of the inorganic solid can be prevented.

【0052】予備予熱器12、予熱器11および熱交換
器14の相互を配管24で接続し、熱媒を循環させるこ
とにより、温度を制御する。
The pre-heater 12, the pre-heater 11, and the heat exchanger 14 are connected to each other by a pipe 24, and the temperature is controlled by circulating a heat medium.

【0053】このように、200〜350℃に予熱して
スケール成分を析出させるスケール成分析出手段の形式
は、管径が大きく、被処理物混合流体が下向流となり、
無機固形物が堆積する部分がなく、出口が元の管径と同
一もしくはこれに近いもので、予熱手段を流出する被処
理物混合流体の流速が確保されていれば、特に限定され
ない。
As described above, the type of the scale component deposition means for precipitating the scale component by preheating to 200 to 350 ° C. has a large pipe diameter, and the mixed fluid of the object to be treated flows downward.
There is no particular limitation as long as there is no portion where inorganic solid matter is deposited, the outlet is the same as or close to the original pipe diameter, and the flow rate of the mixed fluid flowing out of the preheating means is secured.

【0054】図3では、予熱器として二重管式熱交換器
を例示したが、これに限定されるものではなく、コイル
式熱交換器や多管式熱交換器等を用いてもよい。
In FIG. 3, a double tube heat exchanger is exemplified as the preheater, but the present invention is not limited to this, and a coil heat exchanger, a multi-tube heat exchanger, or the like may be used.

【0055】200〜350℃に加熱される部分でスケ
ール成分の析出はほぼ終了するため、350℃以上に予
熱が必要な場合は、配管径をその他の部分と同一もしく
はこれに近いものとしてもスケール析出による弊害はな
い。
Since the precipitation of scale components is almost completed at the portion heated to 200 to 350 ° C., if preheating at 350 ° C. or more is required, the scale may be set to the same or close to that of the other portions. There is no adverse effect due to precipitation.

【0056】なお、予熱器11のスケール成分析出部は
スケール成分を析出させることが目的であるので、スケ
ール成分析出部では熱交換を行わずに、スケールを析出
させてもよい。
Since the scale component deposition section of the preheater 11 is for the purpose of depositing scale components, the scale component deposition section may deposit scale without performing heat exchange.

【0057】(第3実施形態)図4に本発明の第3実施
形態のフロー図を示す。第1、第2実施形態と同一の構
成要素には同一の符号を付し、詳細な説明は省略する。
(Third Embodiment) FIG. 4 shows a flowchart of a third embodiment of the present invention. The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0058】本発明の第3の実施形態は、上記第2の実
施形態において前記スケール成分析出部から流出する被
処理物混合流体を更に所定温度以上に予熱する予熱手段
を設けたことを特徴とする。
The third embodiment of the present invention is characterized in that a preheating means for preheating the mixed fluid flowing out of the scale component deposition section to a predetermined temperature or more is further provided in the second embodiment. And

【0059】本実施形態における所定温度とは、例えば
350℃近傍であり、スケールは350℃を超える部分
ではほとんど付着することがないので、所定温度以上に
予熱する予熱手段13を設けても、スケールが付着する
ことはないので、連続運転に支障はない。
The predetermined temperature in the present embodiment is, for example, around 350 ° C., and the scale hardly adheres at the portion exceeding 350 ° C. Therefore, even if the preheating means 13 for preheating to a predetermined temperature or more is provided, There is no hindrance to continuous operation.

【0060】図4に、本発明の第3実施形態のフロー図
を示す。第2実施形態と同一の構成要素には同一の符号
を付し、詳細な説明は省略する。
FIG. 4 shows a flowchart of the third embodiment of the present invention. The same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0061】第3実施形態が第2実施形態と異なるの
は、前記スケール成分析出部11の後段に、スケール成
分析出部11から流出する被処理物混合流体を所定温度
以上に予熱する予熱手段13を設けた点である。
The third embodiment is different from the second embodiment in that, after the scale component deposition section 11, the preheating of the mixed fluid flowing out of the scale component deposition section 11 to a predetermined temperature or higher is performed. The point is that the means 13 is provided.

【0062】補助燃料を添加せずに、発熱量の小さな被
処理物を超臨界水酸化分解処理しようとする場合、所定
温度以上に被処理物混合流体を予熱することが必要にな
る。そのような場合に、本実施形態は有効である。
In the case where an object to be treated having a small calorific value is to be subjected to the supercritical hydroxylation decomposition treatment without adding an auxiliary fuel, it is necessary to preheat the fluid mixture to be treated to a predetermined temperature or higher. In such a case, the present embodiment is effective.

【0063】この予熱手段13は、固形物が沈降しない
構造であれば、その構造は特に限定されないが、予備予
熱手段12と同様の構造としてもよい。
The structure of the preheating means 13 is not particularly limited as long as the solid matter does not settle, but may be the same as the structure of the preheating means 12.

【0064】第3実施形態において、予備予熱手段1
2、スケール成分析出手段11、予熱手段13を予熱す
る方法は特に限定されないが、前記第2実施形態と同様
に、例えば反応器10から流出する処理流体の熱を熱交
換器で回収して利用すればよい。効率的に熱回収をする
には、熱交換器を複数段設け、反応器出口に最も近い第
1熱交換器の熱媒を予熱手段13に循環させ、第1熱交
換器の後段に第2熱交換器を設けてその熱媒をスケール
成分析出手段11に循環させ、さらに第2熱交換器の後
段に第3熱交換器を設けてその熱媒を予備予熱手段12
に循環させればよい。
In the third embodiment, the preheating means 1
2. The method of preheating the scale component precipitation means 11 and the preheating means 13 is not particularly limited. However, similarly to the second embodiment, for example, the heat of the processing fluid flowing out of the reactor 10 is recovered by a heat exchanger. Just use it. In order to efficiently recover heat, a plurality of heat exchangers are provided, the heat medium of the first heat exchanger closest to the reactor outlet is circulated to the preheating means 13, and the second heat exchanger is provided downstream of the first heat exchanger. A heat exchanger is provided and the heat medium is circulated to the scale component precipitation means 11. Further, a third heat exchanger is provided after the second heat exchanger and the heat medium is supplied to the preliminary preheating means 12.
Should be circulated.

【0065】(第4実施形態)図5に本発明の第4実施
形態のフロー図を示す。第1〜3実施形態と同一の構成
要素には同一の符号を付し、詳細な説明は省略する。
(Fourth Embodiment) FIG. 5 shows a flowchart of a fourth embodiment of the present invention. The same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0066】本発明の第4の実施形態は、上記第3の実
施形態における200〜350℃に予熱してスケール成
分を析出させるスケール成分析出手段11を、200℃
近傍に保持してスケール成分を析出させるスケール成分
析出手段11’に置き換えたことを特徴とする。
The fourth embodiment of the present invention is the same as the third embodiment, except that the scale component deposition means 11 for preheating to 200 to 350 ° C. to deposit the scale component comprises a 200 ° C.
It is characterized in that it is replaced by a scale component deposition means 11 ′ that deposits a scale component while keeping it in the vicinity.

【0067】スケールは、一般に低温で溶解している成
分が、温度が高くなって溶解度が低下して析出すること
により生成する。流路の外側から加熱されている流体で
は管壁で最も温度が高くなり、この部分でのスケール成
分析出が著しく、結果として管壁付近でスケール成分析
出が多くなり、スケールが管壁に付着する。スケールの
代表的なカルシウム塩では、200℃以上で析出が顕著
になる。
The scale is generally formed by precipitation of components that are dissolved at a low temperature as the temperature increases and the solubility decreases. The temperature of the fluid heated from the outside of the flow channel is highest on the tube wall, and scale component precipitation is remarkable in this part.As a result, scale component deposition increases near the tube wall, and the scale is deposited on the tube wall. Adhere to. In a typical calcium salt of a scale, precipitation becomes remarkable at 200 ° C. or higher.

【0068】一方、事前に析出したスケール成分は、溶
解しているスケール成分が析出する場合に比べれば、管
壁への付着は進行しにくく、スケールは生成しにくい。
On the other hand, as compared with the case where the dissolved scale component is deposited, the scale component deposited in advance is less likely to adhere to the tube wall and the scale is not easily formed.

【0069】従って、200℃近傍で被処理物流体を保
持して、あらかじめスケール成分を析出させることによ
り、その後段でさらに予熱する場合においても、予熱部
でのスケール生成は抑制されるので、予熱部の形状を特
殊なものにする必要がない。
Therefore, by preserving the fluid to be treated at around 200 ° C. and precipitating the scale component, even when preheating is performed in a subsequent stage, scale formation in the preheating section is suppressed. There is no need to make the shape of the part special.

【0070】スケール成分析出手段11’で200℃近
傍に保持する時間は、例えば30秒ないし1分間の間で
適宜選択すればよい。
The time for maintaining the temperature around 200 ° C. by the scale component deposition means 11 ′ may be appropriately selected, for example, from 30 seconds to 1 minute.

【0071】(第5実施形態)本発明の第5の実施形態
は、スケール成分析出部に析出したスケールを運転中に
除去する装置に関するものである。
(Fifth Embodiment) The fifth embodiment of the present invention relates to an apparatus for removing scale deposited on a scale component deposition section during operation.

【0072】前述の予熱手段のスケール成分析出部は、
管径を大きくしているため、内部にスケールを掻き取る
手段を設けることができる。
The scale component deposition part of the above-mentioned preheating means is:
Since the pipe diameter is increased, a means for scraping the scale can be provided inside.

【0073】図6(a)は、スケール成分析出部11
(11’)の内部にスケール掻き取り機40を設けた説
明図であり、図6(b)は、スケール掻き取り機40の
説明図である。
FIG. 6A shows the scale component deposition section 11.
It is explanatory drawing which provided the scale scraper 40 inside (11 '), and FIG.6 (b) is explanatory drawing of the scale scraper 40. FIG.

【0074】スケール掻き取り機40は、スケール成分
析出部11の内壁に密着するリング状の掻き取り部42
と、掻き取り部42を支持する支持体44と、掻き取り
部42と支持体を接続する接続体46と、スケール掻き
取り機40を上下に動かすための可動支持体48からな
るものである。可動式支持体48は、流路径の中心から
ずらし、掻き取り部42を支持できれば、本数は特に限
定されない。
The scale scraper 40 is provided with a ring-shaped scraper 42 that is in close contact with the inner wall of the scale component deposition unit 11.
And a support body 44 for supporting the scraping section 42, a connecting body 46 for connecting the scraping section 42 and the support body, and a movable support body 48 for moving the scale scraping machine 40 up and down. The number of the movable supports 48 is not particularly limited as long as the movable supports 48 can be shifted from the center of the flow path diameter and can support the scraping section 42.

【0075】可動支持体48の端部をスケール成分析出
部11の外へ出すことにより、この可動支持体48を上
下に動かすことが可能であり、スケール支持部の内壁に
付着したスケールが掻き取り部42により物理的に脱落
する。従って、運転中であっても、スケール付着により
圧力の損失があった場合は、スケール掻き取り機40に
よりスケールを除去するすることができ、連続運転が可
能になる。
By moving the end of the movable support 48 out of the scale component deposition section 11, the movable support 48 can be moved up and down, and the scale attached to the inner wall of the scale support is scraped. It is physically dropped by the taking part 42. Therefore, even during operation, if there is a pressure loss due to scale adhesion, the scale can be removed by the scale scraper 40, and continuous operation can be performed.

【0076】スケール掻き取り機40を構成する部材
は、圧力損失の増大を引き起こさない程度の直径を有す
る棒鋼を使用すればよい。
As a member constituting the scale scraping machine 40, a steel bar having a diameter that does not cause an increase in pressure loss may be used.

【0077】[0077]

【発明の効果】請求項1に記載のように、スケール生成
の少ない200℃未満で予熱する予備予熱手段を設けた
ことにより、スケールの生成を抑制して超臨界水酸化分
解を連続的に行うことができる。
According to the first aspect of the present invention, the provision of the pre-heating means for pre-heating at less than 200 ° C., where the scale is small, is provided, so that the scale formation is suppressed and the supercritical hydroxylation is continuously performed. be able to.

【0078】請求項2に記載のように、スケール防止剤
を添加することで、予備予熱手段の温度を若干高めに設
定することができ、反応器内の温度を上昇させる場合に
おいて上昇させた温度分だけ反応器の温度を上昇させる
負担が軽減できる。
As described in claim 2, the temperature of the preliminary preheating means can be set slightly higher by adding a scale inhibitor, and when the temperature in the reactor is increased, the temperature is increased. The burden of raising the temperature of the reactor can be reduced.

【0079】請求項3に記載のように、スケール生成の
少ない200℃未満で予熱する予備予熱手段と、スケー
ル生成が顕著な200〜350℃でのスケール成分析出
手段を設け、予熱手段の流路径を大きくし被処理混合物
流体を下向流とすることにより、スケール成分析出部で
析出した無機固形物の堆積を防ぐことができ、かつスケ
ール成分析出部にスケールが付着しても圧力損失の増大
を抑えることができ、連続的に超臨界水酸化分解を行う
ことができる。
According to a third aspect of the present invention, there is provided a pre-heating means for pre-heating at a temperature of less than 200 ° C., at which scale generation is small, and a scale component precipitation means at 200 to 350 ° C. at which scale generation is remarkable. By increasing the path diameter and causing the mixture fluid to be treated to flow downward, it is possible to prevent the deposition of inorganic solids deposited at the scale component deposition section, and to reduce the pressure even if the scale adheres to the scale component deposition section. The increase in loss can be suppressed, and supercritical hydroxylation can be continuously performed.

【0080】請求項4に記載の発明は、スケールが生成
しても圧力の増大を招くことなく所定の予熱温度まで昇
温することができる。
According to the fourth aspect of the present invention, the temperature can be raised to a predetermined preheating temperature without increasing the pressure even when the scale is formed.

【0081】請求項5に記載の発明は、予熱部分を特殊
構造にすることなく、スケール生成を抑制できる。
According to the fifth aspect of the present invention, scale formation can be suppressed without using a special structure for the preheating portion.

【0082】請求項6に記載の発明は、上記効果に加
え、スケール成分析出部にスケールが付着しても、運転
中にスケールを除去することができるので、連続的に超
臨界水酸化分解を行うことができる。
According to the invention of claim 6, in addition to the above-mentioned effects, even if the scale adheres to the scale component deposition portion, the scale can be removed during operation, so that the supercritical hydroxylation decomposition can be continuously performed. It can be performed.

【0083】請求項7に記載の発明は、スケール生成の
少ない200℃未満で予熱することにより、スケールの
生成を抑制して超臨界水酸化分解を連続的に行うことが
できる。
According to the seventh aspect of the invention, by preheating at a temperature of less than 200 ° C. where the generation of scale is small, the generation of scale can be suppressed and the supercritical hydroxylation decomposition can be continuously performed.

【0084】請求項8に記載のように、スケール生成の
少ない200℃未満で予熱し、スケール生成が顕著な2
00〜350℃でスケール成分を析出させることによ
り、連続的に超臨界水酸化分解を行うことができる。
As described in claim 8, the preheating is performed at less than 200 ° C. where the scale formation is small, and the scale formation is remarkable.
By precipitating scale components at 00 to 350 ° C., supercritical hydroxylation can be continuously performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示すフロー図。FIG. 1 is a flowchart showing a first embodiment of the present invention.

【図2】本発明の第1実施形態の予備予熱器の温度制御
のフロー図。
FIG. 2 is a flowchart of temperature control of a preheater according to the first embodiment of the present invention.

【図3】本発明の第2実施形態を示すフロー図。FIG. 3 is a flowchart showing a second embodiment of the present invention.

【図4】本発明の第3実施形態を示すフロー図。FIG. 4 is a flowchart showing a third embodiment of the present invention.

【図5】本発明の第4実施形態を示すフロー図。FIG. 5 is a flowchart showing a fourth embodiment of the present invention.

【図6】(a)は本発明の第5実施形態を示す説明図、
(b)は部分拡大図。
FIG. 6A is an explanatory view showing a fifth embodiment of the present invention,
(B) is a partially enlarged view.

【図7】従来の超臨界水酸化装置を示すフロー図。FIG. 7 is a flowchart showing a conventional supercritical water oxidation apparatus.

【符号の説明】[Explanation of symbols]

10 反応器 11 スケール成分析出部 12 予備予熱器 14 熱交換器 16 冷却器 18 圧力制御弁 20 気液分離器 22 固液分離器 24 配管 26 被処理物加圧供給ポンプ 28 酸化剤加圧供給ポンプ 31〜34 温度計 35,36 圧力計 37 圧力制御弁 38 熱媒タンク 39 熱媒循環ポンプ 40 掻き取り機 DESCRIPTION OF SYMBOLS 10 Reactor 11 Scale component deposition part 12 Preheater 14 Heat exchanger 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Solid-liquid separator 24 Piping 26 Workpiece pressurized supply pump 28 Oxidant pressurized supply Pumps 31 to 34 Thermometer 35, 36 Pressure gauge 37 Pressure control valve 38 Heat medium tank 39 Heat medium circulation pump 40 Scraper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴垣 裕志 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 伊藤 新治 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D059 AA05 BC01 BC02 BK30 CB18 DA44 DA47 DB11 EA06 EA20 EB06 EB08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Suzugaki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Shinji Ito 1-2-8 Shinsuna, Koto-ku, Tokyo Olga (72) Inventor Akira Suzuki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation F-term (reference) 4D059 AA05 BC01 BC02 BK30 CB18 DA44 DA47 DB11 EA06 EA20 EB06 EB08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水中で無機物を含む有機物および
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給する加圧供給手段と、該加圧供給手段から
加圧供給された有機物、水および酸化剤からなる被処理
物混合流体の超臨界水酸化反応を行う反応器と、該反応
器から流出する反応後の処理流体を冷却する冷却手段
と、該冷却手段から流出する冷却された処理流体を取り
出す取り出し手段を備えた超臨界水酸化分解装置であっ
て、反応器の前段に被処理物混合流体を200℃未満に
予熱する予備予熱手段を設けたことを特徴とする無機物
を含む有機物の超臨界水酸化分解装置。
In an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water and supercritically decomposing the organic substance by supercritical water, the organic substance, water and the oxidizing agent are supplied under pressure higher than the critical pressure of water. A pressure supply means, a reactor for performing a supercritical hydroxylation reaction of the mixed fluid of the processing object comprising the organic substance, water and the oxidant supplied under pressure from the pressure supply means, and a reaction after the reaction flowing out of the reactor. A supercritical hydroxylation decomposition apparatus comprising: a cooling means for cooling a processing fluid; and a take-out means for taking out a cooled processing fluid flowing out of the cooling means. An apparatus for supercritically hydrolyzing an organic substance containing an inorganic substance, wherein a preheating means for preheating the organic substance to a temperature lower than a predetermined value is provided.
【請求項2】 超臨界水中で無機物を含む有機物および
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水、酸化剤およびスケール防止剤
を水の臨界圧力以上に加圧供給する加圧供給手段と、該
加圧供給手段から加圧供給された有機物、水、酸化剤お
よびスケール防止剤からなる被処理物混合流体の超臨界
水酸化反応を行う反応器と、該反応器から流出する反応
後の処理流体を冷却する冷却手段と、該冷却手段から流
出する冷却された処理流体を取り出す取り出し手段を備
えた超臨界水酸化分解装置であって、反応器の前段に被
処理物混合流体を300℃未満に予熱する予備予熱手段
を設けたことを特徴とする無機物を含む有機物の超臨界
水酸化分解装置。
2. In an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically decompose the organic substance, the organic substance, water, the oxidizing agent and the scale inhibitor are added to a pressure higher than the critical pressure of the water. Pressurized supply means for supplying pressure, a reactor for performing a supercritical water oxidation reaction of a mixed fluid to be processed comprising an organic substance, water, an oxidizing agent and a scale inhibitor supplied under pressure from the pressurized supply means, A supercritical hydroxylation cracking apparatus comprising a cooling means for cooling the processed processing fluid flowing out of the reactor and a take-out means for taking out the cooled processing fluid flowing out of the cooling means. A supercritical water oxidation decomposition apparatus for an organic substance containing an inorganic substance, comprising a pre-heating means for pre-heating a mixed fluid to be processed to less than 300 ° C.
【請求項3】 超臨界水中で無機物を含む有機物および
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給する加圧供給手段と、該加圧供給手段から
加圧供給された有機物、水および酸化剤からなる被処理
物混合流体の超臨界水酸化反応を行う反応器と、該反応
器から流出する反応後の処理流体を冷却する冷却手段
と、該冷却手段から流出する冷却された処理流体を取り
出す取り出し手段を備えた超臨界水酸化分解装置であっ
て、反応器の前段に被処理物混合流体を200℃未満に
予熱する予備予熱手段と、該予備予熱手段から流出する
被処理物混合流体を下向流として流路径の大きな流路に
流通させて200〜350℃に予熱してスケール成分を
析出させるスケール成分析出手段を設けたことを特徴と
する無機物を含む有機物の超臨界水酸化分解装置。
3. An apparatus for reacting an organic substance containing an inorganic substance and an oxidant in supercritical water and supercritically decomposing the organic substance by supercritical water to supply the organic substance, water and the oxidant under a pressure higher than the critical pressure of water. A pressure supply means, a reactor for performing a supercritical hydroxylation reaction of the mixed fluid of the processing object comprising the organic substance, water and the oxidant supplied under pressure from the pressure supply means, and a reaction after the reaction flowing out of the reactor. A supercritical hydroxylation decomposition apparatus comprising: a cooling means for cooling a processing fluid; and a take-out means for taking out a cooled processing fluid flowing out of the cooling means. A pre-heating means for pre-heating to less than, and a scale for flowing the mixed fluid to be treated flowing out of the pre-heating means as a downward flow through a flow path having a large flow path diameter to pre-heat to 200 to 350 ° C. to precipitate scale components. Success An apparatus for supercritically decomposing organic substances including inorganic substances, the apparatus comprising analysis means.
【請求項4】 前記スケール成分析出手段から流出する
被処理物混合流体をさらに350℃以上に予熱する予熱
手段を設けたことを特徴とする請求項3に記載の超臨界
水酸化分解装置。
4. The apparatus of claim 3, further comprising a preheating means for preheating the mixed fluid flowing out of the scale component precipitation means to 350 ° C. or higher.
【請求項5】 超臨界水中で無機物を含む有機物および
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給する被処理物供給手段と、該被処理物供給
手段から加圧供給された有機物、水および酸化剤からな
る被処理物混合流体の超臨界水酸化反応を行う反応器
と、該反応器から流出する反応後の処理流体を冷却する
冷却手段と、該冷却手段から流出する冷却された処理流
体を取り出す取り出し手段を備えた超臨界水酸化分解装
置であって、反応器の前段に被処理物混合流体を200
℃未満に予熱する予備予熱手段と、該予備予熱手段から
流出する被処理物混合流体を下向流として流路径の大き
な流路に流通させて200℃近傍に保持してスケール成
分を析出させるスケール成分析出手段と、該スケール成
分析出手段から流出した被処理物混合流体を所定温度に
予熱する予熱手段を設けたことを特徴とする無機物を含
む有機物の超臨界水酸化分解装置。
5. An apparatus for reacting an organic substance containing an inorganic substance and an oxidant in supercritical water and supercritically decomposing the organic substance by supercritical water to supply the organic substance, water and the oxidant under a pressure higher than the critical pressure of water. A treated material supply unit, a reactor for performing a supercritical hydroxylation reaction of a mixed fluid of the treated material composed of an organic substance, water, and an oxidant supplied under pressure from the treated material supply unit, and a reaction flowing out of the reactor A supercritical hydroxylation cracking device comprising a cooling means for cooling the subsequent processing fluid, and a take-out means for taking out the cooled processing fluid flowing out of the cooling means, wherein the mixed fluid to be processed is provided at a stage preceding the reactor. 200
A pre-heating means for pre-heating at a temperature of less than ℃, and a scale for allowing the mixed fluid flowing out of the pre-heating means to flow as a downward flow through a flow path having a large flow path diameter and keeping it at about 200 ° C. to precipitate scale components An apparatus for supercritical water oxidation and decomposition of organic substances including inorganic substances, comprising: a component precipitating means; and a preheating means for preheating a mixed fluid to be processed flowing out of the scale component precipitating means to a predetermined temperature.
【請求項6】 前記スケール成分析出手段に、内壁に析
出したスケールを掻き取るスケール掻き取り手段を設け
たことを特徴とする請求項3ないし請求項5のいずれか
1項に記載の超臨界水酸化分解装置。
6. The supercritical apparatus according to claim 3, wherein said scale component deposition means is provided with a scale scraping means for scraping scale deposited on an inner wall. Hydrolysis device.
【請求項7】 超臨界水中で無機物を含む有機物および
酸化剤を反応させ、有機物を超臨界水酸化分解する方法
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給し、有機物、水および酸化剤からなる被処
理物混合流体を反応器内で超臨界水酸化反応する超臨界
水酸化分解方法であって、加圧供給された反応前の被処
理物混合流体を200℃未満に予備予熱することを特徴
とする無機物を含む有機物の超臨界水酸化分解方法。
7. A method of reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water and supercritically decomposing the organic substance, wherein the organic substance, water and the oxidizing agent are pressurized and supplied to a pressure higher than the critical pressure of water. A supercritical hydroxylation decomposition method in which a mixed fluid of an organic substance, water, and an oxidizing agent is subjected to a supercritical hydroxylation reaction in a reactor. A method for supercritically hydrolyzing an organic substance containing an inorganic substance, which comprises preheating the organic substance to a temperature lower than the preheating temperature.
【請求項8】 前記予備予熱した被処理物混合流体を、
200〜350℃に保持もしくは予熱して、スケール成
分を析出させた後、反応器内で超臨界水酸化反応させる
ことを特徴とする請求項7に記載の超臨界水酸化分解方
法。
8. The pre-heated mixed fluid of the object to be pre-heated,
The supercritical hydroxylation decomposition method according to claim 7, wherein a supercritical hydroxylation reaction is performed in a reactor after preserving or preheating at 200 to 350 ° C to precipitate scale components.
JP2001163986A 2001-05-31 2001-05-31 Supercritical water oxidative decomposition apparatus and method Pending JP2002355697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163986A JP2002355697A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163986A JP2002355697A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition apparatus and method

Publications (1)

Publication Number Publication Date
JP2002355697A true JP2002355697A (en) 2002-12-10

Family

ID=19006857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163986A Pending JP2002355697A (en) 2001-05-31 2001-05-31 Supercritical water oxidative decomposition apparatus and method

Country Status (1)

Country Link
JP (1) JP2002355697A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313936A (en) * 2003-04-16 2004-11-11 Ngk Insulators Ltd Preheating unit for high-temperature and high-pressure treatment apparatus
JP2009242697A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Treatment method of biomass
JP2009241005A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Phosphate recovering method
JP2009242696A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Method for preventing biomass adhesion
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
WO2013179452A1 (en) * 2012-05-31 2013-12-05 株式会社アイテック Chemical reactor
CN103553202A (en) * 2013-11-19 2014-02-05 南京工业大学 Waste and steam co-production process for supercritical circulating water oxidation treatment
US11998963B2 (en) 2019-12-09 2024-06-04 Lg Chem, Ltd. Reactor cleaning apparatus and reactor cleaning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276900A (en) * 1996-04-17 1997-10-28 Japan Organo Co Ltd Supercritical water oxidizing method of organic sludge and organic sludge supply apparatus used therein
JPH1017877A (en) * 1996-06-28 1998-01-20 Ube Ind Ltd Method and apparatus for treating waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276900A (en) * 1996-04-17 1997-10-28 Japan Organo Co Ltd Supercritical water oxidizing method of organic sludge and organic sludge supply apparatus used therein
JPH1017877A (en) * 1996-06-28 1998-01-20 Ube Ind Ltd Method and apparatus for treating waste

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313936A (en) * 2003-04-16 2004-11-11 Ngk Insulators Ltd Preheating unit for high-temperature and high-pressure treatment apparatus
JP2009242697A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Treatment method of biomass
JP2009241005A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Phosphate recovering method
JP2009242696A (en) * 2008-03-31 2009-10-22 Hiroshima Univ Method for preventing biomass adhesion
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
WO2013179452A1 (en) * 2012-05-31 2013-12-05 株式会社アイテック Chemical reactor
JPWO2013179452A1 (en) * 2012-05-31 2016-01-14 株式会社アイテック Chemical reactor
CN103553202A (en) * 2013-11-19 2014-02-05 南京工业大学 Waste and steam co-production process for supercritical circulating water oxidation treatment
US11998963B2 (en) 2019-12-09 2024-06-04 Lg Chem, Ltd. Reactor cleaning apparatus and reactor cleaning method

Similar Documents

Publication Publication Date Title
US10370276B2 (en) Near-zero-release treatment system and method for high concentrated organic wastewater
JP2003500208A (en) Method and apparatus for continuously hydrolyzing organic materials
US20230348306A1 (en) Process for the supercritical oxidation of sewage sludge and other waste streams
CN105601017A (en) Near zero emission treatment system and method for high-concentration organic wastewater and sludge
JP2002355697A (en) Supercritical water oxidative decomposition apparatus and method
JP2001310123A (en) Start-up method for reactor and reactor system
JP2019520977A (en) Method and apparatus for wet oxidation of waste
CN106573227B (en) Non-scaling wet air oxidation system and process
JP2000126798A (en) Waste treatment apparatus by supercritical hydroxylation method
RU2704193C1 (en) Oxidation by moist air at low temperatures
JP2002355696A (en) Supercritical water oxidative decomposition apparatus
JP2002102672A (en) Method and apparatus for hydrothermal reaction
CN205442756U (en) Indirect heat exchange type supercritical water oxidation system of organic waste liquid and mud
JP3405295B2 (en) Animal and plant residue processing equipment by hydrothermal reaction
JP2003299941A (en) Hydrothermal oxidative reaction treatment apparatus and method using the same
JP2001276845A (en) Waste liquid treating method
JP2014000527A (en) Fluid purifier
JP2003236594A (en) Apparatus for treating sludge
JP5441787B2 (en) Organic wastewater treatment method and treatment apparatus
JP2009525844A (en) Supercritical oxidation method for treating corrosive materials
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP2004290819A (en) High-temperature and high-pressure treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208