JP3304412B2 - Pure water production method - Google Patents

Pure water production method

Info

Publication number
JP3304412B2
JP3304412B2 JP24340792A JP24340792A JP3304412B2 JP 3304412 B2 JP3304412 B2 JP 3304412B2 JP 24340792 A JP24340792 A JP 24340792A JP 24340792 A JP24340792 A JP 24340792A JP 3304412 B2 JP3304412 B2 JP 3304412B2
Authority
JP
Japan
Prior art keywords
water
anion exchange
pure water
membrane separation
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24340792A
Other languages
Japanese (ja)
Other versions
JPH0691263A (en
Inventor
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17103405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3304412(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24340792A priority Critical patent/JP3304412B2/en
Publication of JPH0691263A publication Critical patent/JPH0691263A/en
Application granted granted Critical
Publication of JP3304412B2 publication Critical patent/JP3304412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体製造排水と工業用
水の混合原水を、イオン交換および膜分離処理して純水
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water by subjecting mixed raw water for semiconductor production and industrial water to ion exchange and membrane separation treatment.

【0002】[0002]

【従来の技術】半導体製造工程等に使用される超純水
は、一般にイオン交換および膜分離処理からなる一次純
水製造工程と、紫外線酸化、混床式イオン交換および限
外濾過からなる二次純水製造工程(サブシステムとも呼
ばれる)とを経て製造される。このような超純水製造工
程に供給される原水としては、工業用水のほか、半導体
製造工場等においては、半導体製造工程から排出される
半導体製造排水を回収して原水としている。
2. Description of the Related Art Ultrapure water used in a semiconductor manufacturing process or the like generally comprises a primary pure water manufacturing process comprising ion exchange and membrane separation, and a secondary pure water production process comprising ultraviolet oxidation, mixed-bed ion exchange and ultrafiltration. It is manufactured through a pure water manufacturing process (also called a subsystem). As raw water supplied to such an ultrapure water production process, in addition to industrial water, semiconductor production effluent discharged from a semiconductor production process at a semiconductor production plant or the like is collected and used as raw water.

【0003】ところが両者は含まれる成分が異なるた
め、別の処理法により純水を製造している。すなわち半
導体製造排水を原水とする場合は活性炭処理、弱塩基性
アニオン交換、強酸性カチオン交換、強塩基性アニオン
交換、膜分離の各工程を経て一次純水を製造している。
これに対して工業用水を原水とする場合は活性炭処理、
強酸性カチオン交換、脱気、強塩基性アニオン交換、膜
分離の各工程を経て一次純水を製造している。
However, since both contain different components, pure water is produced by another treatment method. That is, when semiconductor manufacturing wastewater is used as raw water, primary pure water is produced through the steps of activated carbon treatment, weak basic anion exchange, strong acidic cation exchange, strong basic anion exchange, and membrane separation.
On the other hand, when industrial water is used as raw water, activated carbon treatment,
Primary pure water is produced through the steps of strongly acidic cation exchange, degassing, strong basic anion exchange, and membrane separation.

【0004】[0004]

【発明が解決しようとする課題】従来の超純水製造工程
では、原水ごとに別の処理法により一次純水を製造して
いるため、処理装置および操作が複雑となり、製造コス
トが高くなるという問題点がある。この点を改善するた
めに、両方の原水を混合して処理を行うと、膜分離装置
においてスケールが付着して、処理水量が低下するとと
もに、処理水質が低下するという問題点がある。
In the conventional ultrapure water production process, since the primary pure water is produced by a different treatment method for each raw water, the treatment apparatus and operation are complicated, and the production cost is increased. There is a problem. In order to improve this point, if both raw waters are mixed and treated, there is a problem that scale adheres to the membrane separation device, thereby reducing the amount of treated water and the quality of treated water.

【0005】本発明の目的は、半導体製造排水と工業用
水を混合して原水としても、膜分離装置におけるスケー
ルの生成による処理水量および処理水質の低下を防止す
ることができ、これにより簡単な処理装置と操作によ
り、高水質の純水を高処理水量で製造することができる
純水製造方法を提案することである。
It is an object of the present invention to prevent a decrease in the amount of treated water and the quality of treated water due to the generation of scale in a membrane separation apparatus even when raw water is produced by mixing wastewater for producing semiconductors and industrial water, thereby enabling simple treatment. An object of the present invention is to propose a pure water production method capable of producing high-quality pure water at a high treated water amount by using an apparatus and operation.

【0006】[0006]

【課題を解決するための手段】本発明は、半導体製造排
水を、カチオン交換することなく、アニオン交換樹脂を
充填したアニオン交換塔に導入してアニオン交換した
後、工業用水と混合し、混合原水をイオン交換および膜
分離処理することを特徴とする純水製造方法である。
According to the present invention , an anion exchange resin is produced from a semiconductor manufacturing wastewater without cation exchange.
This is a method for producing pure water, which comprises introducing an anion-exchange column into a packed anion exchange column, exchanging anions, mixing with industrial water, and subjecting the mixed raw water to ion exchange and membrane separation.

【0007】本発明において原水として用いる半導体製
造排水は、半導体製造工程から排出される洗浄排水その
他の排水であって、フッ素イオンを含む排水である。半
導体製造排水は予め活性炭処理等の前処理を行うことが
できる。他の原水として用いる工業用水は、水道水、地
下水、河川水など、一般に純水製造の原水として用いら
れるものが、そのまま使用できる。この工業用水も、凝
集沈殿処理等の前処理を行うことができる。
The semiconductor manufacturing wastewater used as raw water in the present invention is cleaning wastewater or other wastewater discharged from a semiconductor manufacturing process, and is wastewater containing fluorine ions. The semiconductor manufacturing wastewater can be subjected to pretreatment such as activated carbon treatment in advance. As other industrial water used as raw water, tap water, groundwater, river water, and the like generally used as raw water for producing pure water can be used as they are. This industrial water can also be subjected to a pretreatment such as a coagulation sedimentation treatment.

【0008】このような半導体製造排水および工業用水
を混合してイオン交換および膜分離処理を行うと、膜分
離装置においてスケールが生成し、処理水量および処理
水質が低下するが、その原因を調べたところ、半導体製
造排水中のフッ素イオンと工業用水中のカルシウムイオ
ンが反応してフッ化カルシウムが生成し、〔Ca〕
〔F〕2=4×10-11以上でコロイドが生成するためで
あることがわかった。
When ion exchange and membrane separation treatment are performed by mixing such semiconductor production wastewater and industrial water, scale is generated in the membrane separation apparatus, and the amount of treated water and the quality of treated water are reduced. However, fluorine ions in semiconductor manufacturing wastewater and calcium ions in industrial water react to produce calcium fluoride, and [Ca]
[F] 2 = 4 × 10 -11 or more was found to be due to the formation of colloid.

【0009】すなわち、両原水の混合によりフッ化カル
シウムのコロイドが生成すると、解離定数が低いため、
イオン交換工程において除去されず、そのまま膜分離装
置に流入してスケール化する。そしてフッ化カルシウム
が分離膜に付着すると、薬品洗浄を行っても容易に性能
が回復せず、処理水量が低下するとともに、付着物が少
しずつ溶出して、処理水質が低下する。
That is, when calcium fluoride colloid is formed by mixing both raw waters, the dissociation constant is low.
It is not removed in the ion exchange step, but flows directly into the membrane separation device to be scaled. When calcium fluoride adheres to the separation membrane, the performance does not easily recover even when chemical cleaning is performed, and the amount of treated water is reduced, and the attached matter is gradually eluted, and the quality of treated water is reduced.

【0010】本発明では、このようなフッ化カルシウム
の生成を防止するために、予め半導体製造排水をアニオ
ン交換して、フッ素イオンを除去した後、工業用水と混
合して混合原水とする。両者の混合割合は任意である。
混合は両者を貯槽に導入することにより行うことができ
る。
In the present invention, in order to prevent such generation of calcium fluoride, semiconductor production wastewater is previously subjected to anion exchange to remove fluorine ions, and then mixed with industrial water to obtain a mixed raw water. The mixing ratio of both is arbitrary.
Mixing can be performed by introducing both into a storage tank.

【0011】半導体製造排水のアニオン交換に用いるア
ニオン交換樹脂としては、弱塩基性アニオン交換樹脂で
も、強塩基性アニオン交換樹脂でもよく、またゲル型で
もポーラス型でもよい。半導体製造排水中のフッ素イオ
ンは通常フッ酸の形で含まれているため、弱塩基性アニ
オン交換樹脂を用いる方が再生が容易である。アニオン
交換は樹脂を塔内に充填し、半導体製造排水をSV10
〜30hr-1で通水して行うことができる。半導体製造
排水のアニオン交換処理水は、必要により紫外線酸化等
の後処理を行った後、工業用水と混合することができ
る。
The anion exchange resin used for the anion exchange of the waste water for producing semiconductors may be a weakly basic anion exchange resin or a strongly basic anion exchange resin, and may be a gel type or a porous type. Since fluorine ions in semiconductor manufacturing wastewater are usually contained in the form of hydrofluoric acid, regeneration is easier if a weakly basic anion exchange resin is used. In the anion exchange, the resin is packed in the tower, and the semiconductor manufacturing wastewater is SV10
It can be carried out by passing water at 3030 hr −1 . The anion-exchange treated water of semiconductor production wastewater can be mixed with industrial water after post-treatment such as ultraviolet oxidation if necessary.

【0012】混合原水のイオン交換は、カチオン交換樹
脂とアニオン交換樹脂により脱カチオンおよび脱アニオ
ンする操作である。カチオン交換樹脂としては強酸性カ
チオン交換樹脂、アニオン交換樹脂としては強塩基性ア
ニオン交換樹脂を使用するが、場合によっては弱酸また
は弱塩基性の樹脂を組合せて用いることができる。これ
らの樹脂もゲル型、ポーラス型のいずれでもよい。
Ion exchange of mixed raw water is an operation of decationizing and deanionizing with a cation exchange resin and an anion exchange resin. A strongly acidic cation exchange resin is used as the cation exchange resin, and a strongly basic anion exchange resin is used as the anion exchange resin. In some cases, a weak acid or weakly basic resin may be used in combination. These resins may be of a gel type or a porous type.

【0013】イオン交換は2塔式、複床式、混床式など
任意の方式を採用できるが、この段階で炭酸ガスその他
の脱気を行うのが好ましく、脱気塔を組合せた2床3塔
式または4床5塔式などの方式が好ましい。脱気塔とし
ては脱炭酸放散式、真空脱気式、N2脱気式のいずれの
方式でもよい。これらを用いたイオン交換処理の操作
は、通常の純水製造方法と同様である。
Although any type of ion exchange such as a two-column system, a double-bed system, and a mixed-bed system can be adopted, it is preferable to perform degassing of carbon dioxide gas or the like at this stage. A method such as a tower type or a four-bed five-column type is preferable. As the degassing tower, any of decarboxylation type, vacuum degassing type, and N 2 degassing type may be used. The operation of the ion exchange treatment using these is the same as the ordinary pure water production method.

【0014】膜分離処理は、イオン交換工程からリーク
する比較的高分子量の有機物を主として除去することを
目的とするものであるが、低分子の有機物、固形物、無
機イオン等も除去するものでもよい。ここで用いる分離
膜としては、ポリアミド系、セルロースアセテート系な
どの逆浸透膜が好ましいが、UF膜、MF膜であっても
よい。膜分離の操作圧は10〜20kgf/cm2G、
回収率70%以上で操作するのが好ましい。
The purpose of the membrane separation treatment is to mainly remove relatively high-molecular-weight organic substances leaking from the ion-exchange step, but also to remove low-molecular-weight organic substances, solid substances, inorganic ions and the like. Good. The separation membrane used here is preferably a reverse osmosis membrane such as polyamide or cellulose acetate, but may be a UF membrane or MF membrane. The operation pressure for membrane separation is 10 to 20 kgf / cm 2 G,
It is preferred to operate at a recovery of 70% or more.

【0015】[0015]

【実施例】以下、本発明を図面の実施例により説明す
る。図1は本発明の純水製造方法の実施例を示すフロー
図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a flow chart showing an embodiment of the pure water production method of the present invention.

【0016】図において、1は半導体製造排水槽、2は
活性炭処理槽で、活性炭層2aが形成されている。3は
アニオン交換塔で、OH形弱塩基性アニオン交換樹脂層
3aが形成されている。4は混合原水槽、5は活性炭処
理槽で活性炭層5aが形成されている。6はカチオン交
換塔で、H形強酸性カチオン交換樹脂層6aが形成され
ている。7は脱気塔で、脱炭酸放散式のものが用いられ
ている。8はアニオン交換塔で、OH形強塩基性アニオ
ン交換樹脂8aが用いられている。9は脱塩水槽、10
は膜分離装置で、逆浸透膜からなる分離膜10aを内蔵
している。
In FIG. 1, reference numeral 1 denotes a semiconductor manufacturing drainage tank, and 2 denotes an activated carbon treatment tank in which an activated carbon layer 2a is formed. Reference numeral 3 denotes an anion exchange tower on which an OH-type weakly basic anion exchange resin layer 3a is formed. Reference numeral 4 denotes a mixed raw water tank, and reference numeral 5 denotes an activated carbon treatment tank in which an activated carbon layer 5a is formed. Reference numeral 6 denotes a cation exchange tower on which an H-type strongly acidic cation exchange resin layer 6a is formed. Reference numeral 7 denotes a degassing tower, which is of a decarboxylation type. Reference numeral 8 denotes an anion exchange tower, which uses an OH type strongly basic anion exchange resin 8a. 9 is a desalination water tank, 10
Is a membrane separation device having a built-in separation membrane 10a made of a reverse osmosis membrane.

【0017】純水製造方法は、まず半導体製造排水管1
1から半導体製造排水槽1に半導体製造排水を導入す
る。そしてその一部を連絡管12から活性炭処理槽2に
導入して活性炭処理を行い、有機物その他の不純物を活
性炭層2aに吸着させて除去する。この活性炭処理槽2
を省略し、活性炭処理槽5にその作用を行わせてもよ
い。
The method of producing pure water is as follows.
From 1, semiconductor manufacturing wastewater is introduced into the semiconductor manufacturing drainage tank 1. Then, a part thereof is introduced from the connecting pipe 12 into the activated carbon treatment tank 2 to perform activated carbon treatment, and organic substances and other impurities are adsorbed and removed by the activated carbon layer 2a. This activated carbon treatment tank 2
May be omitted, and the activated carbon treatment tank 5 may perform the action.

【0018】活性炭処理槽2の処理水は連絡管13から
アニオン交換塔3に導入し、アニオン交換樹脂層3aに
よりフッ素イオンその他のアニオンを除去する。アニオ
ン交換処理は上向流、下向流いずれでもよく、SV10
〜30hr-1で通水するのが好ましい。再生は塩酸、硫
酸等の酸を用いて行い、並流再生、向流再生のいずれに
よってもよい。アニオン交換処理水は連絡管14から混
合原水槽4に導入する。
The treated water in the activated carbon treatment tank 2 is introduced into the anion exchange tower 3 through the connecting pipe 13, and fluorine ions and other anions are removed by the anion exchange resin layer 3a. The anion exchange treatment may be either upward flow or downward flow.
It is preferable to pass water at 3030 hr −1 . Regeneration is performed using an acid such as hydrochloric acid or sulfuric acid, and may be either cocurrent regeneration or countercurrent regeneration. The anion exchange treated water is introduced into the mixed raw water tank 4 through the connecting pipe 14.

【0019】一方、工業用水管15から工業用水を混合
原水槽4に導入してアニオン交換処理水と混合して、混
合原水とする。工業用水中にはカルシウムイオンが含ま
れるが、アニオン交換処理水中にフッ素イオンが含まれ
ないため、フッ化カルシウムのコロイドは生成しない。
On the other hand, industrial water is introduced into the mixed raw water tank 4 from the industrial water pipe 15 and mixed with the anion exchange-treated water to form mixed raw water. Industrial water contains calcium ions, but since fluoride ions are not contained in the anion exchange treated water, no calcium fluoride colloid is formed.

【0020】混合原水は連絡管16から活性炭処理槽5
に導入して、活性炭層5aにより活性炭処理を行い、遊
離塩素や有機物その他の不純物を吸着除去する。前処理
等により、原水中にこれらの不純物が含まれない場合に
は、この処理を省略することもできる。
The mixed raw water is supplied from the connecting pipe 16 to the activated carbon treatment tank 5.
To perform activated carbon treatment with the activated carbon layer 5a to adsorb and remove free chlorine, organic substances, and other impurities. If these impurities are not contained in the raw water due to pretreatment or the like, this treatment can be omitted.

【0021】活性炭処理水は連絡管17からカチオン交
換塔6に導入し、カチオン交換樹脂層6aに接触させて
脱カチオンを行う。この操作は上向流、下向流のいずれ
でもよく、SV 10〜30hr-1で通水するのが好ま
しい。再生も並流、向流いずれの再生法でもよい。
The activated carbon treated water is introduced into the cation exchange tower 6 through the communication pipe 17 and is brought into contact with the cation exchange resin layer 6a to perform decation. This operation may be either upward flow or downward flow, and it is preferable to pass water at an SV of 10 to 30 hr -1 . Regeneration may be either a cocurrent or countercurrent regeneration method.

【0022】カチオン交換処理水は連絡管18から脱気
塔7に導入して、充填材層7a上にスプレーし、空気管
19から空気を送って炭酸ガスその他のガスを放散させ
て脱気を行う。脱気水中に酸素が含まれていてはならな
い場合には、真空脱気、N2脱気等を行う。
The cation-exchanged water is introduced into the degassing tower 7 from the connecting pipe 18 and sprayed on the filler layer 7a, and air is sent from the air pipe 19 to dissipate carbon dioxide gas and other gases for degassing. Do. If oxygen must not be contained in the degassed water, vacuum degassing, N 2 degassing, etc. are performed.

【0023】脱気水は連絡管20からアニオン交換塔8
に導入し、アニオン交換樹脂層8aに接触させて脱アニ
オンを行う。この操作も上向流、下向流のいずれでもよ
く、SV 10〜30hr-1で通水するのが好ましい。
再生も並流、向流いずれの再生法でもよい。
The degassed water is supplied from the connecting pipe 20 to the anion exchange tower 8.
To be brought into contact with the anion exchange resin layer 8a for deanionization. This operation may be either an upward flow or a downward flow, and it is preferable to pass water at an SV of 10 to 30 hr -1 .
Regeneration may be either a cocurrent or countercurrent regeneration method.

【0024】脱塩水は連絡管21から脱塩水槽9に貯留
した後、その一部を連絡管22から膜分離装置10に導
入し、分離膜10aにより膜分離を行い、有機物、固形
物、無機イオン等の残留する不純物を除去する。膜分離
は操作圧10〜20kgf/cm2G、回収率70%以
上で行う。膜分離装置10に流入する脱塩水中にはフッ
化カルシウムが存在しないため、従来のようなフッ化カ
ルシウムコロイドによるスケール化はなく、長期にわた
って処理水量の低下は発生しない。
After the desalinated water is stored in the desalting water tank 9 from the connecting pipe 21, a part of the water is introduced into the membrane separation device 10 through the connecting pipe 22, and the membrane is separated by the separation membrane 10 a, and organic matter, solid matter, and inorganic matter are separated. The remaining impurities such as ions are removed. The membrane separation is performed at an operation pressure of 10 to 20 kgf / cm 2 G and a recovery of 70% or more. Since calcium fluoride does not exist in the desalted water flowing into the membrane separation device 10, there is no scaling with calcium fluoride colloid as in the conventional case, and the treated water amount does not decrease for a long time.

【0025】膜分離装置10の透過水は純水管23から
純水として取出される。この純水はそのまま、または任
意の後処理を行って一般の純水の用途に使用できるほ
か、一次純水として超純水製造工程の二次純水製造工程
に送り、超純水の製造に供することができる。膜分離装
置10の濃縮液は濃縮液管24から排出される。
The permeated water of the membrane separator 10 is taken out of the pure water pipe 23 as pure water. This pure water can be used as it is or after any post-treatment, and can be used for general pure water. Can be offered. The concentrate of the membrane separation device 10 is discharged from the concentrate tube 24.

【0026】実施例1 pH4.0、フッ素イオン20mg/l、全カチオン3
0mg/l(CaCO 3として)、全アニオン100m
g/l(CaCO3として)の半導体製造排水を、OH
形弱塩基性アニオン交換樹脂ダイヤイオンWA−30
(三菱化成(株)製、商標)を50liter充填したアニ
オン交換塔に500liter/hrで通水してアニオン交
換した後、pH7.3、カルシウムイオン30mg/
l、全カチオン120mg/l(CaCO3として)、
全アニオン130mg/l(CaCO3として)の工業
用水(水道水)と混合して混合原水とした。
Example 1 pH 4.0, fluorine ion 20 mg / l, total cation 3
0 mg / l (CaCO ThreeAs), total anion 100m
g / l (CaCOThreeAs) semiconductor manufacturing wastewater, OH
Weakly basic anion exchange resin DIAION WA-30
(Mitsubishi Kasei Co., Ltd., trademark)
Anion exchange by passing water through the on-exchange tower at 500 liter / hr
After the exchange, pH 7.3, calcium ion 30 mg /
l, total cation 120mg / l (CaCOThreeAs)
130 mg / l of total anions (CaCOThreeAs) industry
It was mixed with service water (tap water) to obtain mixed raw water.

【0027】この混合原水を、活性炭クラレコール(ク
ラレ(株)製、商標)を100liter充填した活性炭
槽、H形強酸性カチオン交換樹脂ダイヤイオンSK1B
(三菱化成(株)製、商標)を50liter充填したカチ
オン交換塔、空気を5Nm3/hrで向流送風する脱気
塔およびOH形強塩基性アニオン交換樹脂ダイヤイオン
SA10(三菱化成(株)製、商標)を70liter充填
したアニオン交換塔にシリーズに通液し、さらにスパイ
ラル形逆浸透膜モジュールSU−710(東レ(株)
製)を4本内蔵する膜分離装置に、操作圧15kgf/
cm2G、回収率90%で供給して膜分離を行い、純水
を製造した。
An activated carbon tank filled with 100 liters of Kuraray Coal (trade name, manufactured by Kuraray Co., Ltd.) was mixed with the mixed raw water, H-type strongly acidic cation exchange resin Diaion SK1B.
A cation exchange tower filled with 50 liters (trademark, manufactured by Mitsubishi Kasei Co., Ltd.), a deaeration tower for blowing air countercurrently at 5 Nm 3 / hr, and an OH type strong basic anion exchange resin Diaion SA10 (Mitsubishi Kasei Corporation) Through a series of anion exchange columns filled with 70 liters of Toray Industries, Inc., and a spiral type reverse osmosis membrane module SU-710 (Toray Industries, Inc.)
Operating pressure of 15 kgf /
The membrane was separated at a supply rate of 90 cm 2 G and a recovery rate of 90% to produce pure water.

【0028】その結果、3時間運転後および70時間運
転後の膜分離装置出口の純水の比抵抗は18.02Ω・
cm、処理水量は28m3/dであり、処理水の水質低
下および処理水量の低下は起こらなかった。
As a result, the specific resistance of the pure water at the outlet of the membrane separation device after the operation for 3 hours and after the operation for 70 hours was 18.02 Ω ·
cm, the amount of treated water was 28 m 3 / d, and the quality of treated water and the amount of treated water did not decrease.

【0029】比較例1 実施例1において、半導体製造排水のアニオン交換を行
わないほかは、同条件で試験したところ、膜分離装置出
口の純水の比抵抗は、3時間運転後に18.02Ω・c
mであったものが、70時間運転後には17.94Ω・
cmに低下し、また処理水量は3時間運転後に28m3
/dであったものが、70時間運転後には23m3/d
に低下した。
Comparative Example 1 A test was conducted under the same conditions as in Example 1 except that the anion exchange of the semiconductor production wastewater was not carried out. The specific resistance of the pure water at the outlet of the membrane separation device was 18.02 Ω · after 3 hours of operation. c
m after the 70-hour operation.
cm and the treated water volume is 28 m 3 after 3 hours of operation.
/ D, but 23 m 3 / d after 70 hours of operation
Has dropped.

【0030】以上の結果より、半導体製造排水をアニオ
ン交換した後工業用水と混合することにより、処理水の
水質低下および処理水量の低下が防止される。
From the above results, it is possible to prevent a decrease in the quality of the treated water and a decrease in the amount of treated water by mixing the wastewater for semiconductor production with an industrial water after anion exchange.

【0031】[0031]

【発明の効果】本発明によれば、半導体製造排水を、カ
チオン交換することなく、アニオン交換樹脂を充填した
アニオン交換塔に導入してアニオン交換した後、工業用
水と混合して、イオン交換および膜分離処理を行うよう
にしたので、フッ化カルシウムコロイドの生成による膜
分離装置のスケール化を防止することができ、これによ
り処理水量および処理水質の低下を防止することがで
き、簡単な処理装置と操作により、高純度の純水を高処
理水量かつ低コストで製造することができる。
According to the present invention, a semiconductor manufacturing waste water, mosquitoes
Filled with anion exchange resin without thione exchange
After being introduced into the anion exchange column and anion exchanged, it is mixed with industrial water to perform ion exchange and membrane separation treatment, thereby preventing scaling of the membrane separation device due to formation of calcium fluoride colloid. Thus, it is possible to prevent a reduction in the amount of treated water and the quality of treated water, and it is possible to produce high-purity pure water at a high treated water amount and at low cost by using a simple treatment apparatus and operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の純水製造方法を示すフロー図である。FIG. 1 is a flowchart showing a pure water production method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 半導体製造排水槽 2、5 活性炭処理槽 3、8 アニオン交換塔 4 混合原水槽 6 カチオン交換塔 7 脱気塔 9 脱塩水槽 10 膜分離装置 11 半導体製造排水管 15 工業用水管 19 空気管 23 純水管 24 濃縮液管 REFERENCE SIGNS LIST 1 semiconductor production drain tank 2, 5 activated carbon treatment tank 3, 8 anion exchange tower 4 mixed raw water tank 6 cation exchange tower 7 degassing tower 9 demineralized water tank 10 membrane separation device 11 semiconductor production drain pipe 15 industrial water pipe 19 air pipe 23 Pure water pipe 24 Concentrated liquid pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/44 B01D 61/04 B01D 61/16 C02F 1/42 C02F 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C02F 1/44 B01D 61/04 B01D 61/16 C02F 1/42 C02F 9/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体製造排水を、カチオン交換するこ
となく、アニオン交換樹脂を充填したアニオン交換塔に
導入してアニオン交換した後、工業用水と混合し、混合
原水をイオン交換および膜分離処理することを特徴とす
る純水製造方法。
1. A method for cation exchange of semiconductor manufacturing wastewater .
To an anion exchange tower filled with anion exchange resin
A method for producing pure water, comprising introducing, after anion exchange, mixing with industrial water, and subjecting the mixed raw water to ion exchange and membrane separation treatment.
JP24340792A 1992-09-11 1992-09-11 Pure water production method Expired - Lifetime JP3304412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24340792A JP3304412B2 (en) 1992-09-11 1992-09-11 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24340792A JP3304412B2 (en) 1992-09-11 1992-09-11 Pure water production method

Publications (2)

Publication Number Publication Date
JPH0691263A JPH0691263A (en) 1994-04-05
JP3304412B2 true JP3304412B2 (en) 2002-07-22

Family

ID=17103405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24340792A Expired - Lifetime JP3304412B2 (en) 1992-09-11 1992-09-11 Pure water production method

Country Status (1)

Country Link
JP (1) JP3304412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515390A (en) * 2011-12-14 2012-06-27 河南科技大学 Device for preparing pure water for analytical laboratory by ion exchange method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527950A (en) * 2000-01-03 2003-09-24 ジャングバーワラ、ジュザー Method and apparatus for removing metal by ion exchange
CN100336746C (en) * 2005-05-12 2007-09-12 邯郸钢铁股份有限公司 Method of preparing pure water using metallurgic sewage
JP5232059B2 (en) * 2009-03-27 2013-07-10 日本錬水株式会社 Wastewater recovery method and wastewater recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515390A (en) * 2011-12-14 2012-06-27 河南科技大学 Device for preparing pure water for analytical laboratory by ion exchange method

Also Published As

Publication number Publication date
JPH0691263A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
EP0634364B1 (en) Pure water manufacturing method
US7320756B2 (en) Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
JP3184015B2 (en) Ultrapure water production equipment
US5259972A (en) Apparatus and method for purifying water
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
JPH11192481A (en) Regeneration of waste photoresist developer and apparatus therefor
JP2004000919A (en) Apparatus for producing desalted water
JP3413883B2 (en) Pure water production equipment
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JPH0829315B2 (en) Demineralized water production equipment
JP3992299B2 (en) Ultrapure water production equipment
JP4449092B2 (en) Pure water production apparatus and method
JP3304412B2 (en) Pure water production method
JP2000015257A (en) Apparatus and method for making high purity water
JP2002210494A (en) Device for manufacturing extrapure water
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH0638953B2 (en) High-purity water manufacturing equipment
JP3413882B2 (en) Pure water production method and apparatus
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JPH09253638A (en) Ultrapure water making apparatus
JPH1080684A (en) Device and method for treating boron-containing water
JP4208270B2 (en) Pure water production method
JP2002355683A (en) Ultrapure water making method and apparatus
JPS586297A (en) Treatment of raw water of high content of silica

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11