JPH0252088A - Apparatus for making desalted water - Google Patents

Apparatus for making desalted water

Info

Publication number
JPH0252088A
JPH0252088A JP20196188A JP20196188A JPH0252088A JP H0252088 A JPH0252088 A JP H0252088A JP 20196188 A JP20196188 A JP 20196188A JP 20196188 A JP20196188 A JP 20196188A JP H0252088 A JPH0252088 A JP H0252088A
Authority
JP
Japan
Prior art keywords
water
membrane
reverse osmosis
raw water
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20196188A
Other languages
Japanese (ja)
Other versions
JPH0829315B2 (en
Inventor
Shigemi Endou
遠藤 志げみ
Mitsuo Kaneda
金田 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16449633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0252088(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP20196188A priority Critical patent/JPH0829315B2/en
Publication of JPH0252088A publication Critical patent/JPH0252088A/en
Publication of JPH0829315B2 publication Critical patent/JPH0829315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To prevent a lowering of water quality by combining a membrane degassing apparatus equipped with a water repellent membrane for degassing dissolved gas with a two-step type reverse osmosis membrane apparatus. CONSTITUTION:Pretreated raw water is supplied to a membrane degassing apparatus 6 through a raw water inflow pipe 12. The acid such as hydrochloric acid in an acid storage tank 1 is injected in the raw water before reaching the membrane degassing apparatus 6 by driving an acid injection pump 2 to be mixed therewith by a line mixer 3 to adjust the pH of the raw water after mixing to 5.5 or less. After a part of a carbonic acid ion present in the raw water is changed to carbon dioxide, the raw water is treated with the membrane degassing apparatus 6. The membrane degassing apparatus 6 is divided by a water repellent membrane 7 and the raw water containing dissolved gas such as carbon dioxide is passed through one chamber and the dissolved gas in the raw water is passed through the water repellent membrane 7 to perform degassing. By this method, high purity desalted water is obtained stably.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は膜脱気装置と2段式逆浸透膜装置とを組み合わ
せた脱塩水製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a desalinated water production device that combines a membrane degassing device and a two-stage reverse osmosis membrane device.

〈従来の技術〉 水中に含有される塩類を除く手段として、蒸留法、イオ
ン交換膜法、イオン交換樹脂法、逆浸透膜法等があるが
、河川水、湖沼水、あるいは工業用水、上水等の全カチ
オン300mg/l (CaC○3換算)前後からそれ
以下の水質である原水を対象とした場合、エネルギーコ
ストが比較的安い点、および塩類とともに水中に共存す
る有機物や微粒子も同時に除去できる点で、逆浸透膜法
が採用されることが多い。
<Prior art> There are distillation methods, ion exchange membrane methods, ion exchange resin methods, reverse osmosis membrane methods, etc. as means for removing salts contained in water. When targeting raw water with a total cation content of around 300 mg/l (CaC○3 equivalent) or lower, energy costs are relatively low, and organic matter and fine particles that coexist in the water can be removed along with salts at the same time. Therefore, reverse osmosis membrane method is often adopted.

また塩類を除くとともに水中の有機物や微粒子を可及的
に除去する必要のある半導体洗浄用水や製薬用水等のい
わゆる超純水レベルの純水製造には逆浸透膜装置が不可
欠であり、当該超純水レベルの純水製造は原水をまず逆
浸透膜装置で処理することにより、全カチオンで10p
pm前後ないしそれ以下の透過水を得、次いで当該透過
水をイオン交換装置で処理するという、逆浸透膜装置と
イオン交換装置とを組み合わせたシステムが主流となっ
ている。
In addition, reverse osmosis membrane equipment is indispensable for the production of ultra-pure water, such as semiconductor cleaning water and pharmaceutical water, which requires removing salts and as much organic matter and fine particles as possible from the water. To produce pure water, raw water is first treated with a reverse osmosis membrane device, which reduces the total amount of cations to 10p.
The mainstream is a system that combines a reverse osmosis membrane device and an ion exchange device, in which permeated water of around pm or less is obtained, and then the permeated water is treated with an ion exchange device.

このような逆浸透膜装置とイオン交換装置とを組み合わ
せたシステムにおいては、前段の逆浸透膜装置で可及的
に塩類を除去した方が後段のイオン交換装置の負担を低
減できるので、最近になって2段式逆浸透膜装置が採用
されるようになって来た。
In such a system that combines a reverse osmosis membrane device and an ion exchange device, it is better to remove salts as much as possible with the reverse osmosis membrane device in the first stage to reduce the burden on the ion exchange device in the second stage. As a result, two-stage reverse osmosis membrane devices have come into use.

すなわち原水を第1逆浸透膜装置に供給して全カチオン
で10ppmPUT後ないしそれ以下の一次透過水を得
、また当該−次週過水をさらに第2逆浸透膜装置に供給
して全カチオンでippm@後ないしそれ以下の二次透
過水を得、当該二次透過水を後段のイオン交換装置の供
給水とするものである。
That is, the raw water is supplied to the first reverse osmosis membrane device to obtain primary permeate water after PUT of 10 ppm or less in total cations, and the permeated water is further supplied to the second reverse osmosis membrane device to obtain ippm in total cations. Secondary permeated water is obtained after or below and is used as feed water for the subsequent ion exchange equipment.

また原水に存在する硬度成分が逆浸透膜の膜面に付着す
るのを防止するため、原水に酸を添加してpHを低下さ
せ、当uF p Hを低下させた原水を第1逆浸透膜装
置に供給することが行われている。
In addition, in order to prevent the hardness components present in the raw water from adhering to the membrane surface of the reverse osmosis membrane, an acid is added to the raw water to lower the pH, and the raw water with the pH lowered is passed through the first reverse osmosis membrane. The equipment is being supplied.

なお原水に酸を添加することにより、本来では逆浸透膜
装置で除去可能な炭酸水素イオンの一部が、逆浸透膜装
置では除去不可能な二酸化炭素となるため、第1逆浸透
膜装置の透過水中に含まれる二酸化炭素を除去するため
に脱ガス塔を設置することも提案されている。
By adding acid to the raw water, some of the bicarbonate ions that could normally be removed by the reverse osmosis membrane device become carbon dioxide, which cannot be removed by the reverse osmosis membrane device. It has also been proposed to install a degassing tower to remove carbon dioxide contained in the permeate water.

上述した従来から提案されている2段式逆浸透膜装置の
具体的フローは以下の通りである。
The specific flow of the conventionally proposed two-stage reverse osmosis membrane device described above is as follows.

すなわち必要により凝集沈殿、濾過、活性炭濾過等の処
理を行った原水に、酸を添加し、pHを4.5〜5.5
とし当該酸添加原水を第1逆浸透膜装置で処理し、−次
週過水を得る。次いで一次透過水中の二酸化炭素等の溶
存ガスを除去するために窒素ガスによる曝気や真空式脱
ガス塔で処理し、当該脱ガス処理した一次透過水を第2
逆浸透膜装置で処理し、二次透過水を得る。なお同時に
得られる第2逆浸透膜装置の濃縮水はイオン量がそれ程
多く含まれていないので、通常第1蒼浸透膜装置の前段
の原水に混合循環して回収される。
That is, an acid is added to raw water that has been subjected to treatments such as coagulation sedimentation, filtration, and activated carbon filtration as necessary to adjust the pH to 4.5 to 5.5.
Then, the acid-added raw water is treated with a first reverse osmosis membrane device to obtain perfused water for the next week. Next, in order to remove dissolved gases such as carbon dioxide in the primary permeated water, the primary permeated water is aerated with nitrogen gas or treated with a vacuum degassing tower, and the degassed primary permeated water is transferred to the secondary permeated water.
Treated with reverse osmosis membrane equipment to obtain secondary permeate water. Note that since the concentrated water from the second reverse osmosis membrane device obtained at the same time does not contain so many ions, it is usually recycled and mixed with the raw water in the previous stage of the first blue osmosis membrane device for recovery.

なお得られた二次透過水は必要に応じ、次いで強酸性カ
チオン交換樹脂と強塩基性アニオン交換樹脂を用いる2
床式や混床式のイオン交換装置で処理され、残留するイ
オンが除去される。また、超純水レヘルの純水とするた
めには、当該脱イオン水をさらに紫外線照射処理、イオ
ン交換処理あるいは限外濾過処理、逆浸透膜処理等が行
われることが多い。
The obtained secondary permeated water is then treated with a strongly acidic cation exchange resin and a strongly basic anion exchange resin.
It is treated with a bed type or mixed bed type ion exchange device to remove residual ions. Further, in order to obtain ultrapure water, the deionized water is often further subjected to ultraviolet irradiation treatment, ion exchange treatment, ultrafiltration treatment, reverse osmosis membrane treatment, etc.

しかしながら上述した従来の2段式逆浸透膜装置には以
下のような欠点がある。
However, the conventional two-stage reverse osmosis membrane device described above has the following drawbacks.

すなわち第1逆浸透膜装置に供給される原水は脱気処理
が行われていないため溶存酸素が存在し、このため逆浸
透膜装置の水の停滞部あるいは膜面に微生物が繁殖し、
透過水流量や透過水の水質が低下するという欠点がある
。さらに当該溶存酸素の存在により、水中に重金属が共
存する場合は重金属が酸化触媒として作用し逆浸透膜が
酸化され、その性能が劣化するという欠点もある。また
二酸化炭素の除去が不充分であり、2段式逆浸透膜装置
の処理水が必ずしも満足する値とならない。
In other words, the raw water supplied to the first reverse osmosis membrane device has dissolved oxygen because it has not been deaerated, and as a result, microorganisms grow in the water stagnation area or on the membrane surface of the reverse osmosis membrane device.
There is a drawback that the flow rate of permeated water and the quality of permeated water are reduced. Furthermore, due to the presence of dissolved oxygen, when heavy metals coexist in water, the heavy metals act as oxidation catalysts, oxidizing the reverse osmosis membrane, and deteriorating its performance. Furthermore, carbon dioxide removal is insufficient, and the treated water of the two-stage reverse osmosis membrane device does not necessarily have a satisfactory value.

〈発明が解決しようとする問題点〉 本発明は従来の脱塩装置における上述した欠点を解決し
、逆浸透膜装置に微生物を繁殖させることなく、かつ逆
浸透膜の酸化を防止できるコンパクトな脱塩水製造装置
を提供することを目的とするものである。さらに従来の
2段式逆浸透膜装置から得られる処理水と比較してより
高純度の脱塩水が得られる脱塩水製造装置を提供するこ
とを目的とする。
<Problems to be Solved by the Invention> The present invention solves the above-mentioned drawbacks of conventional desalination equipment, and provides a compact desalination device that does not breed microorganisms in the reverse osmosis membrane device and prevents oxidation of the reverse osmosis membrane. The purpose of this invention is to provide a salt water production device. Furthermore, it is an object of the present invention to provide a desalinated water production device that can obtain desalinated water of higher purity than treated water obtained from a conventional two-stage reverse osmosis membrane device.

〈問題点を解決するだめの手段〉 かかる目的を実現するためになされた本発明よりなる脱
塩水製造装置は、原水に存在する炭酸水素イオンの一部
または全部を二酸化炭素に変化させるための炭酸水素イ
オン分解手段と、炭酸水素イオン分解手段の処理水中に
存在する二酸化炭素とその他の溶存気体を脱気するだめ
の撥水性膜を装着した膜脱気装置と、膜脱気装置の処理
水を第1逆浸透膜装置で処理して一次透過水を得、次い
で−次週過水を第2逆浸透膜装置で処理して二次透過水
を得る2段式逆浸透膜装置とからなることを特徴とする
ものである。
<Means for Solving the Problems> The desalinated water production apparatus according to the present invention, which has been made to achieve the above object, is a method for producing carbonic acid to convert some or all of the bicarbonate ions present in raw water into carbon dioxide. Hydrogen ion decomposition means, a membrane deaerator equipped with a water-repellent membrane to degas carbon dioxide and other dissolved gases present in the treated water of the bicarbonate ion decomposition means, and It consists of a two-stage reverse osmosis membrane device in which the first reverse osmosis membrane device processes the permeated water to obtain primary permeated water, and then the second reverse osmosis membrane device processes the permeated water to obtain secondary permeated water. This is a characteristic feature.

〈作用〉 以下に本発明を図面に基づいて説明する。<Effect> The present invention will be explained below based on the drawings.

第1図は本発明の実施態様の一例を示すフローの説明図
であり、1は酸貯槽、2は酸注入ポンプ、3はラインミ
キサー、4はpH11節計であり、酸貯槽1と酸注入ポ
ンプ2とラインミキサー3とpH調節計4とで炭酸水素
イオン分解手段5を構成する。6は撥水性膜7を装着し
た膜脱気装置であり、また8は第1逆浸透膜装置、9は
第2逆浸透II費装置であり、第1逆浸透膜装置8と第
2逆浸透IIW装置9とで2段式逆浸透膜装置10を構
成する。
FIG. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, in which 1 is an acid storage tank, 2 is an acid injection pump, 3 is a line mixer, 4 is a pH 11 moderator, and the acid storage tank 1 and acid injection pump are shown in FIG. The pump 2, line mixer 3, and pH controller 4 constitute a hydrogen carbonate ion decomposition means 5. 6 is a membrane deaerator equipped with a water-repellent membrane 7; 8 is a first reverse osmosis membrane device; 9 is a second reverse osmosis II cost device; the first reverse osmosis membrane device 8 and the second reverse osmosis The IIW device 9 constitutes a two-stage reverse osmosis membrane device 10.

なお11は強酸性カチオン交換樹脂と強塩基性アニオン
交換樹脂の混合樹脂を充填した混床式純水製造装置を示
す。
Reference numeral 11 indicates a mixed bed pure water production apparatus filled with a mixed resin of a strongly acidic cation exchange resin and a strongly basic anion exchange resin.

次に本発明装置の操作を説明すると、必要に応し凝集沈
設、濾過、活性炭処理等の前処理をした原水を原水流入
管12を介して膜脱気袋W6に供給するが、膜脱気装置
6に至る前の原水に酸注入ポンプ2を駆動して酸貯槽1
内の塩酸等の酸を注入し、ラインミキサー3により混合
し、混合後のpHを5.5以下好ましくは4.0前後と
する。
Next, to explain the operation of the device of the present invention, raw water that has undergone pretreatment such as coagulation sedimentation, filtration, and activated carbon treatment as necessary is supplied to the membrane deaeration bag W6 via the raw water inflow pipe 12. The acid injection pump 2 is driven into the raw water before it reaches the device 6, and the acid storage tank 1 is
An acid such as hydrochloric acid is injected into the mixture and mixed using the line mixer 3, and the pH after mixing is adjusted to 5.5 or less, preferably around 4.0.

なお図示したようにラインミキサー3の後段にpHMm
節計4合計4し、ラインミキサー3後の原水のpHを計
測し、当該pHがあらかじめ設定したpH(たとえば4
.0)となるようにpH調節計4に連動する酸注入ポン
プ2で酸の注入量を調節するとよい。
In addition, as shown in the figure, pHMm is installed after the line mixer 3.
Measure the pH of the raw water after the line mixer 3, and make sure that the pH is the preset pH (for example, 4).
.. It is preferable to adjust the amount of acid injection using the acid injection pump 2 linked to the pH controller 4 so that the pH value becomes 0).

酸を添加する前の原水には通常炭酸水素イオンが含まれ
ており、当該炭酸水素イオンと原水にもともと存在する
二酸化炭素の存在比によって原水のpHが決定され、一
般に酸を添加する前の原水pHは7前後であるが、当該
原水に酸(たとえば塩酸)を注入することにより、酸の
注入量に応し原水中の炭酸水素イオンが(1)式に示す
ように二酸化炭素となり、炭酸水素イオンと二酸化炭素
の存在比が変わり、pHが低下する。
The raw water before adding acid usually contains bicarbonate ions, and the pH of the raw water is determined by the abundance ratio of the bicarbonate ions and carbon dioxide originally present in the raw water. The pH is around 7, but by injecting an acid (for example, hydrochloric acid) into the raw water, depending on the amount of acid injected, the hydrogen carbonate ions in the raw water become carbon dioxide as shown in equation (1), and hydrogen carbonate The abundance ratio of ions and carbon dioxide changes, and the pH decreases.

HCCh−+HCj!−4CJ−+HzO+C0z−、
・(1)たとえば酸注入後のpHを4.0とすると第3
図に示したように、系の炭酸水素イオンはその全量が二
酸化炭素となり、本来であれば2段式逆浸透lり装置1
0のイオン負荷となる炭酸水素イオンを後述する膜脱気
装置6で除去することができるので有fq上なる。
HCCh-+HCj! -4CJ-+HzO+C0z-,
・(1) For example, if the pH after acid injection is 4.0, the third
As shown in the figure, the entire amount of bicarbonate ions in the system becomes carbon dioxide, which would normally be the case in the two-stage reverse osmosis device 1.
Since hydrogen carbonate ions, which result in an ion load of 0, can be removed by a membrane deaerator 6, which will be described later, this is advantageous.

このようにして原水に存在する炭酸水素イオンの一部ま
たは全部を二酸化炭素に変化させた後、当該原水を膜脱
気装置6で処理する。本発明に用いる膜脱気装置6はI
n水性膜7を介してその一方に二酸化炭素等の溶存ガス
を含む原水を通し、その他方を真空として水中の溶存ガ
スをIn水性膜7に通過させて脱気するものであり、使
用できるiΩ水性膜としては平膜状、スパイラル状、管
膜状、中空糸膜状等種々のものがある。なお多数本の中
空糸膜状のIn水性膜を有するエレメントの各中空糸膜
内に原水を通過させ、当該中空糸膜の外部を真空とする
タイプのものが脱気性能がよい点で好適である。
After some or all of the bicarbonate ions present in the raw water are converted into carbon dioxide in this way, the raw water is treated with the membrane deaerator 6. The membrane deaerator 6 used in the present invention is I
Raw water containing dissolved gases such as carbon dioxide is passed through one side of the n-aqueous membrane 7, and the other side is evacuated, allowing the dissolved gas in the water to pass through the In aqueous membrane 7 for degassing. There are various types of aqueous membranes, such as flat membranes, spiral membranes, tubular membranes, and hollow fiber membranes. In addition, an element having a large number of hollow fiber membrane-like In aqueous membranes, in which raw water is passed through each hollow fiber membrane, and the outside of the hollow fiber membrane is evacuated, is preferable because it has good degassing performance. be.

なお真空発生装置としては通常の真空ポンプを用いても
差し支えないが、第1図に示したごとく後述する第1逆
浸透膜装置8から排出される一次濃縮水が充分な残圧を
有しているので、−次濃縮水管13にエゼクタ−14を
付設し一次濃縮水を駆動流体とし、当該エゼクタ−14
の吸収力によって真空を発生させることにより真空ポン
プを省略することができるので好適である。なおエゼク
タ−14は一段にかぎらず必要に応じ?!数段として真
空度を高めることもできる。
Note that an ordinary vacuum pump may be used as the vacuum generator, but as shown in FIG. Therefore, an ejector 14 is attached to the secondary concentrated water pipe 13, and the primary concentrated water is used as the driving fluid, and the ejector 14 is
This is preferable because a vacuum pump can be omitted by generating a vacuum using the absorption power of . In addition, the ejector 14 is not limited to one stage, but can be used as needed. ! The degree of vacuum can also be increased in several stages.

このような脱気処理によって原水中にもともと含まれて
いた二酸化炭素、酸の添加により原水中の炭酸水素イオ
ンが変化して生じた二酸化炭素および溶存酸素等の溶存
気体が除去できる。次いで当該脱気水を脱気水管15を
介して、高圧ポンプ16にて加圧し第1逆浸透膜装置8
に供給する。
Such deaeration treatment can remove carbon dioxide originally contained in the raw water and dissolved gases such as carbon dioxide and dissolved oxygen produced by changes in hydrogen carbonate ions in the raw water due to the addition of acids. Next, the degassed water is pressurized by a high pressure pump 16 through a degassed water pipe 15, and then transferred to the first reverse osmosis membrane device 8.
supply to.

当該逆浸透膜装置8によって一次透過水と一次濃縮水が
得られるが、−次濃縮水は前述したごとくエゼクタ−1
4の駆動流体として用い、−次濃縮水管13、エゼクタ
−14を介して系外に排出する。
Primary permeated water and primary concentrated water are obtained by the reverse osmosis membrane device 8, but the primary concentrated water is obtained from the ejector 1 as described above.
4 is used as a driving fluid, and is discharged to the outside of the system via a secondary concentrated water pipe 13 and an ejector 14.

一方第1逆浸透膜装置8によって水中の塩類を95%程
度まで除去した一次透過水を一次透過水管17を介して
第2逆浸透膜装置9に供給する。
On the other hand, primary permeated water from which approximately 95% of salts in water have been removed by the first reverse osmosis membrane device 8 is supplied to the second reverse osmosis membrane device 9 via the primary permeated water pipe 17.

第2逆浸透膜装置9においても二次透過水と二次濃縮水
が得られるが、二次濃縮水の水質は比較的良好なので、
二次濃縮水管18を介して、たとえば膜脱気装置6の処
理水と混合し、二次濃縮水を回収することが好ましい。
Secondary permeated water and secondary concentrated water are also obtained in the second reverse osmosis membrane device 9, but the quality of the secondary concentrated water is relatively good.
It is preferable to collect the secondary concentrated water by mixing it with the treated water of the membrane deaerator 6, for example, through the secondary concentrated water pipe 18.

このようにして二次濃縮水を系内に回収することにより
、系外へ排出する濃縮水の全量を低下させ、脱塩水の回
収率を増大させることができる。
By recovering the secondary concentrated water into the system in this manner, the total amount of concentrated water discharged outside the system can be reduced and the recovery rate of desalted water can be increased.

一方二次透過水は一次透過水中の塩類をさらに95%程
度まで除去できるので、従来の2床3塔式イオン交換装
置で得られる処理水の電気比抵抗あるいはそれ以上とな
っており、これを脱塩水として種々の用途に用いること
ができる。また必要に応じ図示したごとく二次透過水管
19を介して混床式純水製造装置11でさらに残留イオ
ンを除去することもできる。
On the other hand, the secondary permeate water can further remove about 95% of the salts in the primary permeate water, so the electrical resistivity of the treated water obtained with a conventional two-bed three-column ion exchanger is equal to or higher than that of the conventional two-bed three-column ion exchange equipment. It can be used as desalinated water for various purposes. Further, if necessary, residual ions can be further removed by the mixed bed type pure water production apparatus 11 via the secondary permeation pipe 19 as shown in the figure.

なお2段式逆浸透膜装置lOの後段に設置するイオン交
換装置としては混床式純水製造装置11に限定されるも
のでなく、複床式純水製造装置でも差し支えない。また
たとえば処理容量が比較的小さい場合は、非再生型の混
床式カートリッジポリシャーを用いることができる。
Note that the ion exchange device installed after the two-stage reverse osmosis membrane device 1O is not limited to the mixed bed type pure water production device 11, but may also be a double bed type pure water production device. Also, for example, if the processing capacity is relatively small, a non-regenerative mixed bed cartridge polisher can be used.

なお第1図に示した炭酸水素イオン分解手段5は、酸貯
槽1と酸注入ポンプ2とラインミキサー3とpH調節計
4とで構成される。いわゆる単なる酸添加方式によるも
のであるが、本発明に用いる炭酸水素イオン分解手段5
はこれに限定されるものでな(、たとえばH形弱酸性カ
チオン交換樹脂塔を用いる脱アルカリ軟化装置、あるい
はH膨強酸性カチオン交換樹脂塔に原水の一部を通水し
てその処理水と原水の他部とを混合した後、Na形形成
酸性カチオン交換樹脂塔通水する脱アルカリ軟化装置等
のカチオン交換樹脂を用いる公知の脱アルカリ軟化装置
を用いることができる。
The hydrogen carbonate ion decomposition means 5 shown in FIG. 1 is composed of an acid storage tank 1, an acid injection pump 2, a line mixer 3, and a pH controller 4. Although it is based on a so-called simple acid addition method, the hydrogen carbonate ion decomposition means 5 used in the present invention
(For example, a dealkalization softener using an H-type weakly acidic cation exchange resin tower, or a part of the raw water passed through an H-type strongly acidic cation exchange resin tower and the treated water. A known dealkalization softening device using a cation exchange resin can be used, such as a dealkalization softening device in which water is passed through a Na form-forming acidic cation exchange resin column after mixing with other parts of the raw water.

第2図は本発明の他の実施態様のフローを示す説明図で
あり、膜脱気装置6の処理水に残留する二酸化炭素を炭
酸水素イオンに変化させるために、アルカリ注入ポンプ
20とアルカリ貯槽21とpHlq節計22とからなる
アルカリ添加手段23を付設したものであり、他の構成
は第1図に示したフローと同様である。
FIG. 2 is an explanatory diagram showing the flow of another embodiment of the present invention. 21 and a pHlq moderation meter 22 are added, and the other configurations are the same as the flow shown in FIG.

前述したごとく膜脱気装置6で二酸化炭素、溶存酸素等
の溶存気体を除去するが、二酸化炭素を完全に除去する
ことは困難である。
As described above, the membrane deaerator 6 removes dissolved gases such as carbon dioxide and dissolved oxygen, but it is difficult to completely remove carbon dioxide.

したがって膜脱気装置6の処理水には微量の二酸化炭素
が残留する。当該二酸化炭素は逆浸透膜装置で排除する
ことができず最終的に二次透過水に含まれることとなる
が、当該二酸化炭素の存在によって二次透過水の電気比
抵抗が低下する。
Therefore, a trace amount of carbon dioxide remains in the treated water of the membrane deaerator 6. The carbon dioxide cannot be removed by the reverse osmosis membrane device and is ultimately contained in the secondary permeate water, but the presence of the carbon dioxide reduces the electrical resistivity of the secondary permeate water.

たとえば他の無機イオンの存在を無視した場合、二酸化
炭素5 p pm (Ca CCh換算)で水の電気比
抵抗は0.3MΩ−cm(25℃)前後となり、ipp
m(CaC○3換算)でIMΩ−cm(25’c )前
後となる。
For example, if the presence of other inorganic ions is ignored, the electrical resistivity of water at 5 ppm carbon dioxide (calculated as Ca CCh) is around 0.3 MΩ-cm (at 25°C), and ipp
m (CaC○3 conversion) is around IMΩ-cm (25'c).

したがって二次透過水の電気比抵抗を上昇させるために
は残留する二酸化炭素を逆浸透膜装置で除去できる炭酸
水素イオンや炭酸イオンに変化させる必要がある。
Therefore, in order to increase the electrical resistivity of the secondary permeated water, it is necessary to convert the remaining carbon dioxide into bicarbonate ions and carbonate ions that can be removed by a reverse osmosis membrane device.

第3図Gご示したごとく二酸化炭素を含む水のpHを8
.5前後とすると二酸化炭素のほとんどを炭酸水素イオ
ンに変化させることができる。
As shown in Figure 3G, the pH of water containing carbon dioxide was adjusted to 8.
.. If it is around 5, most of the carbon dioxide can be changed into hydrogen carbonate ions.

したがって第2図に示したごとくアルカリ貯槽21内の
アルカリ (たとえば水酸化ナトリウム)をアルカリ注
入ポンプ20を用いて膜脱気装置6の処理水に注入し、
pHを8.5前後に上昇させて二酸化炭素を炭酸水素イ
オンとする。
Therefore, as shown in FIG. 2, the alkali (for example, sodium hydroxide) in the alkali storage tank 21 is injected into the treated water of the membrane deaerator 6 using the alkali injection pump 20.
The pH is raised to around 8.5 to convert carbon dioxide into bicarbonate ions.

具体的には第2図に示したごとくアルカリ添加後の処理
水のpHを調節計22で計測し、当該pHがあらかじめ
設定したpH(たとえば8.5)となるようにpHg1
節計22に連動するアルカリ注入ポンプ20でアルカリ
の注入量を調節するとよい。
Specifically, as shown in Figure 2, the pH of the treated water after addition of alkali is measured with the controller 22, and the pHg1 is adjusted so that the pH becomes a preset pH (for example, 8.5).
It is preferable to adjust the amount of alkali injection using the alkali injection pump 20 which is linked to the meter 22.

なお使用できるアルカリとしては水酸化ナトリウムに限
定されるものでなく、脱気水のpHを上昇させて二酸化
炭素を炭酸水素イオンに変化させることができるアルカ
リであればいかなるアルカリでも用いることができ、場
合によってはアルカリとしてアンモニアガスを用いるこ
ともできる。
Note that the alkali that can be used is not limited to sodium hydroxide, and any alkali that can increase the pH of degassed water and change carbon dioxide into bicarbonate ions can be used. In some cases, ammonia gas may be used as the alkali.

このように2段式逆浸透膜装置10の供給水中の二酸化
炭素を炭酸水素イオンに変化させることにより、当該炭
酸水素イオンは他のイオンとともに第1逆浸透膜装置8
、第2逆浸透膜装置9とで処理されるので、二次透過水
の水質をより以上に高めることが可能となる。
By changing the carbon dioxide in the water supplied to the two-stage reverse osmosis membrane device 10 into bicarbonate ions in this way, the bicarbonate ions are converted to the first reverse osmosis membrane device 8 along with other ions.
, and the second reverse osmosis membrane device 9, it is possible to further improve the quality of the secondary permeated water.

〈効果〉 以上説明したごとく本発明の脱塩水製造装置は原水中に
存在する炭酸水素イオンの一部または全部を二酸化炭素
とし、これをあらかじめ膜脱気装置で除去するので2段
式逆浸透膜装置のイオン負荷を低減させることができる
<Effects> As explained above, the desalinated water production device of the present invention converts some or all of the hydrogen carbonate ions present in raw water into carbon dioxide, and removes this in advance with a membrane deaerator, so a two-stage reverse osmosis membrane is used. The ion load of the device can be reduced.

また原水のpHを4.0前後としてから膜脱気装置で処
理することにより、2段式逆浸透膜装置のイオン負荷を
可及的に低減することができ、得られる脱塩水の電気比
抵抗を上昇させる効果を奏する。さらに2段式逆浸透膜
装置の前段で二酸化炭素とともに原水中の溶存酸素も除
去するので逆浸透膜装置の水の停滞部や膜面に微生物を
繁殖させることを防止でき、また逆浸透膜の溶存酸素に
よる酸化を効果的に防止し得る。
In addition, by adjusting the pH of the raw water to around 4.0 before treating it with a membrane deaerator, the ion load on the two-stage reverse osmosis membrane device can be reduced as much as possible, and the electrical specific resistance of the resulting desalinated water It has the effect of increasing Furthermore, since dissolved oxygen in the raw water is removed along with carbon dioxide at the front stage of the two-stage reverse osmosis membrane device, it is possible to prevent the growth of microorganisms in the stagnant water area and membrane surface of the reverse osmosis membrane device. Oxidation caused by dissolved oxygen can be effectively prevented.

また本発明に用いる膜脱気装置は撥水性膜を用いるので
従来から用いられている真空脱気装置のように高い構築
物とする必要がなく、その構造を極めてコンパクトとす
ることができる。また膜脱気装置に用いる真空発生装置
として、第1逆浸透膜装置の一次濃縮水を駆動流体とす
るエゼクタ−を用いることにより真空ポンプを省略する
ことができ、よりコンパクトとすることができる。
Furthermore, since the membrane degassing device used in the present invention uses a water-repellent membrane, it does not need to be constructed as expensive as conventionally used vacuum degassing devices, and its structure can be made extremely compact. Further, by using an ejector using the primary concentrated water of the first reverse osmosis membrane device as a driving fluid as the vacuum generating device used in the membrane degassing device, the vacuum pump can be omitted and the device can be made more compact.

また第2図に示した実施態様のごとく、膜脱気装置の処
理水に微量残留する二酸化炭素を炭酸水素イオンに変化
させるためのアルカリ添加手段を付設することによって
2段式逆浸透膜装置で得られる脱塩水の比抵抗をさらに
上昇させることができる。
Furthermore, as shown in the embodiment shown in Fig. 2, a two-stage reverse osmosis membrane device is equipped with an alkali addition means for converting a small amount of carbon dioxide remaining in the treated water of the membrane deaerator into bicarbonate ions. The specific resistance of the resulting demineralized water can be further increased.

このように本発明の脱塩水製造装置は全体としてコンパ
クトであり、設置面積を多く必要とせず、かつ安定して
高純度の脱塩水が得られるので産業に与える利益は多大
なものである。
As described above, the desalted water production apparatus of the present invention is compact as a whole, does not require a large installation area, and can stably obtain highly purified desalinated water, so it brings great benefits to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の一例を示すフローの説明図
であり、第2図は本発明の他の実施態様を示すフローの
説明図であり、第3図はpHにおける二酸化炭素と炭酸
水素イオンと炭酸イオンのモル比を示す説明図である。 1・・・酸貯槽      2・・・酸注入ポンプ3・
・・ラインミキサー  4・・・pH調節計5・・・炭
酸水素イオン分解手段 6・・・膜脱気装置    7・・・↑Ω水性膜8・・
・第1逆浸透膜装置 9・・・第2逆浸透膜装置10・
・・2段式逆浸透膜装置 11・・・混床式純水製造装置 12・・・原水流入管   13・・・−次濃縮水管1
4・・・エゼクタ−15・・・脱気水管1G・・・高圧
ポンプ   17・・・−次週過水管18・・・二次濃
縮水管  19・・・二次透過水管20・・・アルカリ
注入ポンプ 21・・・アルカリ貯槽  22・・・pH311節計
232・・アルカリ添加手段 第3図 H
FIG. 1 is a flow explanatory diagram showing an example of an embodiment of the present invention, FIG. 2 is a flow explanatory diagram showing another embodiment of the present invention, and FIG. 3 is a flow diagram showing carbon dioxide and carbon dioxide at pH. FIG. 2 is an explanatory diagram showing the molar ratio of hydrogen ions and carbonate ions. 1... Acid storage tank 2... Acid injection pump 3.
...Line mixer 4...pH controller 5...bicarbonate ion decomposition means 6...membrane deaerator 7...↑Ω aqueous membrane 8...
・First reverse osmosis membrane device 9...Second reverse osmosis membrane device 10・
...Two-stage reverse osmosis membrane device 11...Mixed bed type pure water production device 12...Raw water inflow pipe 13...-Next concentration water pipe 1
4...Ejector-15...Deaerated water pipe 1G...High pressure pump 17...-Next week water pipe 18...Secondary concentrated water pipe 19...Secondary permeate water pipe 20...Alkali injection pump 21... Alkali storage tank 22... pH 311 meter 232... Alkali addition means Figure 3 H

Claims (1)

【特許請求の範囲】 1、原水に存在する炭酸水素イオンの一部または全部を
二酸化炭素に変化させるための炭酸水素イオン分解手段
と、炭酸水素イオン分解手段の処理水中に存在する二酸
化炭素とその他の溶存気体を脱気するための撥水性膜を
装着した膜脱気装置と、膜脱気装置の処理水を第1逆浸
透膜装置で処理して一次透過水を得、次いで一次透過水
を第2逆浸透膜装置で処理して二次透過水を得る2段式
逆浸透膜装置とからなることを特徴とする脱塩水製造装
置。 2、膜脱気装置の処理水に残留する二酸化炭素を炭酸水
素イオンに変化させるためのアルカリ添加手段を付設す
る請求項1記載の脱塩水製造装置。 3、二次透過水の残留イオンを除去するためのイオン交
換装置を2段式逆浸透膜装置の後段に設置する請求項1
または請求項2に記載の脱塩水製造装置。
[Claims] 1. A hydrogen carbonate ion decomposition means for converting some or all of the hydrogen carbonate ions present in raw water into carbon dioxide, and carbon dioxide present in the treated water of the hydrogen carbonate ion decomposition means and others. A membrane deaerator equipped with a water-repellent membrane for degassing the dissolved gas of A desalinated water production device comprising a two-stage reverse osmosis membrane device for obtaining secondary permeated water through treatment with a second reverse osmosis membrane device. 2. The desalted water production apparatus according to claim 1, further comprising an alkali addition means for converting carbon dioxide remaining in the treated water of the membrane deaerator into bicarbonate ions. 3. Claim 1, in which an ion exchange device for removing residual ions in the secondary permeate water is installed downstream of the two-stage reverse osmosis membrane device.
Or the desalted water production apparatus according to claim 2.
JP20196188A 1988-08-15 1988-08-15 Demineralized water production equipment Expired - Fee Related JPH0829315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20196188A JPH0829315B2 (en) 1988-08-15 1988-08-15 Demineralized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20196188A JPH0829315B2 (en) 1988-08-15 1988-08-15 Demineralized water production equipment

Publications (2)

Publication Number Publication Date
JPH0252088A true JPH0252088A (en) 1990-02-21
JPH0829315B2 JPH0829315B2 (en) 1996-03-27

Family

ID=16449633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20196188A Expired - Fee Related JPH0829315B2 (en) 1988-08-15 1988-08-15 Demineralized water production equipment

Country Status (1)

Country Link
JP (1) JPH0829315B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214066A (en) * 1994-02-09 1995-08-15 Hoshizaki Electric Co Ltd Method for removing carbon dioxide dissolved in water and device therefor and electrolytic water forming device provided this device
EP0844907A1 (en) * 1995-08-07 1998-06-03 Zenon Environmental Inc. Producing high purity water using reverse osmosis
WO1998039085A1 (en) * 1997-03-03 1998-09-11 Zenon Environmental, Inc. High resistivity water production
EP0899239A1 (en) * 1997-08-28 1999-03-03 Hager + Elsässer GmbH Method and apparatus for treating water by reverse osmosis or nanofiltration
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water producing method
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
WO2012013256A1 (en) * 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
CN110255584A (en) * 2019-07-26 2019-09-20 四川永祥股份有限公司 A kind of secondary brine removes carbonic acid root device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153319A1 (en) 1997-08-12 2002-10-24 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
JP3890708B2 (en) * 1997-11-11 2007-03-07 栗田工業株式会社 Method for treating boron-containing water
JP2009301587A (en) * 2009-09-28 2009-12-24 Yoshitoshi Maeda Water vending machine
GB2568293A (en) * 2017-11-13 2019-05-15 James Mcleod Andrew Liquid degasser

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214066A (en) * 1994-02-09 1995-08-15 Hoshizaki Electric Co Ltd Method for removing carbon dioxide dissolved in water and device therefor and electrolytic water forming device provided this device
EP0844907A1 (en) * 1995-08-07 1998-06-03 Zenon Environmental Inc. Producing high purity water using reverse osmosis
EP0844907A4 (en) * 1995-08-07 1998-09-02 Zenon Environmental Inc Producing high purity water using reverse osmosis
WO1998039085A1 (en) * 1997-03-03 1998-09-11 Zenon Environmental, Inc. High resistivity water production
EP0899239A1 (en) * 1997-08-28 1999-03-03 Hager + Elsässer GmbH Method and apparatus for treating water by reverse osmosis or nanofiltration
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water producing method
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
WO2012013256A1 (en) * 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
JP2013535321A (en) * 2010-07-30 2013-09-12 ザルトリウス・シュテーディム・ビーオテヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for degassing aqueous media
US8979977B2 (en) 2010-07-30 2015-03-17 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
CN110255584A (en) * 2019-07-26 2019-09-20 四川永祥股份有限公司 A kind of secondary brine removes carbonic acid root device

Also Published As

Publication number Publication date
JPH0829315B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
EP0433893B1 (en) Process and system for purifying pure water or ultrapure water
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
JPH0252088A (en) Apparatus for making desalted water
JP2007307561A (en) High-purity water producing apparatus and method
JP2000015257A (en) Apparatus and method for making high purity water
JPS62110795A (en) Device for producing high-purity water
JPS6336890A (en) Apparatus for producing high-purity water
JPH01231988A (en) Two-step treatment with reverse osmosis membrane
JP3789619B2 (en) Ultrapure water production equipment
JPH09253638A (en) Ultrapure water making apparatus
JP2002355683A (en) Ultrapure water making method and apparatus
JP2018118253A (en) Ultrapure water production method and ultrapure water production system
JP4403622B2 (en) Electrodemineralization treatment method and electrodesalination treatment apparatus
JPH02303593A (en) Two-stage type reverse osmosis membrane device
JPH0380991A (en) Method and apparatus for treating supplied water to boiler
JP3645007B2 (en) Ultrapure water production equipment
JP3536294B2 (en) Pure water production method
JP3259557B2 (en) How to remove organic matter
JPH09294977A (en) Water purifying apparatus
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JP3304412B2 (en) Pure water production method
JPH1119663A (en) Removing method for organic matter
JP2000271569A (en) Production of pure water
JP3543435B2 (en) Ultrapure water production method
JPH10249340A (en) Production of pure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees