JP4869881B2 - Ion exchange apparatus and ion exchange method - Google Patents

Ion exchange apparatus and ion exchange method Download PDF

Info

Publication number
JP4869881B2
JP4869881B2 JP2006314420A JP2006314420A JP4869881B2 JP 4869881 B2 JP4869881 B2 JP 4869881B2 JP 2006314420 A JP2006314420 A JP 2006314420A JP 2006314420 A JP2006314420 A JP 2006314420A JP 4869881 B2 JP4869881 B2 JP 4869881B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
water
regenerant
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006314420A
Other languages
Japanese (ja)
Other versions
JP2008126147A (en
Inventor
有宏 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2006314420A priority Critical patent/JP4869881B2/en
Publication of JP2008126147A publication Critical patent/JP2008126147A/en
Application granted granted Critical
Publication of JP4869881B2 publication Critical patent/JP4869881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、イオン交換装置及びこのイオン交換装置を用いたイオン交換方法に関し、さらに詳しくは、例えばボイラ給水や電子部品等の洗浄用水等に使用される純水を製造する際に好適に用いられるイオン交換装置及びこのイオン交換装置を用いたイオン交換方法に関する。   The present invention relates to an ion exchange device and an ion exchange method using the ion exchange device. More specifically, the present invention is suitably used for producing pure water used for cleaning water for boiler feed water, electronic parts, and the like. The present invention relates to an ion exchange device and an ion exchange method using the ion exchange device.

従来のイオン交換装置及びイオン交換方法として代表的なものとしては、例えば、2床3塔式イオン交換装置や混床式イオン交換装置等がある。2床3塔式イオン交換装置は、例えば、強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔と、これら両者の間に配置された脱炭酸塔とを備え、例えば原水の下降流通水によりカチオン交換塔において原水中のカルシウムイオン、マグネシウムイオン、ナトリウムイオン等のカチオンを強酸性カチオン交換樹脂の水素イオンとイオン交換した後、脱炭酸塔内において酸性下で炭酸イオンを炭酸ガスとして脱炭酸し、次いでアニオン交換塔における下降流通水により原水中の硫酸イオン、塩素イオン等のアニオンやシリカを強塩基性アニオン交換樹脂の水酸化物イオンとイオン交換して純水を製造するようにしている。そして、上記各イオン交換樹脂の再生を行う場合には、例えば、各イオン交換塔にそれぞれの再生剤を通水と同一方向に通液を行う並流再生方式、あるいはそれぞれの再生剤を通水と反対方向に通液を行う向流再生方式がある。   Typical examples of conventional ion exchange devices and ion exchange methods include a two-bed / three-column ion exchange device and a mixed bed ion exchange device. The two-bed / three-column ion exchange device includes, for example, a cation exchange column filled with a strongly acidic cation exchange resin, an anion exchange column filled with a strongly basic anion exchange resin, and a desorption placed between both of them. For example, after ion exchange of cations such as calcium ions, magnesium ions and sodium ions in the raw water with hydrogen ions of the strongly acidic cation exchange resin in the cation exchange tower using the downward flowing water of the raw water, In the acid, the carbonate ion is decarboxylated as carbon dioxide gas, and then the anion such as sulfate ion and chlorine ion in the raw water and silica are converted to the hydroxide ion and ion of the strongly basic anion exchange resin by the downward flowing water in the anion exchange tower. It is exchanged to produce pure water. When each of the ion exchange resins is regenerated, for example, a cocurrent regeneration system in which each regenerant is passed in the same direction as each regenerant, or each regenerant is passed through. There is a counter-current regeneration system that allows liquid to flow in the opposite direction.

一方、混床式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合された混合イオン交換樹脂層からなる充填層を有するイオン交換塔を備え、例えば、原水の下降流通水によりイオン交換塔において原水中のカチオン及びアニオンを高効率で同時にイオン交換して純度の高い純水を製造するようにしている。そして、各イオン交換樹脂の再生を行う時には同一塔内で、混合イオン交換樹脂層を逆洗分離し、各イオン交換樹脂の比重差により上層に強塩基性アニオン交換樹脂層を、下層に強酸性カチオン交換樹脂層を形成した後、各イオン交換樹脂層にそれぞれの再生剤を通液して両イオン交換樹脂を個別に再生するようにしている。この再生操作は同一塔内で行われることもあるし、各イオン交換樹脂を別の塔に個別に抜き出し、それぞれの塔内で個別に再生を行うこともある。   On the other hand, the mixed bed type ion exchange apparatus includes an ion exchange tower having a packed bed composed of a mixed ion exchange resin layer in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed. High-purity pure water is produced by simultaneously exchanging cations and anions in raw water with high efficiency in an ion exchange tower with water. When each ion exchange resin is regenerated, the mixed ion exchange resin layer is backwashed and separated in the same column. Due to the specific gravity difference of each ion exchange resin, a strong basic anion exchange resin layer is formed in the upper layer and a strong acidity is formed in the lower layer. After forming the cation exchange resin layer, the respective regenerants are passed through each ion exchange resin layer to regenerate both ion exchange resins individually. This regeneration operation may be performed in the same column, or each ion exchange resin may be individually extracted in another column and may be individually regenerated in each column.

しかしながら、従来の2床3塔式イオン交換装置の場合には、塔構成がカチオン塔、脱炭酸塔及びアニオン塔の3塔構成であるため、装置としては大型化して設置面積が大きくなり、コスト的にも高くなるという課題があった。一方、混床式イオン交換装置の場合には、イオン交換塔としては一塔で済み装置自体としては小型化することができるが、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合しているため、両イオン交換樹脂が互いに付着して混合樹脂塊を作る、いわゆるクランピング現象が発生することがある。この混合樹脂塊は再生時の逆洗分離操作では完全に分離させることが難しく、逆洗分離操作による分離後の強酸性カチオン交換樹脂層と強塩基性アニオン交換樹脂層の双方に混合樹脂塊が混じるため、再生操作を行っても各層に存在する混合樹脂塊が再生不良となり、あるいは混合樹脂塊がそれぞれの層内で逆再生を受ける。この状態のまま混合操作を行うと、例えばナトリウム型に逆再生された強酸性カチオン交換樹脂はナトリウムを、塩素イオン型に逆再生された強塩基性アニオン交換樹脂は塩化物イオン型をそれぞれ放出するが、塔出口付近で放出されたこれらの不純物は除去されず、処理水の純度を低下させてしまう。   However, in the case of the conventional two-bed / three-column ion exchange apparatus, the tower structure is a three-column structure including a cation tower, a decarbonation tower, and an anion tower. There was a problem that it would be expensive. On the other hand, in the case of a mixed bed type ion exchange apparatus, only one ion exchange tower is required and the apparatus itself can be reduced in size, but a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed. Therefore, a so-called clamping phenomenon may occur in which both ion exchange resins adhere to each other to form a mixed resin lump. This mixed resin mass is difficult to completely separate by the backwash separation operation during regeneration, and the mixed resin mass is present in both the strongly acidic cation exchange resin layer and the strongly basic anion exchange resin layer after separation by the backwash separation operation. Therefore, even if the regeneration operation is performed, the mixed resin lump existing in each layer becomes defective in regeneration, or the mixed resin lump is reversely regenerated in each layer. When mixing operation is performed in this state, for example, a strongly acidic cation exchange resin reversely regenerated to the sodium type releases sodium, and a strongly basic anion exchange resin reversely regenerated to the chloride ion type releases the chloride ion type. However, these impurities released near the tower outlet are not removed, and the purity of the treated water is lowered.

また、このようなクランピング現象がない場合であっても、混床式イオン交換装置においては再生剤通液前に混合イオン交換樹脂層を逆洗分離する必要があり、また再生剤通液後には再度分離したイオン交換樹脂を混合する必要があるため、再生工程が複雑となり再生時間、及び排水量が増加してしまう課題がある。また、混床式の場合には再生工程で逆洗分離操作をイオン交換塔内で行うため、逆洗時にイオン交換樹脂が展開するスペースを充填層の上層に必要なため塔高が高くとなり、装置的に必ずしも小型化することができないという課題があった。まして、再生操作を別塔で行う場合には再生塔が別途必要となり、装置の大型化を免れない。   Even in the absence of such a clamping phenomenon, in a mixed bed type ion exchange apparatus, it is necessary to backwash and separate the mixed ion exchange resin layer before passing the regenerant, and after passing the regenerant, Since it is necessary to mix the ion exchange resin separated again, there is a problem that the regeneration process becomes complicated and the regeneration time and the amount of drainage increase. In the case of a mixed bed type, since the backwash separation operation is performed in the ion exchange tower in the regeneration step, the height of the tower becomes high because the space above which the ion exchange resin develops during backwashing is required in the upper layer of the packed bed, There was a problem that it was not always possible to reduce the size of the apparatus. In addition, when the regeneration operation is performed in a separate tower, a separate regeneration tower is required, and an increase in the size of the apparatus cannot be avoided.

混合イオン交換樹脂のクランピングを防止したイオン交換装置として、例えば強酸性カチオン交換樹脂層上に強塩基性アニオン交換樹脂層を積層し、下降流通水を行う複層式イオン交換装置もあるが、この装置の場合には通水により上流側のイオン交換樹脂が徐々に下流側のイオン交換樹脂層内に入り込むため、再生時に他方の樹脂層に入り込んだイオン交換樹脂が他方の再生剤により逆再生され、通水時に十分な純度を得られないと言う課題があった。これを解消するために再生前に分離のための逆洗を行うのであれば、混床式イオン交換塔と同様に再生排水の増加、及び装置の小型化などの課題がある。また、両イオン交換樹脂が接触して積層されているために、両イオン交換樹脂層の界面近傍で相互の再生剤による逆再生部分を生じることとなり、十分な純度が得られないという課題があった。   As an ion exchange device that prevents mixed ion exchange resin clamping, for example, there is also a multilayer ion exchange device in which a strongly basic anion exchange resin layer is laminated on a strongly acidic cation exchange resin layer and descending water flows. In the case of this device, the ion exchange resin on the upstream side gradually enters the ion exchange resin layer on the downstream side by passing water, so that the ion exchange resin that has entered the other resin layer during regeneration is reversely regenerated by the other regenerant. However, there was a problem that sufficient purity could not be obtained during water flow. If backwashing for separation is performed before regeneration in order to solve this problem, there are problems such as an increase in regeneration wastewater and downsizing of the apparatus as in the mixed bed type ion exchange tower. In addition, since both ion exchange resins are laminated in contact with each other, reverse regeneration due to the mutual regenerant occurs near the interface between both ion exchange resin layers, and there is a problem that sufficient purity cannot be obtained. It was.

そこで、イオン交換装置を一つの塔として装置をコンパクトにすることができると共に、下流側の樹脂層に上流側のイオン交換樹脂が入り込む事を防止するために同一塔内に形成された強酸性カチオン交換樹脂層と強塩基性アニオン交換樹脂層の各層に被処理水を通水し、各イオン交換樹脂層に被処理水の通水方向とは逆の方向にそれぞれ再生剤を通液するイオン交換方法に用いられる装置であって、強塩基性アニオン交換樹脂層と強酸性カチオン交換樹脂層との間に、被処理水の流通は許すが、各イオン交換樹脂の流通を阻止する仕切り板を設けて構成されたイオン交換装置が知られている。このような装置では、シリカリークや再生時に生じる逆再生部分が処理水の水質に影響を与えることを防止するために、各イオン交換樹脂層の再生の際に再生剤が他の樹脂層に接触しないように再生剤に対して同一方向、もしくは反対方向で支持水を他の樹脂層に流すことを行っている。(例えば、特許文献1参照。)。
特開平10−137751号公報
Therefore, the apparatus can be made compact by using the ion exchange apparatus as one tower, and strongly acidic cations formed in the same tower in order to prevent the upstream ion exchange resin from entering the downstream resin layer. Ion exchange in which water to be treated is passed through each layer of the exchange resin layer and strongly basic anion exchange resin layer, and a regenerant is passed through each ion exchange resin layer in the direction opposite to the direction of water to be treated. An apparatus used in the method, wherein a partition plate is provided between the strongly basic anion exchange resin layer and the strongly acidic cation exchange resin layer, which allows the water to be treated to flow but prevents the flow of each ion exchange resin. There is known an ion exchange device configured as described above. In such an apparatus, in order to prevent silica leaks or reverse regeneration parts that occur during regeneration from affecting the quality of the treated water, the regenerant comes into contact with other resin layers during the regeneration of each ion exchange resin layer. In order to avoid this, the supporting water is made to flow in the other resin layer in the same direction or in the opposite direction with respect to the regenerant. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 10-137751

しかしながら、このように仕切り板を設けて樹脂を分離して、その仕切り板の上部近傍に再生剤の出入管を設置した場合には、再生剤の出入管が上層のイオン交換樹脂層に埋設される事となり、下層のイオン交換樹脂層の再生を行う際に再生剤の出入管から供給される再生剤により、再生剤の出入管付近のイオン交換樹脂が逆再生されるために、処理水の純度が十分得られないことやイオン交換容量が低下する課題がある。他方、再生剤の出入管を仕切り板の下部近傍に設置した場合には、上層のイオン交換層への影響は少なくなるが、下層のイオン交換層の上部の処理水側を逆再生する事になるため、処理水の純度への影響は更に大きくなる。このような上層のイオン交換層への再生剤通液時の下層イオン交換樹脂への逆再生を防止する為に、上層のイオン交換層へ再生剤を供給し仕切り板近傍の再生剤出入管より排水すると同時に、塔下方より下層のイオン交換樹脂層を通して再生剤出入管よりイオン交換水を支持水として通水する事で、上層のイオン交換樹脂層の再生剤が下層のイオン交換樹脂層を逆再生するのを防止する方法がある。しかし、再生剤出入管が配置されている仕切り板の下部近傍についてはイオン交換樹脂が膨潤する事を考慮した隙間が存在する事になる。この為、再生時に用いられる再生剤と支持水が仕切り板近傍に存在する空間で乱流を起こすために、仕切り板近傍に存在する空間内の水は再生剤と水が混和する混和層となる。この混和層が再生剤を通液しない下層の樹脂層のイオン交換樹脂層とも接触する事によって下層の樹脂層を逆再生する事になる。この為、処理水の純度が低下したり、イオンの交換容量が少なくなってしまうことがあった。これを緩和するために再生剤の流量に比べて支持水の流量を多くする手段がとられているが、再生時の排水量が増加してしまう課題がある。   However, when the partition plate is provided in this way to separate the resin and the regenerant inlet / outlet pipe is installed near the upper part of the partition plate, the regenerant inlet / outlet pipe is embedded in the upper ion exchange resin layer. Therefore, when the lower ion exchange resin layer is regenerated, the regenerant supplied from the regenerant inlet / outlet pipe reversely regenerates the ion exchange resin near the regenerator inlet / outlet pipe. There are problems in that sufficient purity cannot be obtained and ion exchange capacity decreases. On the other hand, when the inlet / outlet pipe of the regenerant is installed near the lower part of the partition plate, the influence on the upper ion exchange layer is reduced, but the treated water side of the upper part of the lower ion exchange layer is reversely regenerated. Therefore, the influence on the purity of the treated water is further increased. In order to prevent such reverse regeneration to the lower ion exchange resin when the regenerant is passed through the upper ion exchange layer, the regenerant is supplied to the upper ion exchange layer from the regenerant inlet / outlet pipe near the partition plate. At the same time as draining, the regenerant of the upper ion exchange resin layer reverses the lower ion exchange resin layer by passing ion exchange water as support water from the regenerant inlet / outlet pipe through the lower ion exchange resin layer from the bottom of the tower. There are ways to prevent playback. However, there is a gap in the vicinity of the lower part of the partition plate where the regenerant inlet / outlet pipe is arranged in consideration of the swelling of the ion exchange resin. For this reason, since the regenerant used during regeneration and supporting water cause turbulent flow in the space in the vicinity of the partition plate, the water in the space in the vicinity of the partition plate becomes a mixed layer in which the regenerant and water are mixed. . When this admixture layer also comes into contact with the ion exchange resin layer of the lower resin layer through which the regenerant does not pass, the lower resin layer is reversely regenerated. For this reason, the purity of the treated water may be reduced, or the ion exchange capacity may be reduced. In order to alleviate this, means for increasing the flow rate of the supporting water compared to the flow rate of the regenerant is taken, but there is a problem that the amount of drainage during regeneration increases.

本発明は、上記課題を解決するためになされたもので、イオン交換装置の大型化や排水量の増加をすることなく、高純度の水を効率よく製造することができるイオン交換装置及びこのイオン交換装置を用いたイオン交換方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an ion exchange device capable of efficiently producing high-purity water without increasing the size of the ion exchange device or increasing the amount of drainage, and the ion exchange. An object of the present invention is to provide an ion exchange method using an apparatus.

本発明のイオン交換装置は、同一塔内に積層して形成されたカチオン交換樹脂層とアニオン交換樹脂層の2種類のイオン交換樹脂層と、この2種類のイオン交換樹脂層の間に設けられた被処理水の流通は許すが、イオン交換樹脂の流通を阻止するように構成された仕切り板と、その仕切り板の上部近傍に再生剤の出入管を設けたイオン交換装置であって、再生剤の出入管全体が、イオン交換能力を保持しない支持材で覆われていることを特徴とするものである。   The ion exchange apparatus of the present invention is provided between two types of ion exchange resin layers, a cation exchange resin layer and an anion exchange resin layer formed by laminating in the same tower, and the two types of ion exchange resin layers. An ion exchange apparatus provided with a partition plate configured to prevent the flow of ion exchange resin, but provided with an inlet / outlet pipe of a regenerant near the upper portion of the partition plate. The entire inlet / outlet pipe of the agent is covered with a support material that does not retain the ion exchange capability.

また、本発明のイオン交換方法は、同一塔内に積層して形成されたカチオン交換樹脂層とアニオン交換樹脂層の2種類のイオン交換樹脂層と、この2種類のイオン交換樹脂層の間に設けられた被処理水の流通は許すが、イオン交換樹脂の流通を阻止するように構成された仕切り板と、その仕切り板の上部近傍に再生剤の出入管と、再生剤の出入管全体を覆うイオン交換能力を保持しない支持材と、からなるイオン交換装置を用いたイオン交換方法であって、イオン交換樹脂層の各層に被処理水を上昇流で通水する通水工程と、各イオン交換樹脂層にそれぞれ再生剤を下降流で通液する再生工程と、通水工程と前記再生工程とを交互に行う際に、先に上層へ再生剤を通液し、その後に下層へ再生剤を通液する上昇流通水、下降流再生により各工程を行うことを特徴とするものである。   In addition, the ion exchange method of the present invention includes two types of ion exchange resin layers, a cation exchange resin layer and an anion exchange resin layer, which are formed by being laminated in the same tower, and the two types of ion exchange resin layers. Although the distribution of the water to be treated is allowed, a partition plate configured to block the flow of the ion exchange resin, an inlet / outlet pipe of the regenerant near the upper part of the partition plate, and the entire inlet / outlet pipe of the regenerant An ion exchange method using an ion exchange device comprising: a support material that does not retain the ion exchange capacity to cover, and a water flow step for passing water to be treated in an upward flow to each layer of the ion exchange resin layer, and each ion When alternately performing the regeneration step in which the regenerant is passed through the exchange resin layer in a descending flow, the water flow step and the regeneration step alternately, the regenerant is first passed through the upper layer and then the regenerant into the lower layer. Ascending circulating water flowing through and downflow regeneration It is characterized in that to perform.

本発明のイオン交換装置及びイオン交換方法によれば、再生剤の出入管を支持材により覆うことで、他方の再生剤と支持水による乱流によって生じる混和層の発生を抑える事ができ、混和層による再生剤を通液しない側のイオン交換層の逆再生を防止し、装置の大型化や排水量を増加することなく、高純度の水を効率よく製造する事ができる。   According to the ion exchange apparatus and the ion exchange method of the present invention, by covering the inlet / outlet pipe of the regenerant with the support material, it is possible to suppress the generation of the mixed layer caused by the turbulent flow caused by the other regenerant and the support water. By preventing reverse regeneration of the ion exchange layer on the side where the regenerant does not pass through the layer, high-purity water can be efficiently produced without increasing the size of the apparatus and increasing the amount of drainage.

ここで、本発明に用いることができるカチオン交換樹脂としては、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂又はこれらを混合したカチオン交換樹脂を用いることができ、アニオン交換樹脂としては、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂又はこれらを混合したアニオン交換樹脂を用いることができる。   Here, as the cation exchange resin that can be used in the present invention, a strong acid cation exchange resin, a weak acid cation exchange resin, or a cation exchange resin obtained by mixing these can be used. An anion exchange resin, a weakly basic anion exchange resin, or an anion exchange resin obtained by mixing them can be used.

以下、図1〜3に示す実施形態に基づいて本発明を説明する。なお、各図中、図1〜2はそれぞれ本発明のイオン交換装置の実施形態を示す概念図で、図3は図1に示すイオン交換装置を適用した純水製造装置の要部を示すフロー図である。   Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In addition, in each figure, FIGS. 1-2 is a conceptual diagram which shows embodiment of the ion exchange apparatus of this invention, respectively, FIG. 3 is a flow which shows the principal part of the pure water manufacturing apparatus to which the ion exchange apparatus shown in FIG. 1 is applied. FIG.

(第1の実施形態)
図1に示すイオン交換装置10は、図1に示したように、塔本体11と、この塔本体11内に強酸性カチオン交換樹脂により形成された上層12と、上記塔本体11内に強塩基性アニオン交換樹脂により形成された下層13と、これら上下各層12、13を横方向に仕切る仕切板14と、この仕切板14の上方近傍にこれと平行に設けられた出入管15と、出入管15を覆っているイオン交換能力を保持しない支持材16と、を備え、上昇流通水、下降流再生を行うように構成されている。
(First embodiment)
As shown in FIG. 1, the ion exchange apparatus 10 shown in FIG. 1 includes a tower body 11, an upper layer 12 formed of a strongly acidic cation exchange resin in the tower body 11, and a strong base in the tower body 11. A lower layer 13 made of anionic anion exchange resin, a partition plate 14 for partitioning the upper and lower layers 12 and 13 in the lateral direction, an inlet / outlet pipe 15 provided in the vicinity of the upper portion of the partition plate 14 in parallel therewith, and an inlet / outlet pipe And a support material 16 that does not retain the ion exchange capability covering the upper part 15 and is configured to perform upward flow water and downward flow regeneration.

そして、上層12の強酸性カチオン交換樹脂は仕切板14によって支持され、下層13の強塩基性アニオン交換樹脂は塔本体11内の下部に仕切板14と平行に設けられた第2仕切板17によって支持されている。従って、上層12の強酸性カチオン交換樹脂は仕切板14によって下層13から区画されているため、上層12の強酸性カチオン交換樹脂が下層13の強塩基性アニオン交換樹脂と混合することはない。また、下層13の強塩基性アニオン交換樹脂の上面と仕切板14との間には再生時に膨潤する量に見合う僅かな隙間が形成されている。また、塔本体11内の上部には第3仕切板18が仕切板14と平行に設けられ、第3仕切板18と強酸性カチオン交換樹脂層12の上面に強塩基性アニオン交換樹脂の場合と同様に再生時に膨潤する量に見合う僅かな隙間が形成されている。本発明において各仕切板の下方に形成する隙間は、上述のように再生時に膨潤する量に見合った僅かな隙間のことであり、後述する各実施形態における隙間の意味も同様である。   The strongly acidic cation exchange resin of the upper layer 12 is supported by the partition plate 14, and the strongly basic anion exchange resin of the lower layer 13 is supported by the second partition plate 17 provided in the lower part of the tower body 11 in parallel with the partition plate 14. It is supported. Therefore, since the strong acid cation exchange resin of the upper layer 12 is partitioned from the lower layer 13 by the partition plate 14, the strong acid cation exchange resin of the upper layer 12 is not mixed with the strongly basic anion exchange resin of the lower layer 13. Further, a slight gap is formed between the upper surface of the strongly basic anion exchange resin of the lower layer 13 and the partition plate 14 corresponding to the amount of swelling during regeneration. In addition, a third partition plate 18 is provided in the upper part of the tower body 11 in parallel with the partition plate 14, and the upper surface of the third partition plate 18 and the strong acid cation exchange resin layer 12 is a strongly basic anion exchange resin. Similarly, a slight gap corresponding to the amount that swells during reproduction is formed. In the present invention, the gap formed below each partition plate is a slight gap corresponding to the amount of swelling during reproduction as described above, and the meaning of the gap in each embodiment described later is also the same.

また、上記各仕切板14、17、18はいずれも上下の空間を連通する多数の連通手段が全面に均等に分散して形成され、これらの連通手段は被処理水や再生剤が流通し、各イオン交換樹脂や支持材が流通できないように構成されている。   In addition, each of the partition plates 14, 17, and 18 is formed by uniformly distributing a large number of communication means communicating the upper and lower spaces over the entire surface, and the water to be treated and the regenerant are circulated through these communication means, Each ion exchange resin and support material are configured so as not to circulate.

そして、原水が流入する流入管11Aは塔本体11の塔底に接続され、その処理水の流出管11Bは塔頂に接続され、原水は流入管11Aから塔本体11内へ上昇流で流入し、上昇流通水の間に下層13の強塩基性アニオン交換樹脂、支持材16、上層12の強酸性カチオン交換樹脂の順で通水してイオン交換され、不純物イオンが除去された処理水が流出管11Bから流出するようにしてある。   The inflow pipe 11A into which the raw water flows is connected to the tower bottom of the tower body 11, the outflow pipe 11B of the treated water is connected to the top of the tower, and the raw water flows into the tower body 11 from the inflow pipe 11A. , The strongly basic anion exchange resin of the lower layer 13, the support material 16, and the strongly acidic cation exchange resin of the upper layer 12 are passed through the rising water in this order for ion exchange, and treated water from which impurity ions are removed flows out. It flows out of the tube 11B.

また、上記塔本体11の塔底の流入管11Aには下層13の強塩基性アニオン交換樹脂の再生廃液が流出する第2流出管11Cが接続され、塔頂の流出管11Bには酸再生剤が流入する第2流入管11Dが接続されている。さらに、塔本体11内の出入管15には外部配管15Aが接続され、この外部配管15Aからアルカリ再生剤が流入して出入管15を介して下層13の強塩基性アニオン交換樹脂全体に分散供給され、また、この出入管15を介して上層12の強酸性カチオン交換樹脂からの酸再生廃液が外部配管15Aから排出するようにしてある。   Further, a second outflow pipe 11C from which the regeneration waste liquid of the strongly basic anion exchange resin in the lower layer 13 flows out is connected to the inflow pipe 11A at the bottom of the tower main body 11, and an acid regenerant is connected to the outflow pipe 11B at the top of the tower. Is connected to the second inflow pipe 11D. Further, an external pipe 15A is connected to the inlet / outlet pipe 15 in the tower body 11, and an alkali regenerant flows from the outer pipe 15A and is distributed and supplied to the entire strongly basic anion exchange resin in the lower layer 13 through the inlet / outlet pipe 15. In addition, the acid regeneration waste liquid from the strong acid cation exchange resin of the upper layer 12 is discharged from the external pipe 15A through the inlet / outlet pipe 15.

従って、再生時には、酸再生剤は第2流入管11Dから供給され、塔本体11の頂部空間に流入し、第3仕切板18を介して上層12の強酸性カチオン交換樹脂の上面全体に分散されて上層12及び支持材16を下降流で順に通液し、出入管15を経由して外部配管15Aから排出される。酸再生剤注入と同時に11Aより支持水としてイオン交換水が供給され、塔本体11の下部空間に流入し、第2仕切板17を介して下層13の強塩基性アニオン交換樹脂下面全体に分散されて下層13及び支持材16を上向流で順に通水し、出入管15を経由して酸再生剤と同時に外部配管15Aから排出される。また、アルカリ再生剤は出入管15を介して支持材16の最下部に流入し、仕切板14を介して下層13の強塩基性アニオン交換樹脂の上面全体に分散されて下層13を下降流で通液し、アルカリ再生廃液が第2仕切板17を経由して第2流出管11Cから排出される。   Therefore, at the time of regeneration, the acid regenerant is supplied from the second inflow pipe 11D, flows into the top space of the tower body 11, and is dispersed throughout the upper surface of the strongly acidic cation exchange resin of the upper layer 12 through the third partition plate 18. Then, the upper layer 12 and the support material 16 are sequentially passed in a descending flow, and are discharged from the external pipe 15 </ b> A via the inlet / outlet pipe 15. Simultaneously with the injection of the acid regenerant, ion exchange water is supplied as support water from 11A, flows into the lower space of the tower body 11, and is dispersed on the entire lower surface of the strongly basic anion exchange resin of the lower layer 13 through the second partition plate 17. Then, the lower layer 13 and the support material 16 are sequentially passed in an upward flow, and are discharged from the external pipe 15 </ b> A simultaneously with the acid regenerant via the inlet / outlet pipe 15. Further, the alkali regenerant flows into the lowermost part of the support material 16 via the inlet / outlet pipe 15 and is dispersed throughout the upper surface of the strongly basic anion exchange resin of the lower layer 13 via the partition plate 14, and flows downward in the lower layer 13. The alkali regeneration waste liquid passes through the second partition plate 17 and is discharged from the second outflow pipe 11C.

再生順序としては、先に通水出口側に位置する上層12の強酸性カチオン交換樹脂を再生し、後で通水入口側に位置する下層13の強塩基性アニオン交換樹脂を再生するようにしてある。このように通水出口側である上層12の強酸性カチオン交換樹脂を先に向流再生することにより、処理水の塩化物イオン等の不純物アニオン量を小さくすることができる。例えば、下層13である強塩基性アニオン交換樹脂を先に再生すると、後に再生する上層12である強酸性カチオン交換樹脂の再生剤が処理水の純度に最も影響を与える強塩基性アニオン交換樹脂層の上層部に接触する場合があり、再生剤が塩酸である場合には、そのイオン型を一部塩化物イオン型としてしまう。従って、この塩化物イオンが通水中に徐々に脱離することにより、処理水の不純物アニオン量を増加させてしまう。   As the regeneration order, the strong acid cation exchange resin of the upper layer 12 positioned on the water flow outlet side is regenerated first, and the strong base anion exchange resin of the lower layer 13 positioned on the water flow inlet side is regenerated later. is there. Thus, the amount of impurity anions such as chloride ions in the treated water can be reduced by regenerating the strongly acidic cation exchange resin of the upper layer 12 on the water outlet side first. For example, when the strongly basic anion exchange resin as the lower layer 13 is regenerated first, the regenerating agent of the strongly acidic cation exchange resin as the upper layer 12 to be regenerated later has the greatest influence on the purity of the treated water. In the case where the regenerant is hydrochloric acid, the ionic form is partly changed to the chloride ion form. Accordingly, the chloride ions are gradually desorbed into the water flow, thereby increasing the amount of impurity anions in the treated water.

しかしながら、先に上層12を再生し、後に下層13を再生する場合には、例えば塩化物イオン型となった強塩基性アニオン交換樹脂は、その後に下層の再生を行うために上述のような塩化物イオン型の強塩基性アニオン交換樹脂が含まれる量は少なくなり、処理水の不純物の量は上述の再生順序に比べて少なくなる。なお、先に上層12を再生し、後に下層13を再生する場合には、折角、再生した上層12の強酸性カチオン交換樹脂に下層13の再生剤である水酸化ナトリウムが接触し、そのイオン型が一部ナトリウム型となってしまうが、このナトリウム型の樹脂は、強酸性カチン交換樹脂の下層部(通水上流側)に位置することになり、処理水の導電率を低下させる影響は少なくなる。   However, when the upper layer 12 is regenerated first and the lower layer 13 is regenerated later, for example, a strongly basic anion exchange resin that has become a chloride ion type is subjected to chlorination as described above in order to regenerate the lower layer thereafter. The amount of the product ion type strongly basic anion exchange resin is reduced, and the amount of impurities in the treated water is reduced as compared with the above regeneration order. In the case where the upper layer 12 is regenerated first and the lower layer 13 is regenerated later, the strongly acidic cation exchange resin of the regenerated upper layer 12 is contacted with sodium hydroxide, which is the regenerant of the lower layer 13, and its ionic type. Will be partly sodium type, but this sodium type resin will be located in the lower layer (upstream side of the water flow) of the strongly acidic cutin exchange resin and will have little effect on reducing the conductivity of the treated water. Become.

また、この実施形態においては、支持材16が設けられているため、上層12のイオン交換樹脂は出入管15から離れて存在し、下層13のイオン交換樹脂の再生剤による汚染の影響を受けにくくなっている。更に再生剤の出入管付近は空間では無く支持材で覆われているため、上層12のイオン交換樹脂再生時に上層12より出入管15を経由して外部配管15Aに再生剤が排出されると同時に11Aより支持水としてイオン交換水を供給され、塔本体11の下部空間に流入し、第2仕切板17を介して下層13の強塩基性アニオン交換樹脂下面全体に分散されて下層13及び支持材16を上向流で順に通水し、出入管15を経由して酸再生剤と同時に外部配管15Aから排出される工程において、支持水の流量が少なくても混和することが無いため、下層13のイオン交換樹脂が逆再生される事は無い。ここで用いられる支持材の材質として再生剤によって変質しない素材なら特に制限は無く、例えば、ガラス、テフロン(登録商標)系樹脂等のイオン交換能力を保持しない素材からなる支持材が挙げられ、その形状は均一である事がより良いが、球状、ペレット状等で特に限定されるものではない。特に好ましい支持材としては、例えば、ユニビーズ、ユニビーズスーパー(以上、株式会社ユニオン製、商品名)等の均一な粒状のガラスビーズが挙げられる。   Further, in this embodiment, since the support material 16 is provided, the ion exchange resin of the upper layer 12 exists away from the inlet / outlet pipe 15 and is not easily affected by contamination of the regenerant of the ion exchange resin of the lower layer 13. It has become. Furthermore, since the vicinity of the inlet / outlet pipe of the regenerant is covered with a support material rather than a space, at the same time as the regenerant is discharged from the upper layer 12 to the external pipe 15A via the inlet / outlet pipe 15 when the ion exchange resin of the upper layer 12 is regenerated. 11A is supplied with ion-exchanged water as supporting water, flows into the lower space of the tower body 11, and is dispersed on the entire lower surface of the strongly basic anion exchange resin of the lower layer 13 through the second partition plate 17, and the lower layer 13 and the supporting material In the process of passing water 16 in an upward flow in order and discharging from the external pipe 15A simultaneously with the acid regenerating agent via the inlet / outlet pipe 15, the lower layer 13 is not mixed even if the flow rate of the supporting water is small. The ion exchange resin is not regenerated in reverse. The material of the support material used here is not particularly limited as long as it is a material that is not altered by the regenerant, and examples thereof include a support material made of a material that does not retain ion exchange ability such as glass and Teflon (registered trademark) resin. It is better that the shape is uniform, but it is not particularly limited to a spherical shape or a pellet shape. Particularly preferable support materials include, for example, uniform granular glass beads such as unibeads and unibeads super (above, trade name, manufactured by Union Co., Ltd.).

また、この支持材の大きさは、同じ小室に入り積層されるイオン交換樹脂が支持材の隙間に入らない程度の大きさであればよく小さければ小さいほどよいが、圧力損失を考慮すればイオン交換樹脂と同程度の大きさであることが好ましい。具体的には、支持材の平均粒径が、0.3〜2.0mmであることが好ましく、1.0〜1.4mmであることが特に好ましい。さらに、この支持材16は、上層12の強酸性カチオン交換樹脂と同じ小室に入っているため、通水操作、再生操作等を行った場合でも、常に出入管15を覆い、上層の強酸性カチオン交換樹脂が出入管と直接接触しないように該イオン交換樹脂よりも比重の重いものであることが好ましい。この比重としては、1.3以上であることが好ましく、2.5以上であることが特に好ましい。   In addition, the size of the support material may be as small as the ion exchange resin stacked in the same chamber does not enter the gap between the support materials. The size is preferably the same as that of the exchange resin. Specifically, the average particle diameter of the support material is preferably 0.3 to 2.0 mm, and particularly preferably 1.0 to 1.4 mm. Further, since the support 16 is in the same chamber as the strong acid cation exchange resin of the upper layer 12, even when a water flow operation, a regeneration operation, or the like is performed, the inlet / outlet pipe 15 is always covered and the strong acid cation of the upper layer is covered. It is preferable that the specific gravity of the exchange resin is heavier than that of the ion exchange resin so that the exchange resin does not directly contact the inlet / outlet pipe. The specific gravity is preferably 1.3 or more, and particularly preferably 2.5 or more.

次に、上記イオン交換装置10を用いた本発明のイオン交換方法について説明する。通水工程で原水を処理する時には、原水が塔底の流入管11Aから塔本体11内へ上昇流で流入し、第2仕切板17を介して強塩基性アニオン交換樹脂からなる下層13下面全面に分散する。下層13は原水の給水圧によりピストン移動して仕切板14と接触して固定層を形成し、この状態で原水が通水する間に原水中の硫酸イオン、塩素イオン等のアニオンが強塩基性アニオン交換樹脂により除去される。その後、原水は仕切板14を介して支持材16の下面全面に分散し、下層13と同様に、強酸性カチオン交換樹脂からなる上層12がピストン移動して第3仕切板18と接触して固定層を形成し、この状態でアニオン除去後の処理水が通水する間にそのカルシウムイオン、マグネシウムイオン、ナトリウムイオン等のカチオンが強酸性カチオン交換樹脂により除去される。この処理水は第3仕切板18を経由し、流出管11Bから高純度の純水として流出し、次工程へ供給される。   Next, the ion exchange method of the present invention using the ion exchange device 10 will be described. When the raw water is treated in the water flow process, the raw water flows up into the tower main body 11 from the inflow pipe 11A at the bottom of the tower, and the entire lower surface of the lower layer 13 made of a strongly basic anion exchange resin through the second partition plate 17. To disperse. The lower layer 13 is moved by a piston by the feed pressure of the raw water to come into contact with the partition plate 14 to form a fixed layer. In this state, while the raw water flows, anions such as sulfate ions and chloride ions in the raw water are strongly basic. Removed by anion exchange resin. Thereafter, the raw water is dispersed on the entire lower surface of the support material 16 via the partition plate 14, and, like the lower layer 13, the upper layer 12 made of a strong acid cation exchange resin moves and is fixed in contact with the third partition plate 18. In this state, cations such as calcium ions, magnesium ions, and sodium ions are removed by the strongly acidic cation exchange resin while the treated water after the removal of anions is passed through in this state. This treated water flows out from the outflow pipe 11B as high-purity pure water via the third partition plate 18, and is supplied to the next step.

原水の処理により各イオン交換樹脂が貫流点に達したら再生工程で各イオン交換樹脂を再生する。それには各イオン交換樹脂層を逆洗することなく、まず、通水出口側に位置する上層12の強酸性カチオン交換樹脂を向流再生する。即ち、酸再生剤として例えば塩酸水溶液を塔頂の第2流入管11Dから下降流で供給すると共に、支持水を塔底部から上昇流で塔本体11内へ供給する。これにより酸再生剤は第2仕切板18を介して上層12全体に分散し、酸再生剤が上層12全体を下降流で通液し、この通液の間に強酸性カチオン交換樹脂が再生される。この間、塔底部から支持水が上昇流で通水されているため、支持水により酸再生剤の下層13への侵入を防止する。そして、酸再生廃液は支持水と出入管15において合流し、外部配管15Aから排出される。上層12の強酸性カチオン交換樹脂の向流再生後、酸再生剤に代えて純水を塔頂から供給し、塔本体11の塔頂、塔底の双方から通水して上層12の強酸性カチオン交換樹脂の押出し、洗浄操作を行い、洗浄廃液は出入管15、外部配管15Aから排出される。   When each ion exchange resin reaches the flow-through point due to the raw water treatment, each ion exchange resin is regenerated in a regeneration step. For this purpose, first, the strongly acidic cation exchange resin of the upper layer 12 located on the water outlet side is regenerated countercurrently without backwashing each ion exchange resin layer. That is, for example, a hydrochloric acid aqueous solution is supplied as an acid regenerant in a downward flow from the second inflow pipe 11D at the top of the tower, and supporting water is supplied into the tower body 11 in an upward flow from the bottom of the tower. As a result, the acid regenerant is dispersed throughout the upper layer 12 via the second partition plate 18, and the acid regenerant passes through the entire upper layer 12 in a downward flow. During this flow, the strongly acidic cation exchange resin is regenerated. The During this time, since the supporting water is passed upward from the tower bottom, the supporting water prevents the acid regenerant from entering the lower layer 13. Then, the acid regeneration waste liquid merges with the supporting water in the inlet / outlet pipe 15 and is discharged from the external pipe 15A. After countercurrent regeneration of the strongly acidic cation exchange resin of the upper layer 12, pure water is supplied from the top of the tower instead of the acid regenerant, and water is passed from both the top and bottom of the tower body 11 to strongly acidify the upper layer 12. The cation exchange resin is extruded and washed, and the washing waste liquid is discharged from the inlet / outlet pipe 15 and the external pipe 15A.

上層の洗浄操作の後、通水入口側に位置する下層13の強塩基性アニオン交換樹脂を向流再生する。即ち、アルカリ再生剤として例えば水酸化ナトリウム溶液を直胴部の外部配管15Aから下降流で供給すると共に、支持水を塔頂部の第2流入管11Dから塔本体11内へ下降流で供給する。これによりアルカリ再生剤は出入管15から支持材16の最下部に流入し、支持水と合流して仕切板14を介して下層13の強塩基性アニオン交換樹脂全体へ下降流で通液される。アルカリ再生剤が下層13を通液する間に強塩基性アニオン交換樹脂はアルカリ再生剤により効率良く再生される。強塩基性アニオン交換樹脂の向流再生操作が終了したら、引き続き、出入管15から純水を下降流通水し、下層13の強塩基性アニオン交換樹脂を洗浄し、再生操作を終了する。後は、通水工程と再生工程とを逆洗操作を行うことなく繰り返してイオン交換反応により原水を処理して純水を製造する。   After the washing operation of the upper layer, the strongly basic anion exchange resin of the lower layer 13 located on the water inlet side is regenerated countercurrently. That is, for example, a sodium hydroxide solution is supplied as an alkali regenerator in a downward flow from the external pipe 15A in the straight body portion, and supporting water is supplied in a downward flow from the second inlet pipe 11D at the top of the tower into the tower body 11. As a result, the alkali regenerant flows from the inlet / outlet pipe 15 into the lowermost portion of the support member 16, joins with the support water, and passes through the partition plate 14 to the entire strongly basic anion exchange resin in the lower layer 13 in a downward flow. . While the alkali regenerant passes through the lower layer 13, the strongly basic anion exchange resin is efficiently regenerated by the alkali regenerator. When the counter-current regeneration operation of the strong basic anion exchange resin is completed, the pure water is continuously flowed down from the inlet / outlet pipe 15 to wash the strong basic anion exchange resin in the lower layer 13 and the regeneration operation is completed. After that, the water flow process and the regeneration process are repeated without performing a backwash operation, and the raw water is treated by an ion exchange reaction to produce pure water.

なお、この再生操作において、再生剤と支持水とは、その合流地点において乱流が生じ、再生剤と支持水が混在した混和層を形成する。この混和層はそれが大きく(厚く)なるほど、周辺のイオン交換樹脂の再生が十分に行えなくなったり、再生対象としていない他方のイオン交換樹脂(支持水側)を汚染したりするため、これを十分小さく(薄く)することが、交流再生を行うイオン交換樹脂において重要である。特に、上層12を再生する際には、再生剤と支持水がそれぞれ正反対の流れ方向であるため、その衝突による混和層が大きくなりやすいが、本実施形態においては、支持材16を設けることにより混和層の大きさをこれまでより小さくして、周辺のイオン交換樹脂の再生を促進したり、汚染を防止したりすることで、全体として再生効率を向上させることができる。   In this regeneration operation, the regenerant and the support water generate turbulent flow at the junction, and form a mixed layer in which the regenerant and the support water are mixed. As this admixture layer becomes larger (thicker), the surrounding ion exchange resin cannot be sufficiently regenerated, or the other ion exchange resin (support water side) that is not targeted for regeneration is contaminated. Making it small (thin) is important in ion exchange resins that perform AC regeneration. In particular, when the upper layer 12 is regenerated, since the regenerant and the supporting water are in opposite directions, the admixed layer tends to become large due to the collision. In this embodiment, by providing the supporting material 16 By reducing the size of the admixture layer and promoting the regeneration of the surrounding ion exchange resin or preventing the contamination, the overall regeneration efficiency can be improved.

従って、本実施形態では、通水終了後の両イオン交換樹脂層の逆洗操作を行うことなく、両イオン交換樹脂層に被処理水を通水する方向とは逆方向にそれぞれの再生剤を通液する、いわゆる向流再生を行うため、通水終了時にイオン交換樹脂層で形成されたイオン型の配列を乱すことなく、そのまま再生することができ、通水終了時に残留している最下層の再生型のイオン交換樹脂を有効に活用することができると共に、再生効率を向上させることができる。   Therefore, in this embodiment, without performing the back washing operation of both ion exchange resin layers after the end of water flow, the respective regenerants are added in the direction opposite to the direction in which the water to be treated is passed through both ion exchange resin layers. In order to perform so-called countercurrent regeneration, which passes through the liquid, it can be regenerated as it is without disturbing the ion-type arrangement formed in the ion exchange resin layer at the end of water flow, and the lowest layer remaining at the end of water flow The regenerative ion exchange resin can be effectively utilized and the regeneration efficiency can be improved.

以上説明したように本実施形態によれば、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを一塔内に納めたため、従来の2床3塔式イオン交換装置と比較して装置をコンパクト化することができる。   As described above, according to the present embodiment, the strongly acidic cation exchange resin and the strongly basic anion exchange resin are accommodated in one tower, so that the apparatus is compact compared with the conventional two-bed / three-column ion exchange apparatus. Can be

また、本実施形態では、同一塔内で互いに独立した強酸性カチオン交換樹脂層と強塩基性アニオン交換樹脂層をそれぞれ向流再生するため、上下の各イオン交換樹脂の通水出口側を常に新鮮な再生剤により再生することができ、処理水への不純物イオンのリークを格段に低減することができる。しかも、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とは仕切板14によって上下の各層12、13として仕切られ、それぞれ単独のイオン交換樹脂層として形成されているため、従来の混床式イオン交換装置のようにクランピングによる再生不良や逆再生部分が各層12、13内に残留することがなく、ひいてはシリカリーク等の不純物イオンのリークがなく、純度の高い処理水を製造することができる。   In this embodiment, the strongly acidic cation exchange resin layer and the strongly basic anion exchange resin layer that are independent from each other in the same column are regenerated countercurrently, so that the water outlet side of each of the upper and lower ion exchange resins is always fresh. It is possible to regenerate with an appropriate regenerant, and the leakage of impurity ions to the treated water can be greatly reduced. In addition, the strongly acidic cation exchange resin and the strongly basic anion exchange resin are divided into upper and lower layers 12 and 13 by the partition plate 14 and are formed as individual ion exchange resin layers, respectively. As in the exchange apparatus, there is no regeneration failure due to clamping and no reverse regeneration portion remains in each of the layers 12 and 13, and consequently there is no leakage of impurity ions such as silica leaks, and high-purity treated water can be produced. .

また、本実施形態によれば、原水は上昇流でまず強塩基性アニオン交換樹脂と接触し、ややアルカリ性雰囲気でイオン交換されるため、コロイドシリカのような非イオン状のシリカがアルカリによって溶解してイオン状となって効率良く除去することができる。また、本実施形態では上昇流通水であるため、通水終了時には上層12は通水時の圧密状態が徐々に解除されながら支持材16に積層した状態で仕切板14に、下層13は通水時の圧密状態が徐々に解除されながら仕切板17まで下降する。また、再生工程においてはそれぞれの仕切板14、17で支持された状態で再生され、通水工程と再生工程を繰り返しても各イオン交換樹脂層が圧密状態のまま各仕切板14、17に固着するということがなく、通水時及び通液時における圧力損失の増大を防止することができる。   Further, according to the present embodiment, the raw water first comes into contact with the strongly basic anion exchange resin in an upward flow and is ion-exchanged in a slightly alkaline atmosphere, so that nonionic silica such as colloidal silica is dissolved by alkali. And can be efficiently removed in the form of ions. Moreover, since it is upward circulation water in this embodiment, the upper layer 12 is laminated | stacked on the partition material 14 in the state laminated | stacked on the support material 16 at the time of completion | finish of water flow, and the lower layer 13 is water flow in the state laminated | stacked. While the state of compaction at the time is gradually released, it descends to the partition plate 17. Further, in the regeneration process, it is regenerated in a state where it is supported by the respective partition plates 14 and 17, and each ion exchange resin layer is fixed to each partition plate 14 and 17 in a consolidated state even if the water flow process and the regeneration process are repeated. Therefore, it is possible to prevent an increase in pressure loss during water flow and liquid flow.

さらに、本実施形態によれば、支持材16が存在することにより、再生剤と支持水とにより形成される混和層を小さく抑制することができ、再生操作における、イオン交換樹脂の汚染を防止して、再生を確実に行い、全体として再生効率を向上させることができ、これにより再生時間の短縮、再生排水量の低減させることもできる。 Furthermore, according to the present embodiment, the presence of the support material 16 makes it possible to suppress the mixed layer formed by the regenerant and the support water, thereby preventing contamination of the ion exchange resin in the regeneration operation. Thus, the regeneration can be performed reliably, and the regeneration efficiency as a whole can be improved, whereby the regeneration time can be shortened and the amount of wastewater discharged can be reduced.

なお、図1に示した実施形態では、後述する図3のフローのように、原水を逆浸透膜処理して原水中のカルシウムやマグネシウム等の硬度成分の大部分を予め除去した被処理水や原水を公知のイオン交換装置で処理して得た軟化水や脱塩水を被処理水として処理する場合などに適している。   In the embodiment shown in FIG. 1, as shown in the flow of FIG. 3 to be described later, water to be treated in which raw water is subjected to reverse osmosis membrane treatment to remove most of hardness components such as calcium and magnesium in the raw water in advance. It is suitable when softened water or demineralized water obtained by treating raw water with a known ion exchange device is treated as water to be treated.

(第2の実施形態)
図2に示すイオン交換塔20は、図1に示すイオン交換装置10の場合とは強酸性カチオン交換樹脂層と強塩基性アニオン交換樹脂層の上下関係が逆になっていると共に各イオン交換樹脂の再生剤の種類も上下関係が逆に変更されている以外は図1のイオン交換装置10に準じて、上昇流通水、下降流再生の向流再生を行うように構成されている。符号も図1と同様に付している。
(Second Embodiment)
The ion exchange tower 20 shown in FIG. 2 is different from the case of the ion exchange apparatus 10 shown in FIG. 1 in that the vertical relationship between the strongly acidic cation exchange resin layer and the strongly basic anion exchange resin layer is reversed and each ion exchange resin. The type of the regenerant is also configured to perform upward flow water and counter flow regeneration in accordance with the ion exchange apparatus 10 of FIG. 1 except that the vertical relationship is changed in reverse. The reference numerals are also the same as in FIG.

ここで用いられる支持材26は、第1の実施形態と同様のものでよいが、上層22の強塩基性アニオン交換樹脂と同じ小室に入っているため、該イオン交換樹脂よりも比重の重いものであることが好ましい。この比重としては、1.3以上であることが好ましく、2.5以上であることが特に好ましい。   The support material 26 used here may be the same as that in the first embodiment, but has a higher specific gravity than the ion exchange resin because it is in the same chamber as the strong base anion exchange resin of the upper layer 22. It is preferable that The specific gravity is preferably 1.3 or more, and particularly preferably 2.5 or more.

次に、上記イオン交換装置20を用いた本発明にイオン交換方法について説明する。通水工程で原水を処理する時には、原水が塔底の流入管21Aから塔本体21内へ上昇流で流入し、第2仕切板27を介して強酸性カチオン交換樹脂からなる下層23下面全面に分散する。下層23は原水の給水圧によりピストン移動して仕切板24と接触して固定層を形成し、この状態で原水が通水する間に原水中のカルシウムイオン、マグネシウムイオン、ナトリウムイオン等のカチオンが強酸性カチオン交換樹脂により除去される。その後、原水は仕切板24を介して支持材26の下面全面に分散し、下層23と同様に、この強塩基性アニオン交換樹脂からなる上層22がピストン移動して第3仕切板28と接触して固定層を形成し、この状態でアニオン除去後の処理水が通水する間にその硫酸イオン、塩素イオン等のアニオンやシリカが強塩基性アニオン交換樹脂により除去される。この処理水は第3仕切板28を経由し、流出管21Bから高純度の純水として流出し、次工程へ供給される。   Next, an ion exchange method according to the present invention using the ion exchange device 20 will be described. When the raw water is treated in the water flow process, the raw water flows in an upward flow from the inflow pipe 21A at the bottom of the tower into the tower main body 21 and passes through the second partition plate 27 over the entire lower surface of the lower layer 23 made of a strongly acidic cation exchange resin. scatter. The lower layer 23 is moved by a piston due to the feed pressure of the raw water to come into contact with the partition plate 24 to form a fixed layer. In this state, cations such as calcium ions, magnesium ions and sodium ions in the raw water pass while the raw water passes through. It is removed by a strongly acidic cation exchange resin. Thereafter, the raw water is dispersed over the entire lower surface of the support member 26 via the partition plate 24, and the upper layer 22 made of this strongly basic anion exchange resin is moved in a piston manner to contact the third partition plate 28, as in the lower layer 23. In this state, the anion such as sulfate ion and chlorine ion and silica are removed by the strongly basic anion exchange resin while the treated water after removal of the anion is passed through. This treated water flows out from the outflow pipe 21B as high-purity pure water via the third partition plate 28, and is supplied to the next step.

原水の処理により各イオン交換樹脂が貫流点に達したら再生工程で各イオン交換樹脂を再生する。それには各イオン交換樹脂層を逆洗することなく、まず、通水出口側に位置する上層22の強塩基性アニオン交換樹脂を向流再生する。即ち、アルカリ再生剤として例えば水酸化ナトリウム水溶液を塔頂の第2流入管21Dから下降流供給すると共に、支持水を塔底部から塔本体21内へ上昇流で供給する。これによりアルカリ再生剤は第2仕切板28を介して上層22全体に分散し、アルカリ再生剤が上層22全体を下降流で通液し、この通液の間に強塩基性アニオン交換樹脂が再生される。この間、塔底部から支持水が上昇流で通水されているため、支持水によりアルカリ再生剤の下層23への侵入を防止する。そして、アルカリ再生廃液は出入管25において支持水と合流し、外部配管25Aから排出される。上層22の強塩基性アニオン交換樹脂の向流再生後、アルカリ再生剤に代えて純水を塔頂から供給し、塔本体21の塔頂、塔底の双方から通水して上層22の強塩基性アニオン交換樹脂の洗浄操作を行い、洗浄廃液は出入管25、外部配管25Aから排出される。   When each ion exchange resin reaches the flow-through point due to the raw water treatment, each ion exchange resin is regenerated in a regeneration step. For this purpose, first, the strongly basic anion exchange resin in the upper layer 22 located on the water outlet side is regenerated countercurrently without backwashing each ion exchange resin layer. That is, for example, an aqueous sodium hydroxide solution is supplied as an alkali regenerator in a downward flow from the second inflow pipe 21D at the top of the tower, and support water is supplied in an upward flow from the bottom of the tower into the tower body 21. As a result, the alkali regenerant is dispersed throughout the upper layer 22 via the second partition plate 28, and the alkali regenerant passes through the entire upper layer 22 in a downward flow. During this flow, the strongly basic anion exchange resin is regenerated. Is done. During this time, since the supporting water is passed in an upward flow from the bottom of the tower, the supporting water prevents the alkali regenerant from entering the lower layer 23. Then, the alkali regeneration waste liquid merges with the supporting water in the inlet / outlet pipe 25 and is discharged from the external pipe 25A. After countercurrent regeneration of the strongly basic anion exchange resin in the upper layer 22, pure water is supplied from the top of the tower instead of the alkali regenerant, and water is passed from both the top and bottom of the tower body 21 to strengthen the upper layer 22. Cleaning operation of the basic anion exchange resin is performed, and the cleaning waste liquid is discharged from the inlet / outlet pipe 25 and the outer pipe 25A.

上層の洗浄操作の後、通水入口側に位置する下層23の強酸性カチオン交換樹脂を向流再生する。即ち、酸再生剤として例えば塩酸水溶液を直胴部の外部配管25Aから下降流で供給すると共に支持水を塔頂部から下降流で供給する。これにより酸再生剤は出入管25から支持材26の最下部に流入し、支持水と合流して仕切板24を介して下層23の強酸性カチオン交換樹脂全体へ下降流で通液される。酸再生剤が下層23を通液する間に強酸性カチオン交換樹脂は効率良く再生される。強酸性カチオン交換樹脂の向流再生操作が終了したら、引き続き、出入管25から純水を下降流通水し、下層23の強酸性カチオン交換樹脂を洗浄し、再生操作を終了する。後は、通水工程と再生工程とを逆洗操作を行うことなく繰り返してイオン交換反応により原水を処理して純水を製造する。   After the upper layer washing operation, the strongly acidic cation exchange resin in the lower layer 23 located on the water inlet side is regenerated countercurrently. That is, as an acid regenerating agent, for example, an aqueous hydrochloric acid solution is supplied in a downward flow from the external pipe 25A in the straight body portion, and supporting water is supplied in a downward flow from the top of the tower. As a result, the acid regenerant flows from the inlet / outlet pipe 25 to the lowermost part of the support member 26, joins with the support water, and passes through the partition plate 24 to the entire strongly acidic cation exchange resin in the lower layer 23 in a downward flow. While the acid regenerant passes through the lower layer 23, the strongly acidic cation exchange resin is efficiently regenerated. When the counter-current regeneration operation of the strong acid cation exchange resin is completed, the pure water is continuously flowed down from the inlet / outlet pipe 25, the strong acid cation exchange resin in the lower layer 23 is washed, and the regeneration operation is terminated. After that, the water flow process and the regeneration process are repeated without performing a backwash operation, and the raw water is treated by an ion exchange reaction to produce pure water.

従って、本実施形態によれば、図1に示すイオン交換装置10の上昇流通水、下降流再生による効果を期することができる。さらに、本実施形態によれば、原水は上昇流で強酸性カチオン交換樹脂、強塩基性アニオン交換樹脂の順で通水し、原水が強塩基性アニオン交換樹脂と直接接触することがないため、原水中にマグネシウムイオン等の硬度成分が多量に含まれている原水を処理する場合にはこれらの硬度成分は下層23の強酸性カチオン交換樹脂により除去され、上層22の強塩基性アニオン交換樹脂において水酸化マグネシウム等の難溶性の水酸化物を生成することがない。   Therefore, according to the present embodiment, it is possible to expect the effect of the upward circulation water and the downward flow regeneration of the ion exchange device 10 shown in FIG. Furthermore, according to the present embodiment, the raw water is passed in the order of a strong acidic cation exchange resin and a strong basic anion exchange resin in an upward flow, and the raw water does not come into direct contact with the strong basic anion exchange resin. When treating raw water containing a large amount of hardness components such as magnesium ions in the raw water, these hardness components are removed by the strongly acidic cation exchange resin of the lower layer 23, and in the strongly basic anion exchange resin of the upper layer 22. No poorly soluble hydroxide such as magnesium hydroxide is produced.

また、第1及び第2の実施形態により説明した本願発明は、従来の一塔型のイオン交換装置が奏する次のような種々の効果も併せて奏するものである。   Further, the present invention described with reference to the first and second embodiments also has the following various effects exhibited by the conventional single tower type ion exchange device.

(1)強酸性カチオン交換樹脂と強塩基性カチオン交換樹脂を一塔内に充填したため、塔数を最小にすることができ、イオン交換装置をコンパクト化することができ、設置コスト及び設置面積を大幅に削減することができる。   (1) Since a strongly acidic cation exchange resin and a strongly basic cation exchange resin are packed in one tower, the number of towers can be minimized, the ion exchange apparatus can be made compact, and the installation cost and installation area can be reduced. It can be greatly reduced.

(2)一塔内に両イオン交換樹脂を充填するとは云え、従来のように両イオン交換樹脂を混合することなく、両イオン交換樹脂の積層状態を維持したまま通水及び再生を行うため、従来の混床式イオン交換装置で発生したような両イオン交換樹脂によるクランピング現象による再生不良を生じることなく、しかも、向流再生を行うため、処理水中のシリカに関しては混床式イオン交換装置よりむしろ優れている。即ち、混床式イオン交換装置においては、再生後にイオン交換樹脂を混合するため、再生によって残留したシリカ型の強塩基性アニオン交換樹脂が全樹脂層に分散して平均化してしまい、処理水のシリカリークは、この平均化したシリカ型の分率によって決定されるが、本発明は向流再生であるため、処理水流出側は完全に再生されており、シリカリークが極めて少ない。   (2) Even though both ion exchange resins are packed in one tower, without mixing both ion exchange resins as in the past, in order to perform water flow and regeneration while maintaining the laminated state of both ion exchange resins, In order to perform countercurrent regeneration without causing regeneration failure due to clamping phenomenon due to both ion exchange resins as occurs in conventional mixed bed ion exchangers, mixed bed ion exchangers are used for silica in treated water. Rather better. That is, in the mixed bed type ion exchange apparatus, since the ion exchange resin is mixed after the regeneration, the silica-type strongly basic anion exchange resin remaining by the regeneration is dispersed and averaged in the entire resin layer, and the treated water is Silica leak is determined by this averaged silica-type fraction, but since the present invention is countercurrent regeneration, the outflow side of the treated water is completely regenerated and the silica leak is extremely small.

(3)積層させた強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂を再生するに当たり、通水後に逆洗を実施することなく向流再生を行うため、再生操作そのものを理想的な状態で行うことができ、再生剤の使用量当たりの再生後に生成させるH型強酸性カチオン交換樹脂あるいはOH型強塩基性アニオン交換樹脂の量を最大にすることができ、処理容量を大きくすることができる。   (3) When the laminated strong acid cation exchange resin and strong base anion exchange resin are regenerated, the regeneration operation itself is performed in an ideal state because countercurrent regeneration is performed without backwashing after passing water. It is possible to maximize the amount of H-type strongly acidic cation exchange resin or OH-type strongly basic anion exchange resin produced after regeneration per the amount of regenerant used, and to increase the processing capacity.

(4)積層させた両イオン交換樹脂を再生するに当たり、強酸性カチオン交換樹脂から強塩基性アニオン交換樹脂へ通水する場合には強塩基性アニオン交換樹脂を再生した後強酸性カチオン交換樹脂を再生し、強塩基性アニオン交換樹脂から強酸性カチオン交換樹脂へ通水する場合には強酸性カチオン交換樹脂を再生した後強塩基性アニオン交換樹脂を再生するというように、両イオン交換樹脂に被処理水を通水する順序と逆の順序で再生することにより、後から再生する一方のイオン交換樹脂の再生剤が先に再生した他方のイオン交換樹脂と接触して塩型となってもこの塩型が最上流部に位置するため、処理水の純度に全く影響を与えないようにすることができる。   (4) When regenerating the laminated ion exchange resin, when water is passed from the strongly acidic cation exchange resin to the strongly basic anion exchange resin, the strongly acidic cation exchange resin is regenerated after regenerating the strongly basic anion exchange resin. When the water is regenerated and water is passed from the strongly basic anion exchange resin to the strongly acidic cation exchange resin, both the ion exchange resins are coated such that the strong acid anion exchange resin is regenerated after the strong acid cation exchange resin is regenerated. Even if the regenerant of one ion exchange resin to be regenerated later comes into contact with the other ion exchange resin that has been regenerated earlier, it is regenerated in the reverse order of passing the treated water. Since the salt mold is located at the most upstream part, it is possible to prevent the purity of the treated water from being affected at all.

(5)両イオン交換樹脂を仕切板によって仕切ることにより通水と再生を繰り返し行っても両イオン交換樹脂が混合することなく、安定したイオン交換操作を実施することができる。   (5) Even if water passage and regeneration are repeatedly performed by partitioning both ion exchange resins with a partition plate, stable ion exchange operation can be performed without mixing both ion exchange resins.

また、図3は前述したように例えば図1に示すイオン交換装置10を純水製造装置に適用した図を示す。この純水製造装置の場合には、イオン交換装置10が逆浸透膜装置30の下流側に配置され、逆浸透膜装置30により原水中の微粒子が除去されると共に、硬度成分の大部分が除去された透過水がイオン交換装置10に流入するように構成されている。このようにイオン交換装置10を逆浸透膜装置30の下流側に配置することにより、イオン交換樹脂層が微粒子の蓄積により、その圧力損失が増大することがなく、さらに、強塩基性アニオン交換樹脂層に水酸化マグネシウム等が発生することがなく、長期間に渡って安定した運転を行うことができる。   Moreover, FIG. 3 shows the figure which applied the ion exchange apparatus 10 shown, for example in FIG. 1 to the pure water manufacturing apparatus as mentioned above. In the case of this pure water production device, the ion exchange device 10 is disposed downstream of the reverse osmosis membrane device 30 and the reverse osmosis membrane device 30 removes fine particles in the raw water and removes most of the hardness component. The permeated water is configured to flow into the ion exchange device 10. By disposing the ion exchange device 10 on the downstream side of the reverse osmosis membrane device 30 in this way, the ion exchange resin layer does not increase in pressure loss due to accumulation of fine particles, and further, a strongly basic anion exchange resin. Magnesium hydroxide or the like is not generated in the layer, and stable operation can be performed over a long period of time.

このように逆浸透膜装置を設置することで、被処理水を逆浸透膜装置により処理し、その透過水を本発明に用いるイオン交換塔で処理するフローにより微粒子の蓄積によるイオン交換樹脂層の圧力損失の増大等の障害を防止することができ、さらに、強塩基性アニオン交換樹脂を先に接触させる場合であっても強塩基性アニオン交換樹脂層に水酸化マグネシウム等の沈澱物を発生させることがなく、高純度の処理水を得ることができる。   By installing the reverse osmosis membrane device in this way, the water to be treated is treated by the reverse osmosis membrane device, and the ion exchange resin layer is accumulated by the accumulation of fine particles by the flow in which the permeated water is treated by the ion exchange tower used in the present invention. It can prevent obstacles such as an increase in pressure loss, and also generates precipitates such as magnesium hydroxide in the strong basic anion exchange resin layer even when the strong basic anion exchange resin is contacted first. In this way, high-purity treated water can be obtained.

なお、図示してないが、炭酸水素カルシウムや炭酸水素マグネシウムを含む被処理水を処理するに当たり、弱酸性カチオン交換樹脂と脱炭酸塔を組み合わせた脱アルカリ軟化装置でまず被処理水を処理した後、本発明の各イオン交換塔で処理することもできる。H型弱酸性カチオン交換樹脂に上記被処理水を通水すると、炭酸水素イオンに対応するカルシウムイオン、マグネシウムイオンはイオン交換され、炭酸水素イオンは遊離炭酸となる。従って、これを脱炭酸塔で処理することにより、遊離炭酸の大部分を除去することができる。このような処理方法を採用すれば、炭酸水素イオンは本発明のイオン交換塔のイオン負荷から除くことができ、より低コストで純水を得ることができる。また、弱酸性カチオン交換樹脂の再生効率は良いため、その再生に当たっては本発明のイオン交換塔における強酸性カチオン交換樹脂を再生した再生廃液を利用することができる。   In addition, although not shown in figure, in processing the to-be-processed water containing calcium hydrogencarbonate or magnesium hydrogencarbonate, after processing to-be-processed water first with the dealkalization softening device which combined weakly acidic cation exchange resin and the decarbonation tower, It can also be processed in each ion exchange column of the present invention. When the water to be treated is passed through an H-type weakly acidic cation exchange resin, calcium ions and magnesium ions corresponding to the bicarbonate ions are ion-exchanged, and the bicarbonate ions become free carbonates. Therefore, most of the free carbonic acid can be removed by treating it with a decarboxylation tower. By adopting such a treatment method, hydrogen carbonate ions can be removed from the ion load of the ion exchange tower of the present invention, and pure water can be obtained at a lower cost. In addition, since the regeneration efficiency of the weakly acidic cation exchange resin is good, a regeneration waste solution obtained by regenerating the strongly acidic cation exchange resin in the ion exchange tower of the present invention can be used for the regeneration.

また、本発明に用いるイオン交換装置を例えば2基設置した場合には、メリーゴーランド方式により運転することにより各イオン交換樹脂の利用効率を高め、連続的に効率良く純水を製造することができる。
なお、図3ではイオン交換装置10を逆浸透膜装置30の下流側に配置したものについて説明したが、その他の図2に示したイオン交換装置も同様に図3に示す純水製造装置に適用することができる。
In addition, when two ion exchange apparatuses used in the present invention are installed, for example, the use efficiency of each ion exchange resin can be increased by operating by the merry-go-round method, and pure water can be produced continuously and efficiently.
3 illustrates the ion exchange device 10 disposed on the downstream side of the reverse osmosis membrane device 30, but the other ion exchange devices shown in FIG. 2 are also applied to the pure water production apparatus shown in FIG. can do.

本発明のイオン交換装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the ion exchange apparatus of this invention. 本発明のイオン交換装置の他の実施形態を示す構成図である。It is a block diagram which shows other embodiment of the ion exchange apparatus of this invention. 図1に示すイオン交換装置を適用した純水製造装置の要部を示すフロー図である。It is a flowchart which shows the principal part of the pure water manufacturing apparatus to which the ion exchange apparatus shown in FIG. 1 is applied.

符号の説明Explanation of symbols

10,20…イオン交換装置、11,21…塔本体、12,22…上層(イオン交換樹脂層)、13,23…下層(イオン交換樹脂層)、14,24…仕切板、15,25…出入管、16,26…支持材、17,27…第2仕切板、18,28…第3仕切板 DESCRIPTION OF SYMBOLS 10,20 ... Ion exchange apparatus, 11, 21 ... Tower body, 12, 22 ... Upper layer (ion exchange resin layer), 13, 23 ... Lower layer (ion exchange resin layer), 14, 24 ... Partition plate, 15, 25 ... In / out pipe, 16, 26 ... support material, 17, 27 ... second partition plate, 18, 28 ... third partition plate

Claims (3)

同一塔内に積層して形成されたカチオン交換樹脂層とアニオン交換樹脂層の2種類のイオン交換樹脂層と、前記2種類のイオン交換樹脂層の間に設けられた被処理水の流通は許すが、イオン交換樹脂の流通を阻止するように構成された仕切り板と、その仕切り板の上部近傍に再生剤の出入管を設けたイオン交換装置であって、
前記イオン交換樹脂層の上層が強塩基性アニオン交換樹脂、下層が強酸性カチオン交換樹脂からなり、その各層に被処理水が上昇流で通水され、各イオン交換樹脂層にそれぞれ再生剤が下降流で通液されるものであって、前記被処理水の通水と前記再生剤の通液とを交互に行う際に、先に上層へ再生剤を通液され、その後に下層へ再生剤を通液される上昇流通水、下降流再生によるイオン交換に用いられ、
前記再生剤の出入管全体が、イオン交換能力を保持せず、比重が1.3以上であって同じ小室のイオン交換樹脂よりも重い支持材で覆われていることを特徴とするイオン交換装置。
Two types of ion exchange resin layers, a cation exchange resin layer and an anion exchange resin layer formed by laminating in the same tower, and the flow of water to be treated provided between the two types of ion exchange resin layers are allowed. Is a partition plate configured to prevent the flow of the ion exchange resin, and an ion exchange device provided with an inlet / outlet pipe of the regenerant near the upper portion of the partition plate,
The upper layer of the ion exchange resin layer is made of a strongly basic anion exchange resin, and the lower layer is made of a strongly acidic cation exchange resin. The treated water is passed through each layer in an upward flow, and the regenerant is lowered to each ion exchange resin layer. When the flow of the water to be treated and the flow of the regenerant are alternately performed, the regenerant is first passed to the upper layer and then the regenerant to the lower layer. Ascending circulating water passed through, used for ion exchange by downflow regeneration,
The entire ion exchange tube of the regenerant is not covered with ion exchange capability, and has a specific gravity of 1.3 or more and is covered with a support material heavier than the ion exchange resin in the same chamber. .
前記支持材が、平均粒径1.0〜1.4mmであることを特徴とする請求項1記載のイオン交換装置。   The ion exchange apparatus according to claim 1, wherein the support material has an average particle diameter of 1.0 to 1.4 mm. 同一塔内に積層して形成されたカチオン交換樹脂層とアニオン交換樹脂層の2種類のイオン交換樹脂層と、前記2種類のイオン交換樹脂層の間に設けられた被処理水の流通は許すが、イオン交換樹脂の流通を阻止するように構成された仕切り板と、その仕切り板の上部近傍に再生剤の出入管と、前記再生剤の出入管全体を覆うイオン交換能力を保持せず、比重が1.3以上であって同じ小室のイオン交換樹脂よりも重い支持材と、からなるイオン交換装置を用いたイオン交換方法であって、
前記イオン交換樹脂層の上層が強塩基性アニオン交換樹脂、下層が強酸性カチオン交換樹脂からなり、
前記イオン交換樹脂層の各層に被処理水を上昇流で通水する通水工程と、前記各イオン交換樹脂層にそれぞれ再生剤を下降流で通液する再生工程と、からなり、前記通水工程と前記再生工程とを交互に行う際に、先に上層へ再生剤を通液し、その後に下層へ再生剤を通液する上昇流通水、下降流再生により各工程を行うことを特徴とするイオン交換方法。
Two types of ion exchange resin layers, a cation exchange resin layer and an anion exchange resin layer formed by laminating in the same tower, and the flow of water to be treated provided between the two types of ion exchange resin layers are allowed. However, the partition plate configured to prevent the flow of the ion exchange resin, the regenerant inlet / outlet pipe in the vicinity of the upper portion of the partition plate, without maintaining the ion exchange ability to cover the entire inlet / outlet pipe of the regenerant, An ion exchange method using an ion exchange apparatus comprising a support material having a specific gravity of 1.3 or more and heavier than the ion exchange resin in the same chamber,
The upper layer of the ion exchange resin layer consists of a strongly basic anion exchange resin, and the lower layer consists of a strongly acidic cation exchange resin ,
The water-flowing process comprises: a water-passing process for passing water to be treated through each of the ion-exchange resin layers in an upward flow; and a regeneration process for flowing a regenerant in a downward flow through each of the ion-exchange resin layers. When alternately performing the step and the regeneration step, the regenerating agent is first passed through the upper layer, and then each step is performed by ascending circulating water and descending flow regeneration for passing the regenerating agent to the lower layer. Ion exchange method.
JP2006314420A 2006-11-21 2006-11-21 Ion exchange apparatus and ion exchange method Active JP4869881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314420A JP4869881B2 (en) 2006-11-21 2006-11-21 Ion exchange apparatus and ion exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314420A JP4869881B2 (en) 2006-11-21 2006-11-21 Ion exchange apparatus and ion exchange method

Publications (2)

Publication Number Publication Date
JP2008126147A JP2008126147A (en) 2008-06-05
JP4869881B2 true JP4869881B2 (en) 2012-02-08

Family

ID=39552522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314420A Active JP4869881B2 (en) 2006-11-21 2006-11-21 Ion exchange apparatus and ion exchange method

Country Status (1)

Country Link
JP (1) JP4869881B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5235091B2 (en) * 2008-04-07 2013-07-10 オルガノ株式会社 Method and apparatus for removing aldehyde compound from alcohol-containing liquid
JP5609181B2 (en) * 2010-03-16 2014-10-22 栗田工業株式会社 Ion exchanger
CN103910411B (en) * 2014-04-14 2015-11-04 周明 Real bed, multiple bed and the industrial de-mineralized water production method as terminal demineralization plant thereof
CN104310531B (en) * 2014-11-28 2016-08-24 何新华 Elastic full room fixed bed countercurrent regenerating ion exchanger
CN104961193B (en) * 2015-07-19 2017-03-22 长春黄金研究院 Separation method of zinc cyanide complex ions
JP5999400B1 (en) * 2016-03-18 2016-09-28 栗田工業株式会社 Ion exchange apparatus and method of using the same
CN109499165A (en) * 2018-12-20 2019-03-22 辽宁莱特莱德环境工程有限公司 It is a kind of for purifying the device of lithium liquid
CN115465919B (en) * 2022-10-25 2023-09-08 江苏源邦环境科技有限公司 Combined ion exchange device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3040616A1 (en) * 1980-10-29 1982-06-03 Bayer Ag, 5090 Leverkusen COUNTERFLOW ADSORPTION FILTER FOR TREATING LIQUIDS AND METHOD FOR OPERATING THE FILTER
JP3278128B2 (en) * 1996-02-05 2002-04-30 株式会社荏原製作所 Countercurrent ion exchanger
JP3632331B2 (en) * 1996-11-07 2005-03-23 オルガノ株式会社 Ion exchange method and ion exchange column used in this ion exchange method
JP3632343B2 (en) * 1996-12-26 2005-03-23 オルガノ株式会社 Pure water production method and ion exchange tower
JP2002018433A (en) * 2000-07-07 2002-01-22 Nippon Rensui Co Ltd Ion exchanger

Also Published As

Publication number Publication date
JP2008126147A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
US3382169A (en) Process for deionizing aqueous solutions
TWI585045B (en) Ion exchange device
JP5672687B2 (en) Ion exchanger
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
JP4931178B2 (en) Condensate desalination method and apparatus
US6843920B1 (en) Ion exchange system using U-tube principle
JP2010227731A (en) Electric deionized water production apparatus
JP2001205263A (en) Double bed type ion exchange apparatus
JP3632343B2 (en) Pure water production method and ion exchange tower
JP4883680B2 (en) Ion exchange tower
JP5609181B2 (en) Ion exchanger
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP2002361247A (en) Method for manufacturing pure water
WO2016076409A1 (en) Method for operating regenerative ion exchange device
JP2940651B2 (en) Pure water production equipment
JP4315385B2 (en) Ion exchange tower
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP2742975B2 (en) Regeneration method of ion exchange device
JP2941121B2 (en) Ultrapure water production equipment
JP3570066B2 (en) Ion exchange equipment
JP3963032B2 (en) Ion exchange device and polishing filter
JPH0999244A (en) Method for separating and regenerating ion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250