JP3992299B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment Download PDF

Info

Publication number
JP3992299B2
JP3992299B2 JP22469194A JP22469194A JP3992299B2 JP 3992299 B2 JP3992299 B2 JP 3992299B2 JP 22469194 A JP22469194 A JP 22469194A JP 22469194 A JP22469194 A JP 22469194A JP 3992299 B2 JP3992299 B2 JP 3992299B2
Authority
JP
Japan
Prior art keywords
water production
boron
production apparatus
ultrapure water
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22469194A
Other languages
Japanese (ja)
Other versions
JPH0889956A (en
Inventor
和博 遠藤
敬人 本村
征弘 古川
幸一 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Kurita Water Industries Ltd
Original Assignee
Daikin Industries Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Kurita Water Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP22469194A priority Critical patent/JP3992299B2/en
Publication of JPH0889956A publication Critical patent/JPH0889956A/en
Application granted granted Critical
Publication of JP3992299B2 publication Critical patent/JP3992299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は超純水製造装置に係り、特に、従来の超純水製造装置では除去困難なホウ酸性ホウ素を効果的に除去することにより、高純度超純水を安定に得ることを可能とする超純水製造装置に関する。
【0002】
【従来の技術】
従来、市水、地下水、工水等の原水から超純水を製造する超純水製造装置は、基本的に、前処理装置、一次純水製造装置及び二次純水製造装置から構成される。このうち、前処理装置は、凝集、浮上、濾過装置で構成される。一次純水製造装置は、2基の逆浸透膜分離装置及び混床式イオン交換装置、或いは、イオン交換純水装置及び逆浸透膜分離装置で構成され、また、二次純水製造装置は、低圧紫外線酸化装置、混床式イオン交換装置及び限外濾過膜分離装置で構成される。
【0003】
これらの各装置単位において、原水の脱塩は、逆浸透膜分離装置及び混床式イオン交換装置で行われる。また、原水中の微粒子の除去は、逆浸透膜分離装置及び限外濾過膜分離装置でなされ、原水中のTOC成分の除去は、逆浸透膜分離装置、イオン交換純水装置、低圧紫外線酸化装置でなされる。
【0004】
【発明が解決しようとする課題】
上記従来の超純水製造装置により工水、その他の水を原水として超純水を製造する場合、得られる超純水の純度が悪く、管理値を満足し得ない場合がある。例えば、抵抗率18.24μΩ・cmの超純水を製造する超純水製造装置において、得られる超純水の抵抗率が17.8μΩ・cmあるいはそれ以下にまで低下する場合がある。このような純度低下は、特に、装置内のイオン交換樹脂の使用時間が長くなった場合に著しい。
【0005】
この問題を解決するために、強塩基性アニオン交換樹脂の量を増やす、樹脂の再生レベルを変える、などの対策を講じても、顕著な改善効果は得られなかった。
【0006】
本発明者らは上記従来の超純水製造装置における純度低下の問題を解決し、高純度の超純水を安定に得ることができる超純水製造装置を提供することを目的とする。
【0007】
請求項1の超純水製造装置は、脱塩装置を有する一次純水製造装置と、二次純水製造装置とを有する超純水製造装置において、該脱塩装置の後段の一次純水製造装置内に、鉱酸で再生後OH形に変換したホウ素吸着樹脂を充填したホウ素吸着樹脂塔を設けたことを特徴とする。
請求項2の超純水製造装置は、請求項1において、該脱塩装置として逆浸透膜分離装置を2段に設け、該2段に設けた逆浸透膜分離装置の後段に前記ホウ素吸着樹脂塔を設けたことを特徴とする。
請求項3の超純水製造装置は、脱塩装置を有する一次純水製造装置と、二次純水製造装置とを有する超純水製造装置において、該脱塩装置として逆浸透膜分離装置を2段に設け、該2段に設けた逆浸透膜分離装置の後段の一次純水製造装置内にホウ素吸着樹脂塔を設けたことを特徴とする。
【0008】
即ち、本発明者らは、従来の超純水製造装置における純度低下の原因を究明すべく鋭意検討を重ねた結果、純度低下の原因はホウ素であることを突き止めた。
【0009】
そして、このホウ素の除去のためには、脱塩装置の後段の一次純水製造装置内にホウ素吸着樹脂塔を設けることが有効であることを見出し、本発明を完成させた。
【0010】
以下に本発明を詳細に説明する。
【0011】
本発明において、ホウ素吸着樹脂としては、各種のものを用いることができるが、例えば、市販の「ダイヤイオンCRB02」(三菱化成(株))を用いることができる。このダイヤイオンCRB02は、以下に示す如く、スチレン・ジビニルベンゼンの骨格にホウ酸選択性の高いキレート形成基としてNグルカミン基を導入した化学構造を有している。
【0012】
【化1】

Figure 0003992299
【0013】
このNグルカミン基は、弱塩基性アニオン交換樹脂と同様の3級アミン型になっており、次のような反応でホウ酸性ホウ素を吸着する。
【0014】
【化2】
Figure 0003992299
【0015】
ところで、このNグルカミン基は、Cl- やSO4 2- を吸着した場合には、ホウ酸の吸着能がなくなる。中性塩、例えばNaClが共存する場合、これらの塩に対するホウ素吸着樹脂の交換容量は全交換容量の20%程度あり、次のような反応でCl- イオンを吸着するため、その分、ホウ素の交換容量が低減する。即ち、系内の塩濃度が高い場合には、ホウ素吸着樹脂のホウ素吸着能は約20%程度低下することとなる。
【0016】
【化3】
Figure 0003992299
【0017】
従って、本発明においては、逆浸透膜分離装置又はイオン交換純水装置等の脱塩装置の後段にホウ素吸着樹脂塔を設け、ホウ素吸着樹脂塔への塩類の流入を防止することにより、高いホウ素吸着能を確保する。
【0018】
なお、処理を継続することにより、ダイヤイオンCRB02の吸着容量が飽和に達し、ホウ素吸着能が低下した場合には、下記の如く、H2 SO4 等の鉱酸で再生し、ホウ酸(或いは更に塩酸)を脱着させた後、NaOHでOH- 形に変換することにより、再度使用に供することができる。
【0019】
【化4】
Figure 0003992299
【0020】
なお、ホウ素吸着樹脂をSO4 2- 形又はCl- 形で使用することも考えられるが、SO4 2- 形又はCl- 形のものは中性の水に対してはホウ素吸着性能が悪い。アルカリ性の水に対してはホウ素吸着性能が若干向上するものの、吸着容量はOH- 形で使用する場合に比べて小さい。
【0021】
このため、本発明においては、ホウ素吸着樹脂の塩形はOH- 形として用いるのが好ましい。
【0022】
このようなホウ素吸着樹脂を充填したホウ素吸着樹脂塔への通水速度が高くなると、ホウ酸吸着量が低減するため、通水速度は流入水のホウ素濃度、ホウ素吸着樹脂のホウ酸吸着量及び使用期間等を考慮してSV=5〜50hr-1の範囲で適宜決定するのが好ましい。
【0023】
前述の如く、本発明の超純水製造装置において、ホウ素吸着樹脂塔は、一次純水製造装置内の脱塩を行う装置の後段であれば良く、その設置箇所としては特に制限はない。
【0024】
即ち、吸着除去の対象であるホウ酸性ホウ素は、中性ないしそれ以下のpH条件では、H3 BO3 として存在している。通常の超純水系ではその濃度も低く、pH条件も中性付近にあることから、一次脱塩した後では、ホウ素は同一挙動をとるため、ホウ素吸着樹脂塔はどの箇所に設置してもホウ素の除去性能に差はない。
【0025】
本発明に好適なホウ素吸着樹脂塔の設置例を以下に示す。なお、以下において、各々の略号は次のものを示す。
【0026】
AF:凝集濾過装置
RO:逆浸透膜分離装置
MB−P:混床式イオン交換塔
2B3T:2床3塔式イオン交換純水装置
ST:サブタンク
L−UVOX:低圧紫外線酸化装
I:混床式イオン交換装置
UF:限外濾過膜分離装
BA]:ホウ素吸着樹脂塔
I 下記(a)又は(b)の通常の超純水製造装置の一次純水製造装置に適用する場合
(a) 原水→AF→一次純水製造装置(RO→RO→MB−P)→ST→二次純水製造装置(L−UVOX→DI→UF)→ユースポイント又はST返送
(b) 原水→一次純水製造装置(AF→2B3T→MB−P→RO)→ST→二次純水製造装置(L−UVOX→DI→UF)→ユースポイント又はST返送
(1) 原水→AF→RO→RO→[BA]→MB−P→ST→二次純水製造装置
(2) 原水→AF→RO→RO→MB−P→[BA]→ST→二次純水製造装置
(3) 原水→AF→2B3T→[BA]→MB−P→RO→ST→二次純水製造装置
(4) 原水→AF→2B3T→MB−P→[BA]→RO→ST→二次純水製造装置
(5) 原水→AF→2B3T→MB−P→RO→[BA]→ST→二次純水製造装置
【0027】
【作用】
原水中にホウ酸性ホウ素が存在する場合、或いは、回収水を超純水の原水として利用する系において回収水中にホウ酸が含有される場合、従来の超純水製造装置ではこれらのホウ素を除去することができず、或いは、アニオン交換樹脂が新品ないし再生直後においては除去可能であっても、その後早期に除去不可能となる。これは、前述の如く、系内のホウ素の存在形態がH3 BO3 として存在していることによるものである。一方、本発明の場合ホウ素吸着樹脂は高アルカリ性(pH9以上)となっているので、H3 BO3 は塔内で下記反応式に従って、水和して解離し、イオン交換可能となる。
【0028】
3 BO3 +H2 O → B(OH)4 -+H+
このようなことから、従来の超純水製造装置において、アニオン交換樹脂の量を増やしたり、樹脂の再生レベルを変えたりしても、顕著な効果は得られず、製造される超純水中には、1ppbないしそれ以上のホウ素濃度のホウ酸のリークがある。これにより、得られる超純水の抵抗率の低下が見られる。
【0029】
本発明の超純水製造装置では、この従来の超純水製造装置では除去し得ない、従って、従来の超純水製造装置の純度低下の原因物質であるホウ素を、ホウ素吸着樹脂塔により効率的に除去するため、高純度の超純水を安定に得ることができる。
【0030】
しかして、このホウ素吸着樹脂塔は、脱塩装置の後段に設置されるため、塩類の共存により、ホウ素吸着樹脂のホウ素の吸着能が阻害されることなく、高いホウ素除去効率を得ることができる。
【0031】
また、ホウ素吸着樹脂はSiO2 除去能力をも有し、従って、ホウ素吸着樹脂塔を組み込むことにより、後段の装置に対するSiO2 負荷の軽減を図ることもできる。
【0032】
【実施例】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。説明の便宜上、まず比較例を挙げる。
【0033】
なお、以下の実施例及び比較例において、処理に供した原水は、ホウ酸性ホウ素(B(OH)4 -−B)濃度約100ppbのものである。
【0034】
比較例1
原水をAF→2B3T→MB−P→ST→L−UVOX→DI→UFの順で通水して処理したところ、得られた処理水(UF流出水)のB(OH)4 -−B濃度は2〜3ppbであり、ホウ素の残留が認められた。
【0035】
実施例1
比較例1において、ホウ素吸着樹脂としてダイヤイオンCRB02を充填したホウ素吸着樹脂をMB−Pの後段に組み込み、比較例1で処理した原水と同水質の原水をAF→2B3T→MB−P→[BA]→ST→L−UVOX→DI→UFに順次通水して処理した。
【0036】
なお、ホウ素吸着樹脂ダイヤイオンCRB02は、樹脂塔カラムに1リットル充填し、5重量%HClを100g−HCl/リットル−樹脂の割合で用いて押出洗浄した後、4重量%NaOHを100g−NaOH/リットル−樹脂の割合で用いて押出洗浄して用いた。また、ホウ素吸着樹脂塔の通水速度はSV=20hr-1とした。
【0037】
その結果、ホウ素吸着樹脂塔の流入水及び流出水のホウ素濃度,SiO2 濃度は表1に示す通りであり、ホウ素及びSiO2 を効率的に除去することができた。なお、この処理を3ケ月継続した後もホウ素及びSiO2 の除去効果に差はなく、長期にわたり継続処理可能であることが確認された。
【0038】
【表1】
Figure 0003992299
【0039】
比較例2
実施例1において、ホウ素吸着樹脂塔の代りに強塩基性OH形アニオン交換樹脂塔(三菱化成(株)製「ダイヤイオンSAN−UP」(新品)を1リットル充填)を設けたこと以外は同様にして処理を行った。
【0040】
その結果、アニオン交換樹脂塔の流出水のホウ素濃度は表2に示す如く、経時的に増加し、長期継続処理ができないことが判明した。
【0041】
【表2】
Figure 0003992299
【0042】
実施例2
前記(1)の処理工程において、実施例1で設けたものと同様のホウ素吸着樹脂塔を適用して同様に処理を行った。即ち、原水→AF→RO→RO→[BA]→MB−P→ST→二次純水製造装置の順で処理した。その結果、得られた超純水(UF流出水)の抵抗率は3ケ月継続処理後においても18.1μΩ・cm以上と高い純度を示した。
【0043】
また、この処理において、ホウ素吸着樹脂塔の流入水及び流出水のホウ素濃度を調べたところ、流入水のB(OH)4 -−Bは20〜30ppbであるのに対し、流出水のB(OH)4 -−Bは<0.05ppbであり、ホウ素が効率的に除去されたことが確認された。
【0044】
比較例3
実施例2において、ホウ素吸着樹脂塔を設けなかったこと以外は同様に処理を行った。即ち、原水→AF→RO→RO→MB−P→ST→二次純水製造装置の順で処理した。この処理において、MB−Pの流入水及び流出水のホウ素濃度を調べたところ、流入水のB(OH) −Bは20〜30ppbであるのに対し、流出水のB(OH) −Bは7ppbと、ホウ素のリークが認められた。
【0045】
【発明の効果】
以上詳述した通り、本発明の超純水製造装置によれば、従来の超純水製造装置では除去し得ない、超純水の純度低下の原因物質であるホウ素を効率的に除去することができ、高純度の超純水を安定かつ効率的に得ることが可能とされる。しかも、本発明に係るホウ素吸着樹脂塔では、SiO2 の除去もなされ、後段の装置へのSiO2 負荷が軽減されるという効果も奏される。[0001]
[Industrial application fields]
The present invention relates to an ultrapure water production apparatus, and in particular, it is possible to stably obtain high-purity ultrapure water by effectively removing boric acid boron, which is difficult to remove with a conventional ultrapure water production apparatus. It relates to ultrapure water production equipment.
[0002]
[Prior art]
Conventionally, an ultrapure water production apparatus that produces ultrapure water from raw water such as city water, groundwater, and industrial water basically includes a pretreatment apparatus, a primary pure water production apparatus, and a secondary pure water production apparatus. . Among these, the pretreatment device is composed of agglomeration, levitation, and filtration devices. The primary pure water production apparatus is composed of two reverse osmosis membrane separation devices and a mixed bed type ion exchange device, or an ion exchange pure water device and a reverse osmosis membrane separation device. It consists of a low-pressure ultraviolet oxidizer, a mixed bed ion exchanger and an ultrafiltration membrane separator.
[0003]
In each of these apparatus units, the raw water is desalted by a reverse osmosis membrane separation apparatus and a mixed bed ion exchange apparatus. The removal of fine particles in the raw water is performed by a reverse osmosis membrane separation device and an ultrafiltration membrane separation device, and the removal of the TOC component in the raw water is performed by a reverse osmosis membrane separation device, an ion exchange pure water device, a low-pressure ultraviolet oxidation device. Made in
[0004]
[Problems to be solved by the invention]
When ultrapure water is produced by using the above-described conventional ultrapure water production apparatus using industrial water or other water as raw water, the purity of the obtained ultrapure water may be poor and the control value may not be satisfied. For example, in an ultrapure water production apparatus that produces ultrapure water having a resistivity of 18.24 μΩ · cm, the resistivity of the obtained ultrapure water may be reduced to 17.8 μΩ · cm or less. Such a decrease in purity is particularly remarkable when the use time of the ion exchange resin in the apparatus becomes long.
[0005]
In order to solve this problem, even if measures such as increasing the amount of strongly basic anion exchange resin or changing the regeneration level of the resin were taken, a remarkable improvement effect could not be obtained.
[0006]
An object of the present invention is to provide an ultrapure water production apparatus capable of solving the problem of purity reduction in the conventional ultrapure water production apparatus and capable of stably obtaining high-purity ultrapure water.
[0007]
Ultrapure water production apparatus according to claim 1, a primary pure water production system having a demineralizer, the ultrapure water production apparatus and a secondary pure water producing device, primary pure water production of the subsequent desalting device The apparatus is characterized in that a boron adsorption resin tower filled with a boron adsorption resin which has been regenerated with mineral acid and converted into OH form is provided in the apparatus.
The ultrapure water production apparatus according to claim 2 is the ultrapure water production apparatus according to claim 1, wherein a reverse osmosis membrane separation device is provided in two stages as the desalting device, and the boron adsorption resin is provided in the rear stage of the reverse osmosis membrane separation device provided in the two stages. A tower is provided.
The ultrapure water production apparatus according to claim 3 is an ultrapure water production apparatus having a primary pure water production apparatus having a desalination apparatus and a secondary pure water production apparatus, wherein a reverse osmosis membrane separation apparatus is used as the demineralization apparatus. A boron-adsorbing resin tower is provided in the primary pure water production apparatus in the subsequent stage of the reverse osmosis membrane separation apparatus provided in the two stages.
[0008]
That is, as a result of intensive studies to investigate the cause of the purity decrease in the conventional ultrapure water production apparatus, the present inventors have found that the cause of the purity decrease is boron.
[0009]
And in order to remove this boron, it discovered that it was effective to provide a boron adsorption resin tower in the primary pure water manufacturing apparatus of the back | latter stage of a desalination apparatus, and completed this invention.
[0010]
The present invention is described in detail below.
[0011]
In the present invention, various types of boron adsorbent resins can be used. For example, commercially available “Diaion CRB02” (Mitsubishi Kasei Co., Ltd.) can be used. This Diaion CRB02 has a chemical structure in which an N-glucamine group is introduced as a chelate-forming group having high boric acid selectivity into the styrene-divinylbenzene skeleton as shown below.
[0012]
[Chemical 1]
Figure 0003992299
[0013]
This N-glucamine group is a tertiary amine type similar to the weakly basic anion exchange resin, and adsorbs boric acid boron by the following reaction.
[0014]
[Chemical 2]
Figure 0003992299
[0015]
Incidentally, the N glucamine group, Cl - when or adsorbed SO 4 2-a, the adsorption ability of boric acid free. When a neutral salt such as NaCl coexists, the exchange capacity of the boron adsorption resin for these salts is about 20% of the total exchange capacity, and Cl ions are adsorbed by the following reaction. The exchange capacity is reduced. That is, when the salt concentration in the system is high, the boron adsorption capacity of the boron adsorption resin is reduced by about 20%.
[0016]
[Chemical 3]
Figure 0003992299
[0017]
Therefore, in the present invention, a boron adsorption resin tower is provided at the rear stage of a desalination apparatus such as a reverse osmosis membrane separation apparatus or an ion exchange deionized water apparatus to prevent the inflow of salts into the boron adsorption resin tower, thereby increasing the boron content. Ensure adsorption capacity.
[0018]
If the adsorption capacity of Diaion CRB02 reaches saturation and the boron adsorption capacity decreases by continuing the treatment, it is regenerated with a mineral acid such as H 2 SO 4 as described below, and boric acid (or Furthermore, after desorption of hydrochloric acid), it can be used again by converting it to OH - form with NaOH.
[0019]
[Formula 4]
Figure 0003992299
[0020]
Incidentally, boron adsorption resin SO 4 2-form or Cl - it is conceivable to use in the form, SO 4 2-form or Cl - forms of the above boron adsorption performance is poor against neutral water. Although the boron adsorption performance is slightly improved for alkaline water, the adsorption capacity is smaller than that in the case of using the OH - form.
[0021]
Therefore, in the present invention, the salt form of the boron adsorption resin is preferably used as the OH - form.
[0022]
When the water flow rate to the boron adsorption resin tower filled with such boron adsorption resin is increased, the boric acid adsorption amount is reduced. Therefore, the water flow rate is determined based on the boron concentration of the inflow water, the boric acid adsorption amount of the boron adsorption resin, and It is preferable to appropriately determine in the range of SV = 5 to 50 hr −1 in consideration of the period of use and the like.
[0023]
As described above, in the ultrapure water production apparatus of the present invention, the boron adsorption resin tower may be a subsequent stage of the desalting apparatus in the primary pure water production apparatus, and the installation location is not particularly limited.
[0024]
In other words, boric acid boron, which is the target of adsorption removal, exists as H 3 BO 3 under neutral or lower pH conditions. In normal ultrapure water systems, the concentration is low and the pH condition is near neutral. Therefore, after primary desalting, boron behaves in the same way. There is no difference in the removal performance.
[0025]
An installation example of a boron adsorption resin tower suitable for the present invention is shown below. In the following, each abbreviation indicates the following.
[0026]
AF: aggregation filtration device RO: reverse osmosis membrane separation apparatus MB-P: mixed bed ion exchange column 2B3T: 2 bed 3-tower ion exchange pure water device ST: subtank L-UV OX: low pressure ultraviolet oxidation equipment
D I: mixed-bed ion exchanger UF: ultrafiltration membrane separation equipment
[ BA]: Boron adsorption resin tower I When applied to the primary pure water production apparatus of the following normal ultrapure water production apparatus (a) or (b) (a) Raw water → AF → primary pure water production apparatus (RO → RO → MB-P) → ST → secondary pure water production equipment (L-UV OX → DI → UF) → use point or ST return (b) Raw water → primary pure water production equipment (AF → 2B3T → MB-P → RO) → ST → Secondary pure water production equipment (L-UV OX → DI → UF) → Use point or ST return
(1) Raw water → AF → RO → RO → [BA] → MB-P → ST → secondary pure water production apparatus
(2) Raw water → AF → RO → RO → MB-P → [BA] → ST → secondary pure water production equipment
(3) Raw water → AF → 2B3T → [BA] → MB-P → RO → ST → secondary pure water production equipment
(4) Raw water → AF → 2B3T → MB-P → [BA] → RO → ST → secondary pure water production equipment
(5) Raw water → AF → 2B3T → MB-P → RO → [BA] → ST → secondary pure water production apparatus
[Action]
When boric acid boron is present in the raw water, or when boric acid is contained in the recovered water in a system that uses the recovered water as the raw water of ultrapure water, the conventional ultrapure water production apparatus removes these boron. However, even if the anion exchange resin is new or can be removed immediately after regeneration, it cannot be removed early. This is due to the presence of boron in the system as H 3 BO 3 as described above. On the other hand, in the case of the present invention, since the boron adsorption resin is highly alkaline (pH 9 or more), H 3 BO 3 is hydrated and dissociated in the tower according to the following reaction formula, and ion exchange becomes possible.
[0028]
H 3 BO 3 + H 2 O → B (OH) 4 + H +
For this reason, in the conventional ultrapure water production apparatus, even if the amount of anion exchange resin is increased or the regeneration level of the resin is changed, a remarkable effect cannot be obtained. Leaks boric acid with a boron concentration of 1 ppb or more. Thereby, the fall of the resistivity of the obtained ultrapure water is seen.
[0029]
In the ultrapure water production apparatus of the present invention, this conventional ultrapure water production apparatus cannot remove it. Therefore, boron, which is a causative substance of the purity reduction of the conventional ultrapure water production apparatus, is more efficiently absorbed by the boron adsorption resin tower. Therefore, highly pure ultrapure water can be obtained stably.
[0030]
Therefore, since this boron adsorption resin tower is installed in the latter stage of the desalting apparatus, high boron removal efficiency can be obtained without inhibiting the boron adsorption ability of the boron adsorption resin due to the coexistence of salts. .
[0031]
Further, the boron adsorbing resin also has a SiO 2 removal capability. Therefore, by incorporating a boron adsorbing resin tower, it is possible to reduce the SiO 2 load on the downstream apparatus.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. For convenience of explanation, a comparative example is given first.
[0033]
In the following examples and comparative examples, the raw water subjected to the treatment has a boric acid boron (B (OH) 4 —B) concentration of about 100 ppb.
[0034]
Comparative Example 1
When raw water was treated by passing in order of AF → 2B3T → MB-P → ST → L-UV OX → DI → UF, B (OH) 4 −B of the obtained treated water (UF effluent) The concentration was 2 to 3 ppb, and boron residue was observed.
[0035]
Example 1
In Comparative Example 1, a boron adsorbing resin filled with Diaion CRB02 as a boron adsorbing resin was incorporated in the latter stage of MB-P, and the raw water of the same water quality as the raw water treated in Comparative Example 1 was AF → 2B3T → MB-P → [BA ] → ST → L-UV OX → DI → UF was passed through in order.
[0036]
Boron adsorption resin Diaion CRB02 was filled in 1 liter in a resin tower column, extruded and washed using 5 wt% HCl at a ratio of 100 g-HCl / liter-resin, and then 4 wt% NaOH was added in 100 g-NaOH / Used in a ratio of liter-resin and washed by extrusion. Further, the water flow rate of the boron adsorption resin tower was set to SV = 20 hr −1 .
[0037]
As a result, the boron concentration and SiO 2 concentration of inflow water and outflow water of the boron adsorption resin tower were as shown in Table 1, and boron and SiO 2 could be efficiently removed. Even after this treatment was continued for 3 months, there was no difference in the effect of removing boron and SiO 2 , and it was confirmed that the treatment could be continued for a long time.
[0038]
[Table 1]
Figure 0003992299
[0039]
Comparative Example 2
Example 1 is the same as Example 1 except that a strongly basic OH type anion exchange resin tower (filled with 1 liter of “Diaion SAN-UP” (new) manufactured by Mitsubishi Kasei Co., Ltd.) is provided instead of the boron adsorption resin tower. The process was carried out.
[0040]
As a result, it was found that the boron concentration of the effluent of the anion exchange resin tower increased with time as shown in Table 2, and long-term continuous treatment was impossible.
[0041]
[Table 2]
Figure 0003992299
[0042]
Example 2
In the treatment step (1) , the same treatment was performed by applying the same boron adsorption resin tower as that provided in Example 1. That is, it processed in order of raw | natural water->AF->RO->RO->[BA]->MB-P->ST-> secondary pure water manufacturing apparatus . As a result, the resistivity of the obtained ultrapure water (UF effluent) showed a high purity of 18.1 μΩ · cm or more even after 3 months of continuous treatment.
[0043]
In this treatment, the boron concentration of the inflow water and outflow water of the boron adsorption resin tower was examined, and the inflow water B (OH) 4 −B was 20 to 30 ppb, whereas the outflow water B ( OH) 4 —B was <0.05 ppb, confirming that boron was efficiently removed.
[0044]
Comparative Example 3
In Example 2, the treatment was performed in the same manner except that the boron adsorption resin tower was not provided. That is, processing was performed in the order of raw water → AF → RO → RO → MB-P → ST → secondary pure water production apparatus . In this treatment, when the boron concentration of the influent and effluent of MB-P was examined, B (OH) 4 −B of the influent water was 20 to 30 ppb, whereas B (OH) 4 of the effluent water - -B is a 7ppb, leakage of boron was observed.
[0045]
【The invention's effect】
As described above in detail, according to the ultrapure water production apparatus of the present invention, it is possible to efficiently remove boron, which is a causative substance of the purity reduction of ultrapure water, which cannot be removed by the conventional ultrapure water production apparatus. It is possible to obtain highly pure ultrapure water stably and efficiently. Moreover, in the boron adsorption resin tower according to the present invention, SiO 2 is removed, and the effect of reducing the SiO 2 load on the subsequent apparatus is also achieved.

Claims (3)

脱塩装置を有する一次純水製造装置と、二次純水製造装置とを有する超純水製造装置において、該脱塩装置の後段の一次純水製造装置内に、鉱酸で再生後OH形に変換したホウ素吸着樹脂を充填したホウ素吸着樹脂塔を設けたことを特徴とする超純水製造装置。In an ultrapure water production apparatus having a primary pure water production apparatus having a desalination apparatus and a secondary pure water production apparatus, the OH form after regeneration with mineral acid is provided in the primary pure water production apparatus after the demineralization apparatus. An apparatus for producing ultrapure water, comprising a boron adsorption resin tower filled with a boron adsorption resin converted into a water. 請求項1において、該脱塩装置として逆浸透膜分離装置を2段に設け、該2段に設けた逆浸透膜分離装置の後段に前記ホウ素吸着樹脂塔を設けたことを特徴とする超純水製造装置。  2. The ultrapure according to claim 1, wherein a reverse osmosis membrane separation device is provided in two stages as the desalting device, and the boron adsorption resin tower is provided in a subsequent stage of the reverse osmosis membrane separation device provided in the two stages. Water production equipment. 脱塩装置を有する一次純水製造装置と、二次純水製造装置とを有する超純水製造装置において、該脱塩装置として逆浸透膜分離装置を2段に設け、該2段に設けた逆浸透膜分離装置の後段の一次純水製造装置内にホウ素吸着樹脂塔を設けたことを特徴とする超純水製造装置。In an ultrapure water production apparatus having a primary pure water production apparatus having a desalination apparatus and a secondary pure water production apparatus, a reverse osmosis membrane separation apparatus is provided in two stages as the desalination apparatus, and the two stages are provided. An ultrapure water production apparatus characterized in that a boron adsorption resin tower is provided in a primary pure water production apparatus subsequent to a reverse osmosis membrane separation apparatus.
JP22469194A 1994-09-20 1994-09-20 Ultrapure water production equipment Expired - Fee Related JP3992299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22469194A JP3992299B2 (en) 1994-09-20 1994-09-20 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22469194A JP3992299B2 (en) 1994-09-20 1994-09-20 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH0889956A JPH0889956A (en) 1996-04-09
JP3992299B2 true JP3992299B2 (en) 2007-10-17

Family

ID=16817733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22469194A Expired - Fee Related JP3992299B2 (en) 1994-09-20 1994-09-20 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP3992299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156041B2 (en) * 2012-02-22 2021-10-26 Richard Paul Posa System and method for treating water

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (en) * 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP4599803B2 (en) * 2002-04-05 2010-12-15 栗田工業株式会社 Demineralized water production equipment
JP3864934B2 (en) 2003-06-12 2007-01-10 栗田工業株式会社 Pure water production equipment
WO2006134915A1 (en) 2005-06-14 2006-12-21 Asahi Kasei Chemicals Corporation Apparatus for water treatment and method of treating water
JP5320723B2 (en) * 2007-11-06 2013-10-23 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5081690B2 (en) * 2008-03-31 2012-11-28 オルガノ株式会社 Production method of ultra pure water
WO2010089877A1 (en) * 2009-02-06 2010-08-12 赤穂化成株式会社 Process for producing mineral drinking water, apparatus for producing mineral drinking water, and drinking water obtained by the process
JP5564817B2 (en) * 2009-03-31 2014-08-06 栗田工業株式会社 Ion exchange resin regeneration method and ultrapure water production apparatus
JP6082192B2 (en) * 2012-06-11 2017-02-15 野村マイクロ・サイエンス株式会社 Pure water production equipment
CA3006319A1 (en) * 2016-01-25 2017-08-03 Kurion, Inc. System and method for manipulation of ion concentration to maximize efficiency of ion exchange
JP2023127080A (en) * 2022-03-01 2023-09-13 オルガノ株式会社 Ultrapure water production system and ultrapure water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156041B2 (en) * 2012-02-22 2021-10-26 Richard Paul Posa System and method for treating water

Also Published As

Publication number Publication date
JPH0889956A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
TWI616404B (en) Method and device for processing boron-containing water
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
JP3992299B2 (en) Ultrapure water production equipment
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP4599803B2 (en) Demineralized water production equipment
JP3646900B2 (en) Apparatus and method for treating boron-containing water
US6080315A (en) Process for the partial desalination of water
JP3413883B2 (en) Pure water production equipment
JP3319053B2 (en) Treatment method for fluoride-containing water
JP2012196632A (en) Water treatment method and water treatment system
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPS5815193B2 (en) How to treat boron-containing water
JP2891790B2 (en) Regeneration method of anion exchange resin
JPH11235595A (en) Treatment of boron-containing waste water
JP3613376B2 (en) Pure water production apparatus and pure water production method
JPH0137997B2 (en)
JP3992996B2 (en) Wastewater treatment method and apparatus
JP3304412B2 (en) Pure water production method
JP2016150275A (en) Method and device for producing purified water
JPS6159199B2 (en)
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
WO2023062925A1 (en) Acid solution purification method
JP2941121B2 (en) Ultrapure water production equipment
JP2018086657A (en) Pure water production apparatus, ultrapure water production system, and pure water producing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041102

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees