JP2941121B2 - Ultrapure water production equipment - Google Patents

Ultrapure water production equipment

Info

Publication number
JP2941121B2
JP2941121B2 JP4197687A JP19768792A JP2941121B2 JP 2941121 B2 JP2941121 B2 JP 2941121B2 JP 4197687 A JP4197687 A JP 4197687A JP 19768792 A JP19768792 A JP 19768792A JP 2941121 B2 JP2941121 B2 JP 2941121B2
Authority
JP
Japan
Prior art keywords
pure water
silica
polisher
water
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4197687A
Other languages
Japanese (ja)
Other versions
JPH0615263A (en
Inventor
美和 清水
以佐雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP4197687A priority Critical patent/JP2941121B2/en
Publication of JPH0615263A publication Critical patent/JPH0615263A/en
Application granted granted Critical
Publication of JP2941121B2 publication Critical patent/JP2941121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超純水製造装置の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an apparatus for producing ultrapure water.

【0002】[0002]

【従来の技術】従来例えば原子力、火力発電所における
ボイラー用水、医薬品製造用水、半導体産業などで使用
される各種洗浄用水として超純水が使用されて来てい
る。例えば半導体産業で現在使用されている超純水製造
装置としては前処理、RO(逆浸透膜)、イオン交換、
紫外線殺菌、真空脱気等からなる1次純水系と、紫外線
酸化装置、イオン交換、UF(限外濾過)等からなる2
次純水系と、活性炭、イオン交換、紫外線酸化装置、活
性炭等からなる回収系とからなるものが広く用いられて
いる。
2. Description of the Related Art Conventionally, for example, ultrapure water has been used as boiler water in nuclear power plants and thermal power plants, pharmaceutical manufacturing water, and various cleaning waters used in the semiconductor industry. For example, ultrapure water production equipment currently used in the semiconductor industry includes pretreatment, RO (reverse osmosis membrane), ion exchange,
Primary pure water system consisting of UV sterilization, vacuum degassing, etc., and UV oxidation equipment, ion exchange, UF (ultrafiltration) etc.
A system comprising a secondary water system and a recovery system comprising activated carbon, ion exchange, an ultraviolet oxidizer, activated carbon and the like is widely used.

【0003】しかしながら半導体向け超純水の要求水質
は近年益々厳しくなっており、2次純水系のイオン交換
には外部で特別のコンディショニングおよび再生を行っ
たイオン交換樹脂を塔内に充填した、したがって専用の
再生設備を有しないカートリッジポリシャー(以下単に
CPと略記する)が用いられ、超純水製造装置の系全体
の水質向上のためには上記のCPの長期安定運転が不可
欠となって来ている。
However, the required water quality of ultrapure water for semiconductors has become increasingly severe in recent years. For ion exchange of the secondary pure water system, an ion exchange resin which has been subjected to special conditioning and regeneration outside is packed in the column. A cartridge polisher (hereinafter simply abbreviated as CP) that does not have a dedicated regeneration facility is used, and the above-mentioned long-term stable operation of the CP is indispensable for improving the water quality of the entire system of the ultrapure water production system. I have.

【0004】[0004]

【発明が解決しようとする課題】ところで、CPの寿命
と処理水質は、CPの入口水のシリカ濃度に依存してお
り、CP入口のシリカ濃度が高いと安定した水質の処理
水が得られずCPの寿命も短くなる。そのためには1次
純水系でシリカ濃度を低減し2次純水系のCPのシリカ
負荷を軽減することが重要であるとの知見を得た。
The life of the CP and the quality of the treated water depend on the silica concentration of the inlet water of the CP. If the silica concentration at the inlet of the CP is high, treated water of stable water quality cannot be obtained. The life of the CP is also shortened. For this purpose, it has been found that it is important to reduce the silica concentration in the primary pure water system and reduce the silica load of the CP in the secondary pure water system.

【0005】そこで本発明者らは上記の知見に基いて1
次純水系に、強塩基性アニオン交換樹脂をその樹脂の再
生膨潤分だけの余裕をもたせて隙間なく塔内に充填し向
流再生を行うシリカポリシャーを設置することにより1
次純水系にてシリカ濃度を極力低減することにより、2
次純水系のCPのシリカ負荷を低減し従来より安定な処
理を長期に亘って得ることを可能にし本発明に至ったも
のである。
Accordingly, the present inventors have made one
By installing a silica polisher in the next pure water system, in which a strong basic anion exchange resin is filled in the tower without gaps with a margin for the regeneration swelling of the resin and countercurrent regeneration is performed.
By reducing the silica concentration as much as possible in the secondary pure water system,
The present invention has been made possible by reducing the silica load of the CP of the next pure water system to obtain a more stable treatment for a long time than before.

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決するためにイオン交換式の純水製造装置の後段に、塔
内に強塩基性アニオン交換樹脂の再生膨潤分だけの余裕
をもたせて隙間なく充填し、向流再生を行うパック型の
シリカポリシャーを設置したことを特徴とする超純水装
置を提供するものであり、更に、イオン交換式の純水装
置を組込み原水を比較的超純水に近い水質まで処理する
ための1次系システムと、イオン交換式のカートリッジ
ポリシャーを組込み1次純水系の処理水を更に精製して
超純水としこれをユースポイントに送り込むための2次
純水系とを備えた超純水製造装置において、1次純水系
中にそのイオン交換式純水装置に続いて1次純水系の処
理水のシリカ濃度を低減するためのシリカポリシャーで
あって、塔内に強塩基性アニオン交換樹脂をその樹脂の
再生膨潤分だけの余裕をもたせて隙間なく充填し、向流
再生を行うパック型のシリカポリシャーを設置したこと
を特徴とする超純水製造装置を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an ion exchange type pure water production system with a margin in the column for regeneration swelling of the strong basic anion exchange resin. It is intended to provide an ultrapure water apparatus characterized by installing a packed silica polisher that performs countercurrent regeneration by filling without gaps, and further incorporates an ion exchange type pure water apparatus to relatively reduce raw water. A primary system for treating water quality close to ultrapure water and an ion exchange type cartridge polisher, which is used to further purify the treated water of the primary pure water system into ultrapure water and send it to the point of use An ultrapure water production apparatus comprising a secondary pure water system and a silica polisher for reducing the silica concentration of the treated water of the primary pure water system after the ion exchange pure water system in the primary pure water system. , Strong inside the tower An ultrapure water production apparatus characterized in that a packed type silica polisher for performing countercurrent regeneration is installed by filling a basic anion exchange resin with a margin for regeneration swelling of the resin without any gap and installing counter-current regeneration. It is.

【0007】[0007]

【作用】以下に、本発明を半導体産業における超純水製
造に適用する場合を例にして詳細に説明する。上記の1
次純水系に設置されるシリカポリシャーは2次純水系に
組込まれたCPのシリカ負荷を軽減するに十分なもので
あることが必要で、具体的には1次純水系シリカ濃度を
3ppb 以下望ましくは1ppb 以下から0まで低減し得る
ものでなければならず、従来から知られている並流再生
式のシリカポリシャーでは、この目的を達成することは
困難である。本発明は、1次純水系の処理水のシリカ濃
度を上述のような低値まで低減し、2次純水系のCPの
シリカ負荷を軽減することにより従来より安定な処理水
を長期に亘って得ることができるようにしたものであ
る。
The present invention will be described below in detail by taking as an example the case where the present invention is applied to ultrapure water production in the semiconductor industry. 1 above
The silica polisher installed in the secondary pure water system must be sufficient to reduce the silica load of the CP incorporated in the secondary pure water system. Specifically, the primary pure water silica concentration is preferably 3 ppb or less. Has to be reduced from 1 ppb or less to 0, and it is difficult to achieve this object with the conventionally known co-current regeneration type silica polisher. The present invention reduces the silica concentration of the treated water of the primary pure water system to the low value as described above, and reduces the silica load of the CP of the secondary pure water system, thereby providing a more stable treated water for a long time than before. It is something that can be obtained.

【0008】上述のような目的を達成するため、本発明
においては1次純水系に設置されるシリカポリシャー
を、強塩基性アニオン交換樹脂をその樹脂の再生膨潤分
だけの余裕をもたせて隙間なく塔内に充填し、再生時に
は、イオン交換塔において通常行われている樹脂の逆洗
を行わずに向流再生を行うパック型装置とした。シリカ
ポリシャーをこのようなパック型とすることによりシリ
カポリシャーの再生効率を向上せしめることができると
ともに、シリカ濃度が1ppb 以下というような極めて良
質の処理水を得ることができる。
In order to achieve the above object, in the present invention, the silica polisher installed in the primary pure water system is provided with a space between the strong basic anion exchange resin and the resin swelling of the resin so that the resin swells. A packed apparatus was used in which the resin was packed in the column and, at the time of regeneration, countercurrent regeneration was performed without performing backwashing of the resin which is usually performed in an ion exchange tower. By making the silica polisher into such a pack type, the regeneration efficiency of the silica polisher can be improved, and extremely high quality treated water having a silica concentration of 1 ppb or less can be obtained.

【0009】すなわち、イオン交換塔には、通水時にお
ける被処理水の通水方向と再生時における再生剤の通薬
方向とを同じとする並流再生方式と、再生時において再
生剤を被処理水の通水方向とは逆向きに通薬する向流再
生方式とがあるが、再生効率の向上、処理水質の向上と
いう観点からは向流再生方式の方が優れている。そし
て、向流再生方式のこのような利点を十分に発揮させる
には、被処理水の通水時には勿論のこと、通水終了時の
再生工程においてもイオン交換樹脂層をなるべく乱さな
いようにすることが重要である。しかしながら、従来の
向流再生方式のイオン交換塔においては、原水の通水に
よって原水中の濁質が樹脂槽に捕捉され、蓄積するた
め、再生工程の第1段階として必ず樹脂の逆洗を行い、
塔内の上記濁質を除去する操作を行っていたのでイオン
交換樹脂層が著しく乱されてしまい、そのため向流再生
方式の上記利点が十分に発揮されないという不具合があ
った。
That is, the ion exchange tower has a cocurrent regeneration system in which the flow direction of the water to be treated at the time of water passage is the same as the flow direction of the regenerant during regeneration, and There is a countercurrent regeneration system in which the chemical is passed in the opposite direction to the flow direction of the treated water, but the countercurrent regeneration system is superior from the viewpoint of improving the regeneration efficiency and the quality of the treated water. In order to sufficiently exhibit such advantages of the countercurrent regeneration method, the ion exchange resin layer should not be disturbed as much as possible in the regeneration step at the end of the water supply as well as during the passage of the water to be treated. This is very important. However, in the conventional counter-current regeneration type ion exchange tower, since the suspended matter in the raw water is captured and accumulated in the resin tank by the flow of the raw water, the resin is always backwashed as the first stage of the regeneration process. ,
Since the operation of removing the turbidity in the column was performed, the ion exchange resin layer was remarkably disturbed, so that the above advantage of the countercurrent regeneration method was not sufficiently exhibited.

【0010】このような不具合をなくすためには、再生
工程において上述のような逆洗を行わずに再生剤を通薬
すればよい訳である。しかし、従来のイオン交換塔にお
いては、再生工程の第1段階として樹脂の逆洗を行うと
いうのが常識であったために、樹脂層の上方の塔内に、
当該樹脂層の高さとほぼ同程度の、かなり大きな空間部
(以下これをフリーボードという)を設けるのが普通で
ある。しかし、このようなフリーボードが存在すると、
例えば被処理水の通水を下降流で行い、再生剤の通薬を
上昇流で行う向流再生方式にあっては、そのままでは再
生剤の上昇流通薬時にイオン交換樹脂が流動化してしま
うので、これを防止するために装置上の特別な工夫が必
要であり、また、これとは逆に被処理水の通水を上昇流
で行い、再生剤の通薬を下降流で行う向流再生方式にあ
っては、被処理水の通水時にイオン交換樹脂が流動化し
易く、したがって良質の処理水が得られない虞れがあ
る、という不具合があった。
In order to eliminate such inconvenience, it is only necessary to pass the regenerant without performing the above-mentioned back washing in the regeneration step. However, in conventional ion exchange towers, it was common sense to carry out backwashing of the resin as the first stage of the regeneration process, so the tower above the resin layer contained
Usually, a considerably large space portion (hereinafter, referred to as a free board) substantially equal to the height of the resin layer is provided. However, when such a free board exists,
For example, in a counter-current regeneration system in which the water to be treated is passed in a downward flow and the regenerant is passed in an upward flow, the ion exchange resin is fluidized when the regenerant flows upward as it is. In order to prevent this, a special device on the device is required, and conversely, countercurrent regeneration is performed in which the water to be treated is passed through the upflow and the regenerant is passed through the downflow. In the system, there is a problem that the ion-exchange resin is easily fluidized when the water to be treated flows, and thus there is a possibility that high quality treated water may not be obtained.

【0011】そこで、本発明者等は、シリカポリシャー
を向流再生方式で効率よく再生する方法について鋭意研
究を行ったところ、従来のフリーボードをなくしてその
分塔高を低くするとともに、塔内に強塩基性陰イオン交
換樹脂を、その樹脂の再生膨潤分(Cl形からOH形に
変化する時の膨潤分)だけの余裕をもたせて隙間なく充
填した構造とし、再生工程においては逆洗を行わないシ
リカポリシャーを開発するに至った。
The inventors of the present invention have conducted intensive studies on a method for efficiently regenerating silica polisher by the countercurrent regeneration method. A structure in which a strong basic anion exchange resin is filled without gaps with a margin only for the regenerated swelling of the resin (the swelling when it changes from Cl form to OH form). This led to the development of a silica polisher that did not do this.

【0012】すなわち、本発明におけるシリカポリシャ
ーは、前述のごとくイオン交換方式の純水装置の後段に
設置されるものであるから被処理水中の濁質は前段の純
水装置で大部分除去され、シリカポリシャーには濁質が
ほとんど持ち込まれず、それ故、再生工程において、濁
質を除去するための逆洗を行う必要がなくなる。
That is, since the silica polisher in the present invention is installed after the ion-exchange type pure water apparatus as described above, the suspended matter in the water to be treated is mostly removed by the preceding pure water apparatus. Almost no turbidity is brought into the silica polisher, and therefore it is not necessary to perform a backwash for removing the turbidity in the regeneration step.

【0013】上記シリカポリシャーの具体的構造として
は、例えば塔内の上部および下部に、水は通すがイオン
交換樹脂は通さない布製のスクリーンを貼り付けた目板
を付設すると共にこれら両目板間の塔内に強塩基性陰イ
オン交換樹脂を樹脂の再生膨潤分だけの余裕をもたせて
ほぼ隙間なく充填し、当該塔内に被処理水を下降流で通
水すると共に、水酸化ナトリウム溶液等のアルカリ再生
剤を上昇流で通薬する構成とするか、あるいは被処理水
を上昇流で通水し、アルカリ再生剤を下降流で通薬する
構成としたシリカポリシャーが挙げられる。このような
構造のシリカポリシャーにおいては、塔内に強塩基性陰
イオン交換樹脂が、多少の余裕高はあるもののほぼ隙間
なく充填されているので、再生剤を上昇流で流す方式に
おいては、再生剤を通常の流速より多少速めた流速で流
入させることによって樹脂層を上部の目板に容易に押し
付けることができ、また、被処理水を上昇流で流す方式
においては、被処理水の通水速度は通常、再生剤の通薬
速度よりかなり速いのでこの場合も樹脂層を上部の目板
に容易に押し付けることができ、よっていずれの場合に
おいても塔内の強塩基性アニオン交換樹脂が流動するこ
とはなくなる。したがって、向流再生方式の利点が最大
限に発揮され、再生効率の向上が図れると共に、シリカ
含有量の極めて低い処理水を得ることができるのであ
る。
As a specific structure of the silica polisher, for example, a perforated plate attached with a cloth screen that allows water to pass through but does not pass ion-exchange resin is attached to the upper and lower portions in the tower, and the gap between these perforated plates is provided. The column is filled with a strong basic anion exchange resin with sufficient space for the regenerated swelling of the resin, with almost no gap, and the water to be treated is passed downflow into the column, and a sodium hydroxide solution or the like is used. Silica polisher may be configured to pass an alkaline regenerating agent in ascending flow, or may be configured to pass water to be treated in ascending flow and pass an alkaline regenerating agent in descending flow. In the silica polisher of such a structure, the strong basic anion exchange resin is filled in the tower with little clearance, though there is some margin, so that in the method of flowing the regenerant in an upward flow, the regeneration is performed. The resin layer can be easily pressed against the upper perforated plate by allowing the agent to flow in at a slightly higher flow rate than the normal flow rate. Since the speed is usually much higher than the flow rate of the regenerant, the resin layer can be easily pressed against the upper face plate in this case, and in each case, the strong basic anion exchange resin in the column flows. Will not be. Therefore, the advantage of the countercurrent regeneration system is maximized, the regeneration efficiency can be improved, and treated water having an extremely low silica content can be obtained.

【0014】又1次純水系のイオン交換式純水装置は再
生設備を有する従来公知の純水装置を使用することがで
き、例えば塔内に強酸性カチオン交換樹脂を充填したカ
チオン交換塔と、同じく塔内に強塩基性アニオン交換樹
脂を充填したアニオン交換樹脂塔と、脱炭酸塔とからな
る2床3塔式(2B3T)純水装置あるいは、塔内に弱
酸性カチオン交換樹脂と強酸性カチオン交換樹脂とを積
層して充填したカチオン交換塔と、塔内に弱塩基性アニ
オン交換樹脂と強塩基性アニオン交換樹脂とを積層して
充填したアニオン塔と、脱炭酸塔とからなる複層床式の
2B3T純水装置や、強酸性カチオン交換樹脂と強塩基
性アニオン交換樹脂とを混合して同一塔内に充填した混
床式純水装置等を単独で、あるいは組合せて使用するこ
とができる。
As the primary pure water ion exchange type pure water apparatus, a conventionally known pure water apparatus having a regenerating facility can be used. For example, a cation exchange tower in which a strongly acidic cation exchange resin is filled in a tower, Similarly, a two-bed, three-column (2B3T) pure water apparatus comprising an anion exchange resin tower filled with a strongly basic anion exchange resin and a decarbonation tower, or a weakly acidic cation exchange resin and a strongly acidic cation in the tower A multi-layer bed consisting of a cation exchange tower filled with a stack of exchange resins, an anion tower filled with a stack of a weakly basic anion exchange resin and a strongly basic anion exchange resin in the tower, and a decarbonation tower A 2B3T pure water apparatus of the formula or a mixed-bed type pure water apparatus in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed and filled in the same column can be used alone or in combination. .

【0015】又上記のシリカポリシャーの充填樹脂とし
てI型の強塩基性アニオン交換樹脂を使用する場合アニ
オン交換樹脂の再生を高温高速流で行うことによりその
再生効率を著しく高めることができる。即ちアニオン交
換樹脂に吸着したシリカの脱着は、再生温度が高い程効
率がよいが、樹脂の耐熱性の問題から従来50℃以下で
行われている。しかしアニオン交換樹脂の再生におい
て、アルカリ再生剤を従来より高速流で通薬することに
よって接触時間を短くすれば、従来の許容温度を越える
温度で再生を行うことができる。特にアニオン交換樹脂
がI型の場合再生温度を55〜65℃で実施することが
できる。このアニオン交換樹脂の再生を高温高速流で行
う操作は2B3T純水装置のアニオン交換塔にも適用で
きる。
When a type I strongly basic anion exchange resin is used as the filler resin of the silica polisher, the regeneration efficiency can be remarkably increased by regenerating the anion exchange resin at a high temperature and a high flow rate. That is, desorption of the silica adsorbed on the anion exchange resin is more efficient as the regeneration temperature is higher, but it is conventionally performed at 50 ° C. or lower due to the problem of heat resistance of the resin. However, in the regeneration of the anion exchange resin, if the contact time is shortened by passing the alkali regenerant at a higher flow rate than before, the regeneration can be performed at a temperature exceeding the conventional allowable temperature. In particular, when the anion exchange resin is type I, the regeneration can be carried out at a temperature of 55 to 65 ° C. This operation of regenerating the anion exchange resin in a high-temperature high-speed flow can also be applied to an anion exchange column of a 2B3T pure water apparatus.

【0016】かくて本発明によれば前記のパック型のシ
リカポリシャーを1次純水系に特設することにより、外
部での特別のコンディショニングおよび再生を行うこと
が不可欠な2次純水系中のCPのシリカ負担を軽減しC
Pの長期安全運転および1次並びに2次の系全体の水質
向上を可能にするのみならず、CP自体の容積をも小さ
くでき、有機物を基準にした小設計が可能である。な
お、本発明装置は、上述のような半導体産業における超
純水製造に限らず、原水力・火力発電所における用水処
理、特に原子炉やボイラーの補給水の処理にも適用する
ことができる。
Thus, according to the present invention, the above-mentioned packed silica polisher is specially provided for the primary pure water system, so that it is indispensable to carry out special conditioning and regeneration outside the secondary pure water system. Reduce the silica burden and C
In addition to enabling long-term safe operation of P and improving the water quality of the primary and secondary systems as a whole, the volume of the CP itself can be reduced, and a small design based on organic matter is possible. The apparatus of the present invention can be applied not only to the production of ultrapure water in the semiconductor industry as described above, but also to the treatment of water in raw and thermal power plants, particularly the treatment of make-up water for nuclear reactors and boilers.

【0017】[0017]

【実施例】以下に本発明の実施例および比較例を示す。EXAMPLES Examples of the present invention and comparative examples are shown below.

【0018】実施例のフローシートは次の通りである。 The flow sheet of the embodiment is as follows.

【0019】又比較例のフローシートは第1の例では実
施例の1次純水系のPAC−APおよび混床式ポリシャ
ーを用いない以外は同一であり、他の例では、実施例の
1次純水系のPAC−APを用いない以外は同一であ
る。
The flow sheet of the comparative example is the same as that of the first embodiment except that the primary pure water-based PAC-AP and the mixed-bed polisher of the embodiment are not used. It is the same except that pure water PAC-AP is not used.

【0020】実施例および比較例の装置の仕様は次の通
りである。 1.原水 Na+K 23.5mgCaCO3 /l HCO3 =35.6mgCaCO3 /l Ca 34.8 〃 SO4 =15.0 〃 Mg 23.2 〃 Cl =15.0 〃 ────────────────── NO3 = 4.8 〃 Total Cation=81.5 〃 ───────────────── 塩構成アニオン=81.5 〃 CO2 =14.3 〃 SiO2 =15.7 〃 ───────────────── Total Anion =111.5 〃
The specifications of the devices of the examples and comparative examples are as follows. 1. Raw water Na + K 23.5 mg CaCO 3 / l HCO 3 = 35.6 mg CaCO 3 / l Ca 34.8 {SO 4 = 15.0} Mg 23.2 {Cl = 15.0} NO NO 3 = 4.8 〃 Total Cation = 81.5 〃 ───────────────── Salt constituent anion = 81.5 〃 CO 2 = 14.3 〃 SiO 2 = 15.7 〃 ───────────────── Total Anion = 111.5 〃

【0021】2.1次純水系の2B3T(再生時にイオ
ン交換樹脂層の逆洗を行う通常装置) (実施例及び比較例共通)
2. 2B3T of 2nd order pure water system (normal apparatus for backwashing ion exchange resin layer during regeneration) (common to Examples and Comparative Examples)

【0022】(注)K塔…アンバーライト(登録商標)
IRC−76(弱酸性カチオン交換樹脂)とアンバーラ
イトIR−124(強酸性カチオン交換樹脂)とを同一
塔内に積層して充填した複層床式の塔 A塔…アンバーライトIRA−94S(弱塩基性アニオ
ン交換樹脂)とアンバーライトIRA−400(強塩基
性アニオン交換樹脂)とを積層した複層床式の塔
(Note) K tower: Amberlite (registered trademark)
A multi-bed type tower in which IRC-76 (weakly acidic cation exchange resin) and Amberlite IR-124 (strongly acidic cation exchange resin) are stacked and packed in the same tower. Tower A: Amberlite IRA-94S (weakly) A multi-layered tower in which basic anion exchange resin) and Amberlite IRA-400 (strongly basic anion exchange resin) are laminated.

【0023】3.1次純水系混床式ポリシャー(再生設
備を有するもの) 強酸性カチオン交換樹脂(IR−124)と強塩基性ア
ニオン交換樹脂(IRA−400)とを1:1(容量
比)で混合したもの。
3. Primary pure water mixed-bed polisher (with regeneration equipment) A strong acid cation exchange resin (IR-124) and a strongly basic anion exchange resin (IRA-400) are used at a ratio of 1: 1 (by volume). ).

【0024】4.2次純水系のCP(カートリッジポリ
シャー) 外部で特別のコンディショニングおよび再生を行った強
酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを
混合した樹脂(オルガノ(株)製EG−4)をカラムに
充填したもの。通水速度はLV=50m/H
4. CP (cartridge polisher) of secondary pure water system A resin obtained by mixing a strongly acidic cation exchange resin and a strongly basic anion exchange resin, which have been specially conditioned and regenerated outside (EG-EG manufactured by Organo Corporation). 4) packed in a column. Water flow speed is LV = 50m / H

【0025】5.1次純水系のPAC−AP(シリカポ
リシャー)(本発明例の場合に使用) 樹脂の種類: IRA−400 樹脂 vol.: 11リットル 層 高: 80cm 余裕高: 8cm (注)PAC−AP入口水質すなわち2B3T出口シリ
カは0.1 mgSiO2 /l (注)再生 100g100%NaOH/l-R,3%NaOH,L
V14m/h 上昇流 通水 下降流
5. PAC-AP (silica polisher) of primary water type (used in the case of the present invention) Type of resin: IRA-400 Resin vol .: 11 liter Layer height: 80 cm Margin height: 8 cm (Note) PAC-AP inlet water quality, ie, 2B3T outlet silica is 0.1 mg SiO 2 / l (Note) Regeneration 100 g 100% NaOH / lR, 3% NaOH, L
V14m / h Ascending flow Water flow Downflow

【0026】(実施例)上記のフローシートに示す1次
純水系の2B3Tの後段にPAC−APを設置した超純
水系において前記の仕様に従って12ヶ月間運転を行っ
た結果、図1に示すように1次系出口及びCP入口のシ
リカ濃度は常に1ppb 以下を維持し、CP処理水も12
ヶ月間1ppb 以下を維持し続けた。
(Example) In an ultrapure water system in which a PAC-AP was installed after the primary pure water system 2B3T shown in the above flow sheet, the operation was performed for 12 months in accordance with the above specifications. In addition, the silica concentration at the primary system outlet and the CP inlet is always maintained at 1 ppb or less, and the CP treated water
Maintained below 1 ppb for months.

【0027】(比較例)上記のフローシートにおいてP
AC−APおよび混床式ポリシャーを用いない従来のシ
ステムにおいては1次系出口でシリカが20から30pp
b であり、この場合、図3に示すように運転開始後60
日間は5ppb の処理水がほぼ安定して得られたが、60
日以降徐々にシリカ濃度が上昇し、120日で破過に達
した。また、PAC−APのみを用いない従来のシステ
ムにおいては1次純水のシリカが5ppb 程度であり、こ
の場合、図2に示すように1ppb 以下の処理水が安定し
て得られたが、120日を過ぎた時点で、破過に達し
た。
Comparative Example In the above flow sheet, P
In a conventional system that does not use AC-AP and mixed-bed polisher, silica is 20 to 30 pp at the primary system outlet.
b, and in this case, as shown in FIG.
During the day, 5 ppb of treated water was obtained almost stably.
The silica concentration gradually increased after the day, and reached breakthrough in 120 days. In the conventional system not using only PAC-AP, the silica of the primary purified water is about 5 ppb. In this case, as shown in FIG. 2, the treated water of 1 ppb or less was obtained stably. At the end of the day, a breakthrough was reached.

【0028】(注)シリカの測定 東レエンジニアリング(株)製 高感度シリカ分析装置 SA−500による (発色吸光光度式 濃縮イオンクロマトグラフ法) 定量下限 0.2ppb SiO2 (Note) Measurement of Silica Using a high-sensitivity silica analyzer SA-500 manufactured by Toray Engineering Co., Ltd. (color-absorption spectrophotometric method, concentrated ion chromatography) Quantitative lower limit of 0.2 ppb SiO 2

【0029】[0029]

【発明の効果】本発明装置によれば2次純水系のCPの
シリカ負荷を低減し従来より安定な処理水を長期に亘っ
て得ることができ、従来装置ではCPは6ヶ月で交換し
なければならなかったが、本発明ではこのCPの交換ラ
イフが12ヶ月にも延びその工業的経済的価値は大であ
る。また、本発明装置を例えば発電所のボイラーの補給
水処理に適用した場合は、従来よりも著しくシリカ濃度
の低い補給水を得ることができ、ボイラー内でのシリカ
スケールの生成をより確実に防止することができる。
According to the apparatus of the present invention, the silica load of the CP of the secondary pure water system can be reduced, and the treated water more stable than before can be obtained for a long time. In the conventional apparatus, the CP must be replaced in six months. According to the present invention, the replacement life of this CP is extended to 12 months, and its industrial and economic value is great. Further, when the apparatus of the present invention is applied to, for example, the supply water treatment of a boiler in a power plant, it is possible to obtain makeup water having a significantly lower silica concentration than before, and to more reliably prevent the formation of silica scale in the boiler. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例における2次純水系のカートリッジポ
リシャー(CP)の入口シリカ濃度と処理水シリカ濃度
との関係を示す線図である。
FIG. 1 is a diagram showing a relationship between an inlet silica concentration and a treated water silica concentration of a secondary pure water type cartridge polisher (CP) in an example of the present invention.

【図2】比較例における同様の関係を示す線図である。FIG. 2 is a diagram showing a similar relationship in a comparative example.

【図3】他の比較例における同様の関係を示す線図であ
る。
FIG. 3 is a diagram showing a similar relationship in another comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−5272(JP,A) 特開 平4−78483(JP,A) 実開 昭57−21093(JP,U) 特公 平4−21556(JP,B2) 特公 昭55−41157(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C02F 1/42 B01J 47/02 - 47/08 B01J 49/00 - 49/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-5272 (JP, A) JP-A-4-78483 (JP, A) JP-A-57-21093 (JP, U) 21556 (JP, B2) JP 55-41157 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 1/42 B01J 47/02-47/08 B01J 49/00- 49/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換式の純水製造装置の後段に、
塔内に強塩基性アニオン交換樹脂をその樹脂の再生膨潤
分だけの余裕をもたせて隙間なく充填し、向流再生を行
うパック型のシリカポリシャーを設置したことを特徴と
する超純水製造装置。
1. An ion-exchange type pure water production apparatus,
An ultrapure water production apparatus characterized in that a packed silica polisher for countercurrent regeneration is installed in the column with a space filled with a strongly basic anion exchange resin with a margin for the regenerated swelling of the resin without gaps. .
【請求項2】 イオン交換式の純水装置を組込み、原水
を比較的超純水に近い水質まで処理するための1次純水
系と、イオン交換式のカートリッジポリシャーを組込
み、1次純水系の処理水を更に精製して超純水としこれ
をユースポイントに送り込むための2次純水系とを備え
た超純水製造装置において、1次純水系中にそのイオン
交換式純水装置に続いて1次純水系の処理水のシリカ濃
度を低減するためのシリカポリシャーであって、塔内に
強塩基性アニオン交換樹脂をその樹脂の再生膨潤分だけ
の余裕をもたせて隙間なく充填し、向流再生を行うパッ
ク型のシリカポリシャーを設置したことを特徴とする長
期安定運転可能な超純水製造装置。
2. A primary pure water system incorporating an ion exchange type pure water system for treating raw water to a water quality relatively close to ultrapure water, and a primary pure water system incorporating an ion exchange type cartridge polisher. In an ultrapure water production system having a secondary pure water system for further purifying the treated water into ultrapure water and sending it to a point of use, the ion exchange type pure water system is installed in the primary pure water system following the ion exchange pure water system. A silica polisher for reducing the silica concentration of treated water in a primary pure water system, in which a strong basic anion exchange resin is filled in a tower without gaps with an allowance for regeneration swelling of the resin, and a countercurrent flow An ultra-pure water production apparatus capable of long-term stable operation, wherein a packed silica polisher for regeneration is installed.
【請求項3】 パック型のシリカポリシャーのアニオン
交換樹脂の再生を高温高速流で行う請求項1または2記
載の超純水製造装置。
3. The ultrapure water production apparatus according to claim 1, wherein the anion exchange resin of the packed silica polisher is regenerated at a high temperature and a high flow rate.
JP4197687A 1992-07-01 1992-07-01 Ultrapure water production equipment Expired - Fee Related JP2941121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197687A JP2941121B2 (en) 1992-07-01 1992-07-01 Ultrapure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197687A JP2941121B2 (en) 1992-07-01 1992-07-01 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH0615263A JPH0615263A (en) 1994-01-25
JP2941121B2 true JP2941121B2 (en) 1999-08-25

Family

ID=16378683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197687A Expired - Fee Related JP2941121B2 (en) 1992-07-01 1992-07-01 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP2941121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797304B2 (en) * 2001-09-13 2011-10-19 日本錬水株式会社 Pure water production equipment
JP5081690B2 (en) * 2008-03-31 2012-11-28 オルガノ株式会社 Production method of ultra pure water

Also Published As

Publication number Publication date
JPH0615263A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
US7326348B2 (en) Method for removal and destruction of ammonia from an aqueous medium
US20100288308A1 (en) Method and system for producing ultrapure water, and method and system for washing electronic component members
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP2001215294A (en) Condensate demineralizer
JP3992299B2 (en) Ultrapure water production equipment
WO2007040266A1 (en) Process and equipment for demineralizing condensate
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2941121B2 (en) Ultrapure water production equipment
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JP3632343B2 (en) Pure water production method and ion exchange tower
JP2940651B2 (en) Pure water production equipment
US3975267A (en) Liquid treating system
JP2940648B2 (en) Pure water production equipment
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2742975B2 (en) Regeneration method of ion exchange device
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP2018086657A (en) Pure water production apparatus, ultrapure water production system, and pure water producing method
JP7570249B2 (en) Water treatment system and water treatment method
JP3674368B2 (en) Pure water production method
JPH0363439B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees