JP3632343B2 - Pure water production method and ion exchange tower - Google Patents
Pure water production method and ion exchange tower Download PDFInfo
- Publication number
- JP3632343B2 JP3632343B2 JP35696596A JP35696596A JP3632343B2 JP 3632343 B2 JP3632343 B2 JP 3632343B2 JP 35696596 A JP35696596 A JP 35696596A JP 35696596 A JP35696596 A JP 35696596A JP 3632343 B2 JP3632343 B2 JP 3632343B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- resin layer
- ion exchange
- tower
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、純水製造方法及びイオン交換塔に関し、更に詳しくは、例えばボイラ給水や電子部品等の洗浄用水等に使用される高純度純水を得る純水製造方法及びイオン交換塔に関する。
【0002】
【従来の技術】
従来の純水製造方法として代表的なものとして例えば2床3塔式イオン交換装置がある。このイオン交換装置は、例えば強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔と、これら両者の間に配置された脱炭酸塔とを備え、例えば原水の下降流通水によりカチオン交換塔において原水中のカルシウムイオン、マグネシウムイオン、ナトリウムイオン等のカチオンを強酸性カチオン交換樹脂の水素イオンとイオン交換した後、脱炭酸塔内において酸性下で炭酸イオンを炭酸ガスとして脱炭酸し、次いでアニオン交換塔における下降流通水により原水中の硫酸イオン、塩素イオン等のアニオンやシリカを強塩基性アニオン交換樹脂の水酸化物イオンとイオン交換して純水を製造するようにしている。そして、上記各イオン交換樹脂の再生を行う場合には、例えば各イオン交換塔にそれぞれの再生剤を下降流で通液して並流再生を行い、あるいはそれぞれの再生剤を上昇流で通液して向流再生を行うようにしている。また、原水中に炭酸イオンがあまり含まれていない場合には脱炭酸塔を省略した2床2塔式イオン交換装置が用いられる。
【0003】
ところで、従来のこの種のイオン交換装置のアニオン交換塔に用いられるアニオン交換樹脂は、再生時に再生剤であるアルカリ水溶液(例えば水酸化ナトリウム水溶液)と接触するが、その後、アルカリ成分(ナトリウムイオン)を完全に洗い流すには長時間を要すると共に多量の洗浄水を必要とし、しかも、例えば1μS/cm程度までしか洗浄することができず、採水工程に入ってもアニオン交換樹脂に吸着されたアルカリ成分が僅かずつではあるが処理水中に徐々に溶出し、処理水が一定の純度に立ち上がるまでに相当の時間が掛かり、処理水の到達純度も5〜10MΩ・cm程度であった。
【0004】
更に、処理水が一定の純度に達するまでに時間が掛かるその他の要因としては次のことが挙げられる。即ち、被処理水である原水中には一般に有機酸が含まれており、有機酸の多くは複数の弱酸基を持った複雑な構造を有し、しかも比較的分子量の高い有機酸も含まれている。比較的分子量の高い有機酸が処理中にアニオン交換樹脂に対して物理吸着すると、再生剤である水酸化ナトリウム水溶液では有機酸を完全に溶離できず、水酸化ナトリウムとアニオン交換樹脂に吸着された有機酸とが反応して、この有機酸がナトリウム塩となってアニオン交換樹脂層内に残存することがある。このような有機酸のナトリウム塩がアニオン交換樹脂層内に残存していると、通水中に、この有機酸の弱酸基からナトリウムイオンが加水分解によって徐々に離脱し、処理水の純度を低下させる。
【0005】
そこで、現実的な対策としては17MΩ・cm以上の高純度の純水を得るためには、上述した従来の2床3塔式イオン交換装置(または2床2塔式イオン交換装置)の後段に再生型混床式イオン交換装置を設置し、アルカリ成分を除去すると共にシリカや他の不純物を除去するのが一般的である。
【0006】
【発明が解決しようとする課題】
しかしながら、今日ではイオン交換装置には処理水の高純度化及び小型化の要求が益々高まっていることから、従来のイオン交換装置を用いて高純度(17MΩ・cm以上)の純水を得ようとすると、上述したようにイオン交換装置の後段に再生型混床イオン交換装置を設置する必要があり、装置が大型化して装置の小型化の要求を満たすことができず、逆に再生型混床式イオン交換装置を設置しないと、上述のように高純度の純水を得ることができないという課題があった。
【0007】
本発明は、上記課題を解決するためになされたもので、イオン交換装置の小型を実現できると共に高純度の処理水を得ることができ、しかも、アニオン交換樹脂層の洗浄時間を格段に短縮することができる共に洗浄水を格段に節約することができる純水製造方法及びイオン交換塔を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の請求項1に記載の純水製造方法は、被処理水を強酸性カチオン交換樹脂層、強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水して純水を得る純水製造方法において、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの再生膨潤分だけの隙間を残して二層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向とは逆の方向にそれぞれの再生剤を通液する再生工程とを有することを特徴とするものである。
【0009】
また、本発明の請求項2に記載の純水製造方法は、請求項1に記載の発明において、第2イオン交換塔の強酸性カチオン交換樹脂の充填層高を600mm以下とすることを特徴とするものである。
【0010】
また、本発明の請求項3に記載の純水製造方法は、請求項1または請求項2に記載の発明において、第2イオン交換塔の再生工程は、先に強酸性カチオン交換樹脂層を再生し、後に強塩基性アニオン交換樹脂層を再生することを特徴とするものである。
【0011】
また、本発明の請求項4に記載の純水製造方法は、請求項1〜請求項3のいずれか一つに記載の発明において、第2イオン交換塔は上層に強塩基性アニオン交換樹脂層、下層に強酸性カチオン交換樹脂層が形成され、通水を下降流で行い、再生を上昇流で行うことを特徴とするものである。
【0012】
また、本発明の請求項5に記載の純水製造方法は、請求項1〜請求項3のいずれか一つに記載の発明において、第2イオン交換塔は、上層に強酸性カチオン交換樹脂層、下層に強塩基性アニオン交換樹脂層が形成され、通水を上昇流で行い、再生を下降流で行うことを特徴とするものである。
【0013】
また、本発明の請求項6に記載の純水製造方法は、被処理水を強酸性カチオン交換樹脂層、弱塩基性アニオン交換樹脂層、強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水して純水を得る純水製造方法において、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に弱塩基性アニオン交換樹脂、強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの通水膨潤分及び再生膨潤分だけの隙間を残して三層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の弱塩基性アニオン交換樹脂層、強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向と逆の方向にそれぞれの再生剤を通液する再生工程とを有することを特徴とするものである。
【0014】
また、本発明の請求項7に記載の純水製造方法は、請求項6に記載の発明において、第2イオン交換塔の強酸性カチオン交換樹脂の充填層高を600mm以下とすることを特徴とするものである。
【0015】
また、本発明の請求項8に記載の純水製造方法は、請求項6または請求項7に記載の発明において、第2イオン交換塔の再生工程は、先に強酸性カチオン交換樹脂層を再生し、後に強塩基性アニオン交換樹脂層及び弱塩基性アニオン交換樹脂を再生することを特徴とするものである。
【0016】
また、本発明の請求項9に記載の純水製造方法は、請求項6〜請求項8のいずれか一つに記載の発明において、第2イオン交換塔は、上層に弱塩基性アニオン交換樹脂層、中層に強塩基性アニオン交換樹脂層、下層に強酸性カチオン交換樹脂層が形成され、通水を下降流で行い、再生を上昇流で行うことを特徴とするものである。
【0017】
また、本発明の請求項10に記載の純水製造方法は、請求項6〜請求項8のいずれか一つに記載の発明において、第2イオン交換塔は、上層に強酸性カチオン交換樹脂層、中層に強塩基性アニオン交換樹脂層、下層に弱塩基性アニオン交換樹脂層が形成され、通水を上昇流で行い、再生を下降流で行うことを特徴とするものである。
【0018】
また、本発明の請求項11に記載のイオン交換塔は、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの再生膨潤分だけの隙間を残して二層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向とは逆の方向にそれぞれの再生剤を通液する再生工程とを有する純水製造方法に用いられる第2イオン交換塔であって、当該第2イオン交換塔は、上層に強塩基性アニオン交換樹脂層、下層に強酸性カチオン交換樹脂層が形成され、通水を下降流で行い、再生を上昇流で行うものであり、上記第2イオン交換塔内の上記強塩基性アニオン交換樹脂層と上記強酸性カチオン交換樹脂層を、被処理水の通水を許すが、上記各イオン交換樹脂の流通を阻止する仕切板により仕切り、あるいは仕切板で仕切ることなく、更に上記仕切板の下方近傍または上記両イオン交換樹脂層の分離境界面の下方近傍に再生剤の出入管を設けたことを特徴とするものである。
【0019】
また、本発明の請求項12に記載のイオン交換塔は、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの再生膨潤分だけの隙間を残して二層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向とは逆の方向にそれぞれの再生剤を通液する再生工程とを有する純水製造方法に用いられる第2イオン交換塔であって、当該第2イオン交換塔は上層に強塩基性アニオン交換樹脂層、下層に強酸性カチオン交換樹脂層が形成され、通水を下降流で行い、再生を上昇流で行うものであり、上記第2イオン交換塔内の上記強酸性カチオン交換樹脂層と、上記強塩基性アニオン交換樹脂層の間にイナート樹脂層が形成され、このイナート樹脂層の中央部に再生剤の出入管を設けたことを特徴とするものである。
【0020】
また、本発明の請求項13に記載のイオン交換塔は、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの再生膨潤分だけの隙間を残して二層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向とは逆の方向にそれぞれの再生剤を通液する再生工程とを有する純水製造方法に用いられる第2イオン交換塔であって、当該第2イオン交換塔は、上層に強酸性カチオン交換樹脂層、下層に強塩基性アニオン交換樹脂層が形成され、通水を上昇流で行い、再生を下降流で行うものであり、上記第2イオン交換塔内の上記強酸性カチオン交換樹脂層と上記強塩基性アニオン交換樹脂層を、被処理水の流通は許すが、上記各イオン交換樹脂の流通を阻止する仕切板により仕切り、更に上記仕切板の上方近傍に再生剤の出入管を設けたことを特徴とするものである。
【0021】
また、本発明の請求項14に記載のイオン交換塔は、塔内に強酸性カチオン交換樹脂をその再生膨潤分だけの隙間を残して充填した第1イオン交換塔と、塔内に弱塩基性アニオン交換樹脂、強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂をそれぞれの通水膨潤分及び再生膨潤分だけの隙間を残して三層状に充填した第2イオン交換塔を用い、被処理水を第1イオン交換塔の強酸性カチオン交換樹脂層、第2イオン交換塔の弱塩基性アニオン交換樹脂層、強塩基性アニオン交換樹脂層、強酸性カチオン交換樹脂層の順に通水する通水工程と、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、上記被処理水の通水方向と逆の方向にそれぞれの再生剤を通液する再生工程とを有する純水製造方法に用いられる第2イオン交換塔であって、当該第2イオン交換塔は上層に強酸性カチオン交換樹脂層、中層に強塩基性アニオン交換樹脂層、下層に弱塩基性アニオン交換樹脂層が形成され、通水を上昇流で行い、再生を下降流で行うものであり、上記第2イオン交換塔内の上記強酸性カチオン交換樹脂層、上記強塩基性アニオン交換樹脂層、上記弱塩基性アニオン交換樹脂層それぞれの層間を、被処理水の流通は許すが、上記各イオン交換樹脂の流通を阻止する仕切板により仕切り、更に強酸性カチオン交換樹脂層の下層部内に再生剤の出入管を設けたことを特徴とするものである。
【0022】
また、本発明の請求項15に記載のイオン交換塔は、請求項14に記載の発明において、強酸性カチオン交換樹脂層の下層部にイナート樹脂を充填し、このイナート樹脂層内に再生剤の出入管を設けたことを特徴とするものである。
【0023】
【発明の実施の形態】
以下、図1〜図9に示す実施形態に基づいて本発明を説明する。尚、各図中、図1及び図4は本発明の純水製造方法の一実施形態に用いられる2床3塔式イオン交換装置を示す構成図、図2、図3及び図5〜図9はそれぞれ本発明の純水製造方法の他の実施形態に用いられる第2イオン交換塔の構造を示す構成図である。
【0024】
まず、本発明の純水製造方法の一実施形態に用いられる2床3塔式イオン交換装置(以下、単に「イオン交換装置」と称す。)について図1を参照しながら説明する。このイオン交換装置10は、図1に示すように、塔本体11A内に強酸性カチオン交換樹脂(以下、必要に応じて「強酸性カチオン交換樹脂層」と称す。)11Bが充填された第1イオン交換塔11と、塔本体12A内に強塩基性アニオン交換樹脂(以下、必要に応じて「強塩基性アニオン交換樹脂層」と称す。)12B及び強酸性カチオン交換樹脂12Cがそれぞれ上層及び下層として二層状に充填された第2イオン交換塔12と、これら両者11、12間に配置された脱炭酸塔13とを備えている。また、第1イオン交換塔11の塔頂には原水が流入する流入管14が接続され、また、第1イオン交換塔11の塔底と脱炭酸塔13及び脱炭酸塔13と第2イオン交換塔12の塔頂はそれぞれ接続管15、16によって接続され、第2イオン交換塔12の塔底には処理水の流出管17が接続されている。尚、18は脱炭酸塔13から流出した二次処理水を第2イオン交換塔12へ給送するポンプである。
【0025】
そして、被処理水である原水が流入管14から第1イオン交換塔11へ流入し、実線の矢印で示すように下降流で強酸性カチオン交換樹脂層11Bを通水して一次処理水を得、この一次処理水は接続管15を介して脱炭酸塔13において脱炭酸が行われた後、二次処理水が接続管16を介して第2イオン交換塔12の強塩基性アニオン交換樹脂層12B、強酸性カチオン交換樹脂層12Cの順に下降流で通水して純水を処理水として得るようにしてある。このように第2イオン交換塔12内で強塩基性アニオン交換樹脂層12Bの処理水を強酸性カチオン交換樹脂層12Cで更に処理することには以下の利点がある。
【0026】
即ち、強塩基性アニオン交換樹脂層12Bを再生した後、洗浄操作を行ってもアルカリ再生剤を完全に洗い流すことが難しく、再生後の採水工程で強塩基性アニオン交換樹脂層12Bから微量ではあるがナトリウムイオン等のアルカリ成分が不純物として漏出する。ところが、同一塔内で強酸性カチオン交換樹脂層12Cを強塩基性アニオン交換樹脂層12Bの下層として配置したことにより、強塩基性アニオン交換樹脂層12Bから漏出する僅かなアルカリ成分をその下層の強酸性カチオン交換樹脂12Cにより確実に除去し、あるいは強塩基性アニオン交換樹脂12Bに吸着された有機酸のナトリウム塩の加水分解に起因するアルカリ成分を除去し、従来よりも短時間で処理水を所定純度まで立ち上げることができると共に従来よりも高純度の純水を得ることができる。従って、再生後の強塩基性アニオン交換樹脂層12Bの洗浄時間を短縮でき、洗浄用水を格段に節約することができる。
【0027】
上記強酸性カチオン交換樹脂層12Cの層高は、第2イオン交換塔12の直径によっても異なるが、その直径が例えば1000mm以下であれば、層高が300mm程度あれば強塩基性アニオン交換樹脂層12Bからの漏出する僅かなナトリウムイオン等のアルカリ成分を除去することができる。その直径が例えば2000mm程度になると600mm程度の層高が必要になるが、通常、第2イオン交換塔12の直径が2000mmを超えることは少なく、強酸性カチオン交換樹脂層12Cの層高としては一般的には600mm以下であれば、強酸性カチオン交換樹脂層12Cの機能を十分に発揮する。水酸化ナトリウムを除去するためであれば、強酸性カチオン交換樹脂に代えて弱酸性カチオン交換樹脂を用いることもできるが、この樹脂は再生形と塩形の膨潤、収縮が大きいため、塔内に充填し難く、処理水の純度の点で強酸性カチオン交換樹脂に劣るため、本発明では強酸性カチオン交換樹脂を用いる。
【0028】
而して、第1イオン交換塔11の塔本体11A内の塔底及び塔頂近傍には第1、第2仕切板11C、11Dが水平に設けられ、第1仕切板11Cで強酸性カチオン交換樹脂層11Bを支持している。強酸性カチオン交換樹脂は再生時、特に、酸再生剤の通液後の水による押し出し時に約7%前後膨潤するため、基準形(ナトリウム形)の強酸性カチオン交換樹脂を塔本体11A内に充填する時には強酸性カチオン交換樹脂層11Bの上面と第2仕切板11Dの間には再生膨潤分だけのスペースに見合った隙間を残して強酸性カチオン交換樹脂をほぼ満杯に充填する。この隙間は再生時に強酸性カチオン交換樹脂11Bの膨潤により詰まるようになっている。また、第1、第2仕切板11C、11Dはいずれも上下の空間を連通する多数の連通手段を有する、例えばストレーナーが各仕切板の全面に多数個分散して形成され、これらの連通手段は被処理水や再生剤等の液体が流通し、各イオン交換樹脂は流通できないようになっている。更に、流入管14には強酸性カチオン交換樹脂層11Bの再生廃液が流出する再生剤流出管14Aが接続され、接続管15には酸再生剤が流入する再生剤流入管15Aが接続されている。尚、以下で説明する仕切板の構造も第1、第2仕切板11C、11Dと同様に構成されている。また、図1を含む各図では再生膨潤分に見合った隙間は図示してない。
【0029】
従って、第1イオン交換塔11の強酸性カチオン交換樹脂11Bを再生する時には、塩酸水溶液等の酸再生剤を再生剤流入管15Aから通水方向とは逆方向の上昇流で通液すると、酸再生剤が強酸性カチオン交換樹脂層11Bを一点鎖線で示すように上昇流で通液してこの樹脂を再生した後、酸再生廃液が再生剤流出管14Aから流出するようにしてある。尚、図1では再生剤に関連する配管及び再生剤の流れは一点鎖線で示してある。後述する他の実施形態のイオン交換塔を示す図2〜図9においても同様である。
【0030】
一方、第2イオン交換塔12の塔本体12A内の塔底及び塔頂近傍には第1、第2仕切板12D、12Eが水平に設けられ、第1仕切板12Dで強塩基性アニオン交換樹脂層12B及び強酸性カチオン交換樹脂層12Cを二層状に積層した状態で支持している。また、強塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂はそれぞれ再生時に膨潤するため、これらのイオン交換樹脂12B、12Cを塔本体12A内に充填する時には強酸性カチオン交換樹脂層12Cを充填し、その上面に第2仕切板12Eの間でそれぞれの樹脂の再生膨潤分だけのスペースに見合った隙間を残して強塩基性アニオン交換樹脂層12Bを塔本体12A内にほぼ満杯に充填する。これらの隙間は再生時に各イオン交換樹脂の膨潤により詰まるようになっている。更に、接続管16には上層である強塩基性アニオン交換樹脂層12Bの再生廃液が流出する再生剤流出管16Aが接続され、流出管17には下層である強酸性カチオン交換樹脂層12Cの酸再生剤が流入する再生剤流入管17Aが接続されている。そして、強塩基性アニオン交換樹脂層12Bと強酸性カチオン交換樹脂層12Cの境界面やや下方には再生時に用いられる再生剤の出入管12Fが水平に配置され、この出入管12Fは水酸化ナトリウム等のアルカリ再生剤のディストリビュータとしての機能及び酸再生剤の廃液のコレクタとしての機能を有している。
【0031】
従って、強塩基性アニオン交換樹脂層12Bを再生する時には、アルカリ再生剤を出入管12Fから供給すると共に塔本体12Aの塔底から純水をバランス水として上昇流で供給すると、アルカリ再生剤がバランス水に随伴して一点鎖線で示すように上昇流で通液して強塩基性アニオン交換樹脂層12Bを再生し、アルカリ再生廃液が再生剤流出管16Aから流出する。また、強酸性カチオン交換樹脂層12Cを再生する時には、酸再生剤を再生剤流入管17Aから供給すると共に塔頂からバランス水を供給すると、酸再生剤が強酸性カチオン交換樹脂層12Cを一点鎖線で示すように上昇流で通液して再生すると共にバランス水が下降流で通水し、これら両者が出入管12Fで合流し、酸再生廃液が出入管12Fから流出する。
【0032】
第2イオン交換塔12の各イオン交換樹脂の再生順序としては、先に通水出口側の強酸性カチオン交換樹脂層12Cを再生した後、通水入口側の強塩基性アニオン交換樹脂層12Bを再生する。このように通水出口側である強酸性カチオン交換樹脂層12Cを先に向流再生することにより、高純度の処理水を得ることができる。例えば、先に強塩基性アニオン交換樹脂層12Bを再生し、後に強酸性カチオン交換樹脂層12C再生すると、折角、上昇流によって高度に再生された強塩基性アニオン交換樹脂層12Bの下層部に後に再生する酸再生剤が接触し、その下層部が処理水の導電率に最も影響を与える塩形となってしまい処理水の純度を低下させてしまう。一方、先に通水出口側である下層の強酸性カチオン交換樹脂層12Cを再生し、後に通水入口側である上層の強塩基性アニオン交換樹脂層12Bを再生した場合には、上述したような現象が生じることなく、高純度の処理水を得ることができる。このように先に下層の強酸性カチオン交換樹脂層12Cを再生し、後に上層の強塩基性アニオン交換樹脂層12Bを再生すると、再生済みの強酸性カチオン交換樹脂層12BCの上層部が強塩基性アニオン交換樹脂層12Bの再生剤である水酸化ナトリウム等のアルカリ再生剤が接触して塩形となるが、この場合には被処理水が下降流で通水されるため、被処理水は強酸性カチオン交換樹脂層12Cの塩形部分(上層部)に最初に接触し処理水の純度低下に対して影響を与えることがなく、最下層部は理想的に再生されている。
【0033】
次に、上記イオン交換装置10を用いた本発明の純水製造方法について説明する。本実施形態の純水製造方法では、通水工程で原水を処理する時には、原水が流入管14から塔本体11内の塔頂空間へ流入し、第2仕切板11Dを介して強酸性カチオン交換樹脂層11Bの上面全面に分散する。この原水は強酸性カチオン交換樹脂層11B全体を下降流で通水し、この間に原水中のカルシウムイオン、マグネシウムイオン、ナトリウムイオン等のカチオンが強酸性カチオン交換樹脂11Bにより除去され、第1仕切板11Cを経由して接続管15から一次処理水として流出する。そして、脱炭酸塔13において一次処理水中に残留する炭酸イオンが炭酸ガスとして除去された二次処理水が接続管16を経由して第2イオン交換塔12の塔本体12A内の塔頂空間に流入する。
【0034】
第2イオン交換塔12の塔本体12A内に流入した二次処理水は第2仕切板12Eを介して強塩基性アニオン交換樹脂層12Bの上面全面に分散する。この二次処理水は強塩基性アニオン交換樹脂層12B全体を下降流で通水し、この間に二次処理水中の塩素イオン、硫酸イオン、硝酸イオン、シリカ、残留炭酸等のアニオンが強塩基性アニオン交換樹脂12Bにより除去され、引き続き、下層の強酸性カチオン交換樹脂層12Cを下降流で通水し、ここで上層から処理水中へ漏出する僅かなナトリウムイオン等のアルカリ成分を捕捉して処理水中から除去し、高純度の純水を第2イオン交換塔12の流出管17から流出する。
【0035】
上述した純水の製造により各イオン交換樹脂が貫流点に達したら再生工程で各イオン交換樹脂を再生する。それには第1、第2イオン交換塔11、12の各イオン交換樹脂層を逆洗操作することなく、第1、第2イオン交換塔11、12の各イオン交換樹脂を再生する。例えば、先に第2イオン交換塔12の再生操作を行い、後に第1イオン交換塔11の再生操作を行う。
【0036】
第2イオン交換塔12の再生操作を行うにはまず、塔本体12Aの通水出口側に位置する下層の強酸性カチオン交換樹脂層12Cを向流再生する。即ち、酸再生剤を塔底の再生剤流入管17Aから塔本体12A内へ供給すると共に塔頂から純水をバランス水として供給する。これにより酸再生剤は塔底の空間に流入し、第2仕切板12Dを介して下層の強酸性カチオン交換樹脂層12C全体へ上昇流で通液し、強酸性カチオン交換樹脂12Cを効率良く再生する。酸再生廃液が出入管12Fから流出する時点では既にバランス水が下層まで達しており、酸性廃液が上層に侵入することなくバランス水と合流して出入管12Fから酸再生廃液として排出される。
【0037】
下層の強酸性カチオン交換樹脂層12Cの向流再生を行った後、酸再生剤に代えて純水を塔底から供給し、塔本体12の塔頂、塔底の双方から純水を通水して洗浄操作を行い、洗浄廃液を出入管12Fから排出する。
【0038】
下層の洗浄操作の後、通水入口側に位置する上層の強塩基性アニオン交換樹脂層12Bを向流再生する。即ち、塔底からバランス水を供給すると共に出入管12Fから例えば水酸化ナトリウム水溶液をアルカリ再生剤として供給する。これによりアルカリ再生剤は出入管12Fを介して強酸性カチオン交換樹脂層12Cの最上層に流入し、ここでバランス水と合流し、アルカリ再生剤は強塩基性アニオン交換樹脂層12B全体へ上昇流で通液し、強塩基性アニオン交換樹脂を効率良く再生する。アルカリ再生剤が出入管12Fから流入する時点では既にバランス水が出入管12Fまで達しており、アルカリ再生剤はバランス水と合流し、強塩基性アニオン交換樹脂12Bを再生した後、再生剤流出管16Aからアルカリ再生廃液として排出される。上層の強塩基性アニオン交換樹脂層12Bの向流再生後、アルカリ再生剤の供給を停止し、塔底のみから純水を上昇流通水して強塩基性アニオン交換樹脂の再生剤の押出し及び洗浄操作を行い、洗浄廃液は再生剤流出管16Aから排出される。
【0039】
ところで、上層の強塩基性アニオン交換樹脂12Bと下層の強酸性カチオン交換樹脂12Cは比重差により区画されているだけであるため、両イオン交換樹脂層の界面で両者が僅かに混合し、後で行われる強塩基性アニオン交換樹脂の再生時に下層の強酸性カチオン交換樹脂12Cの出入管12Fより上の部分がアルカリ再生剤により逆再生されて強塩基性アニオン交換樹脂層12Bの最下層部に混じるが、この部分は通水時には上流側に位置するため、強酸性カチオン交換樹脂のイオン交換容量は僅かに低下するが、処理水の水質には影響しない。
【0040】
次いで、第1イオン交換塔11の再生操作を行う。即ち、酸再生剤を第1イオン交換塔11の再生剤流入管15Aから上昇流で強酸性カチオン交換樹脂層11Bに通液し、再生廃液を再生剤流出管14Aから流出する。その後、強酸性カチオン交換樹脂層11Bの押し出し、洗浄操作等を行って再生操作を終了する。後は、通水工程と再生工程とを逆洗操作を行うことなく繰り返してイオン交換反応により原水を処理して純水を製造する。尚、第1イオン交換塔11の強酸性カチオン交換樹脂の再生においては、第2イオン交換塔12の強酸性カチオン交換樹脂と同時に行うこともできる。この場合には前述したように第2イオン交換塔12の強酸性カチオン交換樹脂の再生の際に出入管12Fから流出する再生廃液の全量を第1イオン交換塔11の再生剤流入管15Aを介して第1イオン交換塔11に供給する。
【0041】
以上説明したように本実施形態によれば、塔本体11A内に強酸性カチオン交換樹脂層11Bをその再生膨潤分だけの隙間を残して充填した第1イオン交換塔11と、塔本体12A内に強塩基性アニオン交換樹脂12Bと強酸性カチオン交換樹脂層12Cとをそれぞれの再生膨潤分だけの隙間を残して二層状に上下層として充填した第2イオン交換塔12を用い、原水を下降流で通水し、各再生剤を上昇流で通液するようにしたため、以下のような作用効果が奏し得られる。
【0042】
即ち、純水を得る通水工程では、原水を第1イオン交換塔11の強酸性カチオン交換樹脂層11Bに通水した後、第2イオン交換塔12の強塩基性アニオン交換樹脂層12B、強酸性カチオン交換樹脂層12Cの順に下降流で通水するため、特に第2イオン交換塔12の強塩基性アニオン交換樹脂層12Bの下層に少量の強酸性カチオン交換樹脂12Cを充填するだけで、強塩基性アニオン交換樹脂層12Bの処理水に僅かなナトリウムイオン等のアルカリ成分が残留していても、下層の強酸性カチオン交換樹脂層12Cにより確実にアルカリ成分を除去し、高純度の純水を得ることができる。また、塔を増設することなく従来のアニオン交換塔内に強酸性カチオン交換樹脂を充填するだけで良いため、再生型混床式イオン交換装置を増設する従来方式と比較して格段にイオン交換装置を小型化することができる。
【0043】
また、再生工程では、第1イオン交換塔11及び第2イオン交換塔12共に逆洗操作を行うことなく、原水の通水方向と逆の方向にそれぞれの再生剤を通液して向流再生を行うので、通水終了時にイオン交換樹脂層で形成されたイオン形の配列を乱すことなく、そのまま再生することができ、通水終了時に残留している最下層の再生形のイオン交換樹脂を有効に活用することができると共に再生効率を最大限とすることができる。
【0044】
例えば、第1イオン交換塔11の強酸性カチオン交換樹脂の場合について更に説明すると、通水時のこの樹脂層の配列は、上からカルシウム形、ナトリウム形、水素形になっているが、この樹脂層を逆洗することなく、このままの状態で酸再生剤として塩酸を樹脂層の下側から通液すると、塩酸は下層部の水素形の樹脂を素通りしてまずナトリウム形の樹脂を溶離してこれを水素形とし、その廃液である塩化ナトリウムが更に上層のカルシウム形の樹脂を溶離してこれをナトリウム形とし、更にまたそのナトリウム形の樹脂が塩酸と接触してこれを水素形とするというように、溶離が順々に行われ、元来水素イオンでは溶離し難いカルシウム形の樹脂を水素イオンより溶離性に優れているナトリウムイオンを介在させることによって効果的に溶離することができると共に、通水終了時に残留する水素形の樹脂をイオン交換樹脂層の下部にそのまま保持しておくことができるため、再生という操作においては最も理想的な状態で再生することができ、再生によって生成される水素形の樹脂を最大とすることができる。本発明は通水の方向が下降流、上昇流に拘らず、両イオン交換樹脂共に通水終了後に逆洗を実施することなく、向流再生を行うため、後述する本発明の全ての実施形態において上述したように最も理想的な状態で両イオン交換樹脂共に再生することができる。
【0045】
更に、再生後の洗浄工程では、第2イオン交換塔12の下層として強酸性カチオン交換樹脂層12Cが配置されているため、上層の強塩基性アニオン交換樹脂層12Bからアルカリ成分が漏出しなくなるまで洗浄する必要がなく、短時間で洗浄操作を打ち切ることができ、洗浄水の使用量を格段に節約することができる。即ち、短時間で洗浄操作を打ち切った場合は通水を開始すると残留するアルカリ成分が漏出することになるが、アルカリ成分が漏出しても下層の強酸性カチオン交換樹脂層12Cによりアルカリ成分を確実に捕捉して除去し、高純度の純水を得ることができる。
【0046】
図2は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図1に示す第2イオン交換塔12に代えて用いられるものである。従って、本実施形態では図1に示す場合と同一または相当する部分には同一符号を附して説明する。この第2イオン交換塔121の場合には、図1に示す第2イオン交換塔12の上層の強塩基性アニオン交換樹脂層12Bと下層の強酸性カチオン交換樹脂層12Cの境界に第3仕切板12Gを設け、第3仕切板12Gのやや下方に出入管12Fを設けた以外は図1に示す第2イオン交換塔12に準じて構成されている。そして、各イオン交換樹脂を充填する時には第2仕切板12Eとの間に強塩基性アニオン交換樹脂12Bの再生膨潤分だけのスペースに見合った隙間を残してこの樹脂をほぼ満杯に充填すると共に、第3仕切板12Gとの間には強酸性カチオン交換樹脂層12Cの再生膨潤分だけのスペースに見合った隙間を残してこの樹脂をほぼ満杯に充填する。そして、通水工程では強塩基性アニオン交換樹脂層12B、強酸性カチオン交換樹脂層12Cの順で下降流通水を行い、再生工程では強酸性カチオン交換樹脂層12C、強塩基性アニオン交換樹脂層12Bの順で上昇流通液を行うようにしてある。
【0047】
従って、本実施形態によれば、上層の強塩基性アニオン交換樹脂層12Bと下層の強酸性カチオン交換樹脂層12Cを第3仕切板12Gによって区画してあるため、通水と再生を繰り返し行っても両イオン交換樹脂12B、12Cが混合することなく、高純度の純水を安定的に製造することができる。その他、図1に示すイオン交換装置と同様の作用効果を期することができる。
【0048】
図3は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図1に示す第2イオン交換塔12に代えて用いられるものである。この第2イオン交換塔122の場合には、図1に示す第2イオン交換塔12の上層の強塩基性アニオン交換樹脂層12Bと下層の強酸性カチオン交換樹脂層12Cの間に化学的に不活性なイナート樹脂12Hを配置し、このイナート樹脂12Hの縦方向中央部に出入管12Fを設けた以外は図1に示す第2イオン交換塔12に準じて構成されている。ここで、イナート樹脂は不活性樹脂とも称し、例えば通常のイオン交換樹脂の母体と同じスチレンとジビニルベンゼンとの共重合体でイオン交換基のないものを指す。
【0049】
従って、本実施形態によれば、出入管12Fがイナート樹脂12H中に設けてあるため、後で行う上層の強塩基性アニオン交換樹脂層12Bの再生時にも下層の強酸性カチオン交換樹脂層12Cに逆再生部分を生じることがなく、下層の強酸性カチオン交換樹脂層12Cのイオン交換容量が低減することがない。その他、図1に示すイオン交換装置と同様の作用効果を期することができる。
【0050】
図4は本発明の純水製造方法の更に他の実施形態に用いられる2床3塔式イオン交換装置を示す図で、図1に示す場合と同一または相当する部分には同一符号を附してある。本実施形態のイオン交換装置10Aは、図4に示すように、塔本体11A内に強酸性カチオン交換樹脂11Bが充填された第1イオン交換塔11と、塔本体12A内に強塩基性アニオン交換樹脂12B及び強酸性カチオン交換樹脂12Cがそれぞれ下層及び上層として二層状に充填された第2イオン交換塔123と、これら両者11、123間に配置された脱炭酸塔13とを備え、通水工程では原水が第1、第2イオン交換塔11、123を上昇流で通水し、再生工程では各イオン交換樹脂の再生剤が第1、第2イオン交換塔11、123を下降流で通液するようにしてある。また、第1イオン交換塔11の塔底には原水が流入する流入管14が接続され、第1イオン交換塔11の塔頂と脱炭酸塔13及び脱炭酸塔13と第2イオン交換塔123の塔底はそれぞれ接続管15、16によって接続され、第2イオン交換塔123の塔頂には流出管17が接続されている。
【0051】
第2イオン交換塔123内には図4に示すように上層の強酸性カチオン交換樹脂12Cと下層の強塩基性アニオン交換樹脂層12Bとの間に位置させた第3仕切板12Gが設けられ、この第2仕切板12Gのやや上方に出入管12Fが配置されている。そして、第1仕切板12Dと強塩基性アニオン交換樹脂層12Bの間及び第3仕切板12Gと強塩基性アニオン交換樹脂12Bとの間にはそれぞれの樹脂の再生膨潤分だけの隙間(図示せず)が設けられており、再生時にはこれらの隙間は各イオン交換樹脂の膨潤により詰まるようになっている。このように下層の強塩基性アニオン交換樹脂層12Bと上層の強酸性カチオン交換樹脂層12Cの間に第3仕切板12Gを配置したのは、強塩基性アニオン交換樹脂の比重が強酸性カチオン交換樹脂の比重より小さいため、第2イオン交換塔123内で通水及び再生を繰り返す間に両イオン交換樹脂が混合するのを防止するためである。
【0052】
第2イオン交換塔123の各イオン交換樹脂の再生順序としては、先に通水出口側である上層の強酸性カチオン交換樹脂層12Cを再生した後、通水入口側である下層の強塩基性アニオン交換樹脂層12Bを再生する。このように通水出口側である強酸性カチオン交換樹脂層12Cを先に向流再生し、後に通水出口側の強塩基性アニオン交換樹脂層12Bを向流再生する理由は前述した通りである。
【0053】
次に、上記イオン交換装置10Aを用いた本発明の純水製造方法について説明する。本実施形態の純水製造方法では、通水工程で原水を処理する時には、原水が流入管14から塔本体11内の塔底空間へ流入し、第1仕切板11Cを介して強酸性カチオン交換樹脂層11Bの下面全面に分散する。この原水は強酸性カチオン交換樹脂層11B全体を上昇流により通水し、この間に原水中のカチオンが強酸性カチオン交換樹脂11Bにより除去され、第2仕切板11Dを経由して接続管15から二次処理水として流出する。そして、脱炭酸塔13において二次処理水中に残留する炭酸イオンが炭酸ガスとして除去され二次処理水が得られ、この二次処理水が接続管16を経由して第2イオン交換塔123の塔本体12A内に塔底側から流入する。
【0054】
第2イオン交換塔123の塔本体12A内に流入した二次処理水は第1仕切板12Dを介して強塩基性アニオン交換樹脂層12Bの下面全面に分散する。この二次処理水は強塩基性アニオン交換樹脂層12B全体を上昇流により通水し、この間に二次処理水中の塩素イオン、硫酸イオン、硝酸イオン、シリカ、残留炭酸等のアニオンが強塩基性アニオン交換樹脂12Bにより除去され、引き続き、上層の強酸性カチオン交換樹脂層12Cを上昇流で通水し、ここで下層から処理水中へ漏出する僅かなナトリウムイオン等のアルカリ成分を捕捉して処理水中から除去し、高純度の純水が第2イオン交換塔123の流出管17から流出する。
【0055】
上述した純水の製造により各イオン交換樹脂が貫流点に達したら再生工程で各イオン交換樹脂を再生する。それには第1、第2イオン交換塔11、123の各イオン交換樹脂層を逆洗操作することなく、第1、第2イオン交換塔11、123の各イオン交換樹脂を再生する。例えば、先に第2イオン交換塔123の再生操作を行い、後に第1イオン交換塔11の再生操作を行う。
【0056】
第2イオン交換塔123の再生操作を行うにはまず、塔本体12Aの通水出口側に位置する上層の強酸性カチオン交換樹脂層12Cを向流再生する。即ち、酸再生剤を塔頂の再生剤流入管17Aから塔本体12A内へ供給すると共に塔底から純水をバランス水として供給する。これにより酸再生剤は塔頂の空間に流入し、第2仕切板12Eを介して上層の強酸性カチオン交換樹脂層12C全体へ下降流で通液し、強酸性カチオン交換樹脂を効率良く再生する。酸再生廃液はバランス水と合流して出入管12Fから排出される。
【0057】
上層の強酸性カチオン交換樹脂層12Cの向流再生を行った後、酸再生剤に代えて純水を塔頂から供給し、塔本体12の塔頂、塔底の双方から純水を通水して強酸性カチオン交換樹脂12Cの再生剤の押出し及び洗浄操作を行い、洗浄廃液が出入管12Fから排出される。
【0058】
上層の洗浄操作の後、通水入口側に位置する下層の強塩基性アニオン交換樹脂層12Bを向流再生する。即ち、塔頂からバランス水を供給すると共に出入管12Fからアルカリ再生剤を供給する。これによりアルカリ再生剤は出入管12Fを介して強酸性カチオン交換樹脂層12Cの最下層に流入し、ここでバランス水と合流し、アルカリ再生剤は強塩基性アニオン交換樹脂層12B全体へ下降流で通液し、強塩基性アニオン交換樹脂を効率良く再生する。アルカリ再生廃液はバランス水と合流して再生剤流出管16Aから排出される。下層の強塩基性アニオン交換樹脂層12Bの向流再生後、アルカリ再生剤の供給を停止し、塔頂のみから純水を下降流通水して強塩基性アニオン交換樹脂の再生剤の押出し及び洗浄操作を行い、洗浄廃液は再生剤流出管16Aから排出される。
【0059】
次いで、第1イオン交換塔11の再生操作を行う。即ち、酸再生剤を第1イオン交換塔11の再生剤流入管15Aから強酸性カチオン交換樹脂層11Bに下降流で通液し、再生廃液を再生剤流出管14Aから排出する。その後、強酸性カチオン交換樹脂層11Bの洗浄操作等を行って再生操作を終了する。後は、通水工程と再生工程とを逆洗操作を行うことなく繰り返してイオン交換反応により原水を処理して純水を製造する。尚、図1の説明と同じように、第2イオン交換塔123の強酸性カチオン交換樹脂と第1イオン交換塔11の強酸性カチオン交換樹脂に酸再生剤を一貫で通液して両者を同時に再生することもできる。
【0060】
以上説明したように本実施形態においても、上記各実施形態と同様の作用効果が奏し得られる。即ち、純水を得る通水工程では第2イオン交換塔123の強塩基性アニオン交換樹脂層12Bの上層として少量の強酸性カチオン交換樹脂12Bを充填するだけで、強塩基性アニオン交換樹脂層12Bの処理水に僅かなアルカリ成分が残留していても、上層の強酸性カチオン交換樹脂12Cにより確実にアルカリ成分を除去し、高純度の純水を得ることができると共にイオン交換装置を小型化することができる。
【0061】
また、再生工程では、第1イオン交換塔及び第2イオン交換塔共に逆洗操作を行うことなく、原水の通水方向と逆の方向にそれぞれの再生剤を通液して向流再生を行うので、上記各実施形態と同様に再生効率を最大限とすることができ、また、下層の強塩基性アニオン交換樹脂層12Bからアルカリ成分が漏出しなくなるまで洗浄する必要がなく、短時間で洗浄操作を打ち切ることができ、洗浄水の使用量を格段に節約することができる。
【0062】
図5は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図1に示す第2イオン交換塔12に代えて用いられるものである。この第2イオン交換塔124の場合には、図5に示すように、塔本体12A内に弱塩基性アニオン交換樹脂層12I、強塩基性アニオン交換樹脂層12B及び強酸性カチオン交換樹脂層12Cがこの順で上層、中層及び下層として積層され、各イオン交換樹脂はそれぞれの樹脂の通水膨潤分及び再生膨潤分だけの隙間を残して塔本体12A内に三層状にほぼ満杯に充填されている。この第2イオン交換塔124は原水中に鉱酸成分(塩化物イオン、硝酸イオン、硫酸イオン等の強酸イオン)が比較的多く含まれている時に好適に用いられる。下降流通水において、このように強塩基性アニオン交換樹脂層12B上に弱塩基性アニオン交換樹脂層12Iを積層することにより、二次処理水が強塩基性アニオン交換樹脂層12Bへ到達する前に予め弱塩基性アニオン交換樹脂層12Iにより鉱酸成分を除去することができる。また、塔本体12Aには図1の場合と同様に第1、第2仕切板12D、12Eがそれぞれ塔底及び塔頂近傍に設けられている。
【0063】
従って、鉱酸成分が比較的多く含まれている原水から純水を製造する場合には、再生効率の良い弱塩基性アニオン交換樹脂を用いることにより、アルカリ再生剤の使用量を減少させることができ、ランニングコストを低減させることができる。尚、強塩基性アニオン交換樹脂層12Bの処理水に僅かなナトリウムイオン等のアルカリ成分が残留していても、下層の強酸性カチオン交換樹脂12Cにより確実にアルカリ成分を除去し、高純度の純水を得ることができることは前述の実施形態と同じである。
【0064】
また、第2イオン交換塔124の再生工程では、図1に示した第2イオン交換塔12の場合と同様に先に通水出口側の強酸性カチオン交換樹脂12Cを酸再生剤により再生し、後に通水入口側の強塩基性アニオン交換樹脂12B及び弱強塩基性アニオン交換樹脂12Iを一貫して上昇流で再生する。
【0065】
従って、本実施形態によれば、イオン交換装置の第2イオン交換塔124の塔本体12A内に上層として弱塩基性アニオン交換樹脂層12Iを、中層として強塩基性アニオン交換樹脂層12Bを、下層として強酸性カチオン交換樹脂層12Cをそれぞれの通水膨潤分及び再生膨潤分だけの隙間を残して三層状にほぼ満杯に充填し、下降流通水により純水を製造するようにしたため、原水中に比較的多くの鉱酸成分が含まれていても、高純度の純水を得ることができ、しかもイオン交換装置を小型化することができる。また、再生工程では、弱塩基性アニオン交換樹脂層12Iは再生効率が良いため、第2イオン交換塔124に用いるアニオン交換樹脂として全て強塩基性アニオン交換樹脂を用いる場合と比較して大幅にランニングコストを低減させることができる。
【0066】
図6は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図1に示す第2イオン交換塔12に代えて用いられるものである。この第2イオン交換塔125の場合には、図6に示すように、強塩基性アニオン交換樹脂層12Bと強酸性カチオン交換樹脂層12Cを第3仕切板12Gによって区画した以外は図5に示すイオン交換塔124と同様に構成されている。従って、本実施形態の場合には強塩基性アニオン交換樹脂12Bと強酸性カチオン交換樹脂12Cとの混合を確実に防止することができる点以外は、図5に示す第2イオン交換塔124と同様の作用効果を期することができる。
【0067】
図7は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図1に示す第2イオン交換塔12に代えて用いられるものである。この第2イオン交換塔126の場合には、図7に示すように、塔本体12A内に弱塩基性アニオン交換樹脂層12I、強塩基性アニオン交換樹脂層12B及び強酸性カチオン交換樹脂層12Cをこの順で上層、中層及び下層として積層され、各イオン交換樹脂はそれぞれの樹脂の通水膨潤分及び再生膨潤分だけの隙間を残して塔本体12A内に三層状にほぼ満杯に充填されいる。そして、強塩基性アニオン交換樹脂層12Bと強酸性カチオン交換樹脂層12Cに間にイナート樹脂層12Hを配置し、このイナート樹脂層12Hの縦方向中央部に出入管12Fを配置した以外は図5に示すイオン交換塔125と同様に構成されている。従って、本実施形態の場合には強塩基性アニオン交換樹脂12Bと強酸性カチオン交換樹脂12Cとの混合を確実に防止すると共に後で再生するアルカリ再生剤による強酸性カチオン交換樹脂12Cの部分的な逆再生を防止することができる点以外は、図5に示す第2イオン交換塔124と同様の作用効果を奏する。
【0068】
図8は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図4に示す第2イオン交換塔123に代えて用いられるものである。この第2イオン交換塔127の場合には、図8に示すように、塔本体12A内に弱塩基性アニオン交換樹脂層12I、強塩基性アニオン交換樹脂層12B及び強酸性カチオン交換樹脂層12Cをこの順で下層、中層及び上層として積層され、それぞれの樹脂の通水膨潤分及び再生膨潤分だけの隙間を残して塔本体12A内に三層状にほぼ満杯に充填されており、強塩基性アニオン交換樹脂12Bと強酸性カチオン交換樹脂12Cの間には第3仕切板12Gが設けられ、また、強塩基性アニオン交換樹脂12Bと弱塩基性アニオン交換樹脂12Iの間には第4仕切板12Jが設けられている。そして、通水工程では原水が実線の矢印で示すように第1、第2イオン交換塔11、127を上昇流で通水し、再生工程ではそれぞれの再生剤が第1、第2イオン交換塔11、123の各イオン交換樹脂層を下降流で通液するようにしてある。このように第3、第4仕切板12G、12Jを各樹脂間に設けることにより第2イオン交換塔127を上昇流で通水する時に比重差でイオン交換樹脂が混合しないようにしてある。尚、比重は弱塩基性アニオン交換樹脂、強塩基性アニオン交換樹脂、強酸性カチオン交換樹脂の順で大きくなる。
【0069】
また、第2イオン交換塔127の各イオン交換樹脂の再生順序としては、先に通水出口側である上層の強酸性カチオン交換樹脂層12Cを下降流で再生した後、通水入口側である中層の強塩基性アニオン交換樹脂層12B及び下層の弱塩基性アニオン交換樹脂層12Iを一貫して下降流で再生する。このように通水出口側である強酸性カチオン交換樹脂12Cを先に向流再生し、後に通水出口側の強塩基性アニオン交換樹脂層12B等を向流再生する理由は前述した通りである。本実施形態においても鉱酸成分が多く含まれている原水を処理する場合でもイオン交換塔を増設することなく小型のイオン交換装置により高純度の純水を得ることができ、また、再生時には洗浄時間の短縮及び洗浄水を格段に節約することができる。
【0070】
図9は本発明のイオン交換塔の他の実施形態を示す図で、このイオン交換塔は図4に示す第2イオン交換塔123に代えて用いられるものである。この第2イオン交換塔128の場合には、図9に示すように、塔本体12A内に上層の強酸性カチオン交換樹脂12Cの下層部にイナート樹脂層12Hを充填し、このイナート樹脂層12Hの縦方向中央部に出入管12Fを配置した以外は図8に示すイオン交換塔127と同様に構成されている。従って、本実施形態の場合には後にアニオン交換樹脂層12B、12Iを再生する時に、強酸性カチオン交換樹脂層12Cの最下層部で逆再生部分を生じることがなく、強酸性カチオン交換樹脂のイオン交換容量が低下することがなく、処理水の水質には影響しない。しかも、図8に示す第2イオン交換塔127と同様に作用効果を期することができる。
【0071】
尚、上記各実施形態では2床3塔式イオン交換装置及びその第2イオン交換塔について説明したが、本発明は炭酸イオンの含有量が少ない場合には脱炭酸塔を省略した2床2塔式イオン交換装置に適用することができる。
【0072】
【発明の効果】
以上説明したように本発明の各請求項に記載の発明によれば、イオン交換装置の小型を実現できると共に高純度の処理水を得ることができ、しかも、アニオン交換樹脂層の洗浄時間を格段に短縮することができる共に洗浄水を格段に節約することができる純水製造方法及びイオン交換塔を提供することができる。
【0073】
更に、本発明の請求項6〜請求項10に記載の発明及び請求項14〜請求項15に記載の発明によれば、被処理水中に比較的鉱酸成分が多く含まれていても、再生コストの低減を実現できると共に高純度の処理水を得ることができ、しかも、アニオン交換樹脂層の洗浄時間を格段に短縮することができる共に洗浄水を格段に節約することができる純水製造方法及びイオン交換塔を提供することができる。
【0074】
また、本発明によればその他に以下のような効果を期することができる。
▲1▼第2イオン交換塔内に積層させた強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂(及び弱塩基性アニオン交換樹脂)を再生するに当たり、通水後に逆洗を実施することなく向流再生を行うため、再生操作そのものを理想的な状態で行うことができ、再生剤の使用量当たりの再生後に生成させるH形強酸性カチオン交換樹脂あるいはOH形強塩基性アニオン交換樹脂の量を最大にすることができ、処理容量を大きくすることができる。
▲2▼第2イオン交換塔内に積層させた両イオン交換樹脂を再生するに当たり、両イオン交換樹脂に被処理水を通水する順序と逆の順序で再生することにより、後から再生する一方のイオン交換樹脂の再生剤が先に再生した他方のイオン交換樹と接触して塩形となってもこの塩形が最上流部に位置するため、処理水の純度に全く影響を与えないようにすることができる。
▲3▼両イオン交換樹脂を仕切板によって仕切ることにより通水と再生を繰り返し行っても両イオン交換樹脂が混合することなく、安定したイオン交換操作を実施することができる。
【図面の簡単な説明】
【図1】本発明の純水製造方法の一実施形態に用いられる2床3塔式イオン交換装置を示す構成図である。
【図2】本発明の純水製造方法の他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図3】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図4】本発明の純水製造方法の更に他の実施形態に用いられる2床3塔式イオン交換装置を示す構成図である。
【図5】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図6】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図7】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図8】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【図9】本発明の純水製造方法の更に他の実施形態に用いられる第2イオン交換塔のイオン交換樹脂の層構成を示す図である。
【符号の説明】
10、10A 2床3塔式イオン交換装置
11 第1イオン交換塔
11A 塔本体
11B 強酸性カチオン交換樹脂層
12、121、123、124、125 第2イオン交換塔
126、127、128、129 第2イオン交換塔
12A 塔本体
12B 強塩基性アニオン交換樹脂層
12C 強酸性カチオン交換樹脂層
12F 出入管
12G 第3仕切板(仕切板)
12H イナート樹脂層
12I 弱塩基性アニオン交換樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pure water production method and an ion exchange column, and more particularly to a pure water production method and an ion exchange column for obtaining high-purity pure water used for, for example, cleaning water for boiler feed water and electronic parts.
[0002]
[Prior art]
A typical example of a conventional pure water production method is a two-bed / three-column ion exchange apparatus. This ion exchange device includes, for example, a cation exchange column filled with a strongly acidic cation exchange resin, an anion exchange column filled with a strongly basic anion exchange resin, and a decarboxylation tower disposed between the two. For example, calcium ions, magnesium ions, sodium ions, etc. in the raw water are ion-exchanged with hydrogen ions of the strongly acidic cation exchange resin in the cation exchange tower using the downward flowing water of the raw water, and then carbonized under acidic conditions in the decarboxylation tower. Deionized as carbon dioxide gas, and then ion-exchanged sulfate ions, chlorine ions, and other anions and silica in the raw water with hydroxide ions of strongly basic anion exchange resin by pure water in the anion exchange tower. I am trying to manufacture. When regenerating each of the ion exchange resins, for example, the regenerant is passed through each ion exchange tower in a downward flow to perform cocurrent regeneration, or each regenerant is passed in an up flow. And countercurrent regeneration is performed. Further, when the raw water does not contain much carbonate ions, a two-bed, two-column ion exchange apparatus that omits the decarboxylation tower is used.
[0003]
By the way, the anion exchange resin used in the anion exchange column of the conventional ion exchange apparatus of this type comes into contact with an alkaline aqueous solution (for example, sodium hydroxide aqueous solution) that is a regenerant during regeneration, and then an alkali component (sodium ion). It takes a long time to completely wash out a large amount of washing water, and it can only be washed up to, for example, about 1 μS / cm, and the alkali adsorbed on the anion exchange resin even after entering the water sampling process. Although the components were gradually dissolved in the treated water, it took a considerable amount of time for the treated water to reach a certain purity, and the purity of the treated water was about 5 to 10 MΩ · cm.
[0004]
Further, other factors that take time for the treated water to reach a certain purity include the following. That is, the raw water, which is the treated water, generally contains organic acids, and many of the organic acids have a complex structure having a plurality of weak acid groups, and also contain organic acids having a relatively high molecular weight. ing. When organic acid with a relatively high molecular weight was physically adsorbed to the anion exchange resin during the treatment, the organic acid could not be completely eluted by the sodium hydroxide aqueous solution as the regenerant, and was adsorbed on sodium hydroxide and the anion exchange resin. The organic acid may react to form a sodium salt and remain in the anion exchange resin layer. If such a sodium salt of an organic acid remains in the anion exchange resin layer, sodium ions are gradually released from the weak acid group of the organic acid by hydrolysis in the water flow, thereby reducing the purity of the treated water. .
[0005]
Therefore, as a practical measure, in order to obtain high-purity pure water of 17 MΩ · cm or more, the latter stage of the conventional two-bed / three-column ion exchanger (or two-bed / two-column ion exchanger) described above is used. In general, a regenerative mixed bed ion exchange apparatus is installed to remove alkali components and remove silica and other impurities.
[0006]
[Problems to be solved by the invention]
However, nowadays, there is an increasing demand for high-purity and miniaturization of treated water in ion exchange devices, so let's obtain pure water with high purity (over 17 MΩ · cm) using conventional ion exchange devices. Then, as described above, it is necessary to install a regenerative mixed bed ion exchange apparatus in the subsequent stage of the ion exchange apparatus, and the apparatus becomes large and cannot meet the demand for downsizing of the apparatus. There was a problem that high-purity pure water could not be obtained as described above unless a floor ion exchanger was installed.
[0007]
The present invention has been made in order to solve the above-mentioned problems, and can achieve a small-sized ion exchange device and obtain high-purity treated water. Resin layer Water purification method and ion exchange that can remarkably reduce the washing time and save a great deal of washing water Tower The purpose is to provide.
[0008]
[Means for Solving the Problems]
In the method for producing pure water according to claim 1 of the present invention, pure water is obtained by passing water to be treated in the order of a strongly acidic cation exchange resin layer, a strongly basic anion exchange resin layer, and a strong acid cation exchange resin layer. In the pure water production method, a first ion exchange column filled with a strongly acidic cation exchange resin in the tower leaving a gap corresponding to the regenerated swelling, and a strongly basic anion exchange resin and a strongly acidic cation exchange resin in the tower Using a second ion exchange tower packed in two layers leaving a gap corresponding to each regenerated swelling, water to be treated is a strongly acidic cation exchange resin layer of the first ion exchange tower and a strong basicity of the second ion exchange tower. The water flow step for passing the anion exchange resin layer and the strong acid cation exchange resin layer in this order, and the flow direction of the water to be treated without performing a backwash operation in both the first ion exchange tower and the second ion exchange tower Is each regenerant in the opposite direction It is characterized in that it has a regeneration step of passing liquid.
[0009]
The pure water production method according to claim 2 of the present invention is characterized in that, in the invention according to claim 1, the height of the packed bed of the strongly acidic cation exchange resin of the second ion exchange tower is 600 mm or less. To do.
[0010]
Further, in the pure water production method according to claim 3 of the present invention, in the invention according to claim 1 or claim 2, the regeneration step of the second ion exchange tower first regenerates the strongly acidic cation exchange resin layer. The strong base anion exchange resin layer is regenerated later.
[0011]
Moreover, the pure water manufacturing method of Claim 4 of this invention is Claim 1-Claim 3. Any one of In the invention described in (2), the second ion exchange tower is formed with a strongly basic anion exchange resin layer in the upper layer and a strongly acidic cation exchange resin layer in the lower layer, and the water flow is performed in a downward flow and the regeneration is performed in an upward flow. It is a feature.
[0012]
Moreover, the pure water manufacturing method according to claim 5 of the present invention is the invention according to any one of claims 1 to 3, wherein the second ion exchange tower has a strongly acidic cation exchange resin layer as an upper layer. In addition, a strongly basic anion exchange resin layer is formed in the lower layer, and water flow is performed in an upward flow and regeneration is performed in a downward flow.
[0013]
In the pure water production method according to claim 6 of the present invention, the water to be treated is treated as a strongly acidic cation exchange resin layer, a weakly basic anion exchange resin layer, a strongly basic anion exchange resin layer, or a strongly acidic cation exchange resin layer. In the pure water production method for obtaining pure water by passing water in this order, a first ion exchange column packed with a strongly acidic cation exchange resin in the column leaving a gap corresponding to the regenerated swelling, and a weakly basic in the column Using a second ion exchange tower in which an anion exchange resin, a strongly basic anion exchange resin, and a strong acid cation exchange resin are packed in three layers leaving a gap corresponding to the water swelled amount and the regenerated swelled amount, A water-passing step of passing a strong acid cation exchange resin layer of the first ion exchange tower, a weakly basic anion exchange resin layer of the second ion exchange tower, a strongly basic anion exchange resin layer, and a strong acid cation exchange resin layer in this order; First ion exchange And without performing a second ion exchange column together backwashing operation, it is characterized in that it has a regeneration step of passing liquid each regenerant in the direction of the water flow direction opposite to the above treatment water.
[0014]
The pure water production method according to claim 7 of the present invention is characterized in that, in the invention according to claim 6, the packed bed height of the strongly acidic cation exchange resin of the second ion exchange tower is 600 mm or less. To do.
[0015]
The pure water production method according to claim 8 of the present invention is the method according to claim 6 or 7, wherein the regeneration step of the second ion exchange column first regenerates the strongly acidic cation exchange resin layer. Then, the strong base anion exchange resin layer and the weak base anion exchange resin are regenerated later.
[0016]
The pure water production method according to claim 9 of the present invention is the method according to any one of claims 6 to 8, wherein the second ion exchange tower has a weakly basic anion exchange resin in the upper layer. A strongly basic anion exchange resin layer is formed in the layer and the middle layer, and a strongly acidic cation exchange resin layer is formed in the lower layer, and water is passed in a downward flow and regeneration is performed in an upward flow.
[0017]
Moreover, the pure water manufacturing method according to claim 10 of the present invention is the invention according to any one of claims 6 to 8, wherein the second ion exchange tower has a strongly acidic cation exchange resin layer as an upper layer. In addition, a strong basic anion exchange resin layer is formed in the middle layer, and a weak basic anion exchange resin layer is formed in the lower layer, and water flow is performed in an upward flow and regeneration is performed in a downward flow.
[0018]
The ion exchange tower according to claim 11 of the present invention is A first ion exchange column packed with a strongly acidic cation exchange resin in the column leaving a gap corresponding to the regenerated swelling amount, and a strong basic anion exchange resin and a strongly acidic cation exchange resin in the column for each regenerated swollen amount And using a second ion exchange tower packed in two layers leaving a gap between them, the water to be treated is a strongly acidic cation exchange resin layer of the first ion exchange tower, a strongly basic anion exchange resin layer of the second ion exchange tower, a strong acid Without passing back-flushing both the first ion exchange tower and the second ion exchange tower in the direction of passing water in the order of the functional cation exchange resin layer, A regenerating step of passing the regenerant of A second ion exchange tower used in a pure water production method, The second ion exchange tower has a strongly basic anion exchange resin layer in the upper layer and a strongly acidic cation exchange resin layer in the lower layer, performs water flow in a downward flow, and performs regeneration in an upward flow. Above in 2 ion exchange tower Strong base anion exchange resin layer and the above The strongly acidic cation exchange resin layer is allowed to pass water to be treated, but is partitioned by a partition plate that prevents the flow of each ion exchange resin, or is not partitioned by the partition plate, and further near the lower part of the partition plate or the above A regenerant inlet / outlet pipe is provided in the vicinity of the lower part of the separation boundary surface between the two ion exchange resin layers.
[0019]
The ion exchange tower according to claim 12 of the present invention is A first ion exchange column packed with a strongly acidic cation exchange resin in the column leaving a gap corresponding to the regenerated swelling amount, and a strong basic anion exchange resin and a strongly acidic cation exchange resin in the column for each regenerated swollen amount And using a second ion exchange tower packed in two layers leaving a gap between them, the water to be treated is a strongly acidic cation exchange resin layer of the first ion exchange tower, a strongly basic anion exchange resin layer of the second ion exchange tower, a strong acid Without passing back-flushing both the first ion exchange tower and the second ion exchange tower in the direction of passing water in the order of the functional cation exchange resin layer, A regenerating step of passing the regenerant of A second ion exchange tower used in a pure water production method, The second ion exchange tower has a strongly basic anion exchange resin layer in the upper layer and a strongly acidic cation exchange resin layer in the lower layer, and performs water flow in a downward flow and regeneration in an upward flow. Above in the ion exchange tower A strongly acidic cation exchange resin layer; the above An inert resin layer is formed between the strongly basic anion exchange resin layers, and a regenerant inlet / outlet pipe is provided at the center of the inert resin layer.
[0020]
The ion exchange tower according to claim 13 of the present invention is A first ion exchange column packed with a strongly acidic cation exchange resin in the column leaving a gap corresponding to the regenerated swelling amount, and a strong basic anion exchange resin and a strongly acidic cation exchange resin in the column for each regenerated swollen amount And using a second ion exchange tower packed in two layers leaving a gap between them, the water to be treated is a strongly acidic cation exchange resin layer of the first ion exchange tower, a strongly basic anion exchange resin layer of the second ion exchange tower, a strong acid Without passing back-flushing both the first ion exchange tower and the second ion exchange tower in the direction of passing water in the order of the functional cation exchange resin layer, A regenerating step of passing the regenerant of A second ion exchange tower used in a pure water production method, The second ion exchange tower has a strongly acidic cation exchange resin layer formed in the upper layer and a strongly basic anion exchange resin layer formed in the lower layer, and the water flow is performed in an upward flow and the regeneration is performed in a downward flow. Above in 2 ion exchange tower Strong acid cation exchange resin layer and the above The strongly basic anion exchange resin layer is allowed to flow through the water to be treated, but is partitioned by a partition plate that blocks the flow of each ion exchange resin, and a regenerant inlet / outlet pipe is provided near the upper portion of the partition plate. It is characterized by.
[0021]
The ion exchange tower according to claim 14 of the present invention is A first ion exchange column packed with a strongly acidic cation exchange resin in the column leaving a gap corresponding to the regenerated swelling, and a weakly basic anion exchange resin, a strongly basic anion exchange resin, and a strongly acidic cation exchange resin in the column Using a second ion exchange tower packed in three layers leaving a gap corresponding to each water swell and regenerated swell, and the water to be treated is a strongly acidic cation exchange resin layer of the first ion exchange tower, the second ion A water-passing step of passing a weakly basic anion exchange resin layer, a strongly basic anion exchange resin layer, and a strong acid cation exchange resin layer in this order in the exchange tower, and a backwash operation for both the first ion exchange tower and the second ion exchange tower And a regeneration step of passing each regenerant in the direction opposite to the direction of water flow of the water to be treated. A second ion exchange tower used in a pure water production method, The second ion exchange tower has a strong acidic cation exchange resin layer in the upper layer, a strong basic anion exchange resin layer in the middle layer, and a weak basic anion exchange resin layer in the lower layer. In the second ion exchange tower Strong acid cation exchange resin layer, the above A strongly basic anion exchange resin layer, the above The weak base anion exchange resin layer is allowed to pass through the water to be treated, but is partitioned by a partition plate that blocks the flow of each ion exchange resin, and the regenerating agent is further contained in the lower layer of the strong acid cation exchange resin layer. It is characterized in that an access pipe is provided.
[0022]
The ion exchange tower according to claim 15 of the present invention is the ion exchange tower according to
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In addition, in each figure, FIG.1 and FIG.4 is a block diagram which shows the 2 bed 3 tower type ion exchange apparatus used for one Embodiment of the pure water manufacturing method of this invention, FIG.2, FIG.3 and FIG.5-9. These are the block diagrams which show the structure of the 2nd ion exchange column used for other embodiment of the pure water manufacturing method of this invention, respectively.
[0024]
First, a two-bed / three-column ion exchanger (hereinafter simply referred to as “ion exchanger”) used in an embodiment of the pure water production method of the present invention will be described with reference to FIG. As shown in FIG. 1, the
[0025]
Then, raw water that is to be treated flows into the first ion exchange tower 11 from the
[0026]
That is, after regenerating the strong base anion
[0027]
The layer height of the strongly acidic cation
[0028]
Thus, the first and second partition plates 11C and 11D are provided horizontally at the bottom of the column main body 11A of the first ion exchange column 11 and in the vicinity of the top of the column, and strong acid cation exchange is performed by the first partition plate 11C. The resin layer 11B is supported. The strongly acidic cation exchange resin swells around about 7% at the time of regeneration, particularly when it is pushed out with water after passing the acid regenerant, so the strong acid cation exchange resin of the standard form (sodium form) is packed in the tower body 11A. In doing so, the strong acid cation exchange resin layer 11B and the second partition plate 11D are filled with the strong acid cation exchange resin almost completely, leaving a gap corresponding to the space corresponding to the regenerated swelling. This gap is blocked by the swelling of the strongly acidic cation exchange resin 11B during regeneration. Each of the first and second partition plates 11C and 11D has a large number of communicating means communicating with the upper and lower spaces, for example, a plurality of strainers are formed dispersed on the entire surface of each partition plate. Liquids such as water to be treated and regenerant circulate, and each ion exchange resin cannot be circulated. Further, the
[0029]
Therefore, when regenerating the strongly acidic cation exchange resin 11B of the first ion exchange column 11, if an acid regenerant such as a hydrochloric acid aqueous solution is passed through the
[0030]
On the other hand, first and
[0031]
Therefore, when regenerating the strongly basic anion
[0032]
As the regeneration order of each ion exchange resin in the second
[0033]
Next, the pure water manufacturing method of this invention using the said
[0034]
The secondary treated water that has flowed into the column
[0035]
When each ion exchange resin reaches the flow-through point due to the production of pure water described above, each ion exchange resin is regenerated in a regeneration step. For this purpose, the ion exchange resins of the first and second ion exchange towers 11 and 12 are regenerated without backwashing the ion exchange resin layers of the first and second ion exchange towers 11 and 12. For example, the regeneration operation of the second
[0036]
In order to perform the regeneration operation of the second
[0037]
After the counter-current regeneration of the lower strong acid cation
[0038]
After the lower layer washing operation, the upper strong base anion
[0039]
By the way, since the strong basic
[0040]
Next, the regeneration operation of the first ion exchange column 11 is performed. That is, the acid regenerant is passed through the
[0041]
As described above, according to the present embodiment, the first ion exchange column 11 in which the strongly acidic cation exchange resin layer 11B is filled in the column main body 11A leaving a gap corresponding to the regenerated swelling, and the column
[0042]
That is, in the water flow process for obtaining pure water, the raw water is passed through the strong acid cation exchange resin layer 11B of the first ion exchange column 11, and then the strongly basic anion
[0043]
Further, in the regeneration step, the first ion exchange column 11 and the second
[0044]
For example, the case of the strongly acidic cation exchange resin of the first ion exchange column 11 will be further described. The arrangement of the resin layer when water is passed is calcium, sodium, and hydrogen from the top. Without backwashing the layer, if hydrochloric acid is passed from the lower side of the resin layer as an acid regenerant in this state, the hydrochloric acid first passes through the hydrogen-type resin in the lower layer to elute the sodium-type resin first. This is made into hydrogen form, and the waste liquid sodium chloride elutes the upper calcium form resin to make it into sodium form, and the sodium form resin comes into contact with hydrochloric acid to make it into hydrogen form. Thus, the elution is performed in sequence, and the calcium-type resin, which is originally difficult to elute with hydrogen ions, can be effectively obtained by interposing sodium ions, which are more eluting than hydrogen ions. In addition, the hydrogen-type resin remaining at the end of water flow can be kept under the ion exchange resin layer as it is, so that it can be regenerated in the most ideal state in the operation of regeneration. The hydrogen-type resin produced by regeneration can be maximized. Regardless of whether the direction of water flow is a downward flow or an upward flow, both ion exchange resins perform countercurrent regeneration without performing backwashing after the completion of water flow. As described above, both ion exchange resins can be regenerated in the most ideal state.
[0045]
Further, in the washing step after regeneration, since the strongly acidic cation
[0046]
FIG. 2 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0047]
Therefore, according to this embodiment, the upper strong basic anion
[0048]
FIG. 3 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0049]
Therefore, according to the present embodiment, since the inlet /
[0050]
FIG. 4 is a view showing a two-bed / three-column ion exchange apparatus used in still another embodiment of the pure water production method of the present invention. The same or corresponding parts as those shown in FIG. It is. As shown in FIG. 4, the
[0051]
In the second
[0052]
As the regeneration order of each ion exchange resin in the second
[0053]
Next, the pure water manufacturing method of this invention using the said
[0054]
The secondary treated water that has flowed into the column
[0055]
When each ion exchange resin reaches the flow-through point due to the production of pure water described above, each ion exchange resin is regenerated in a regeneration step. For this purpose, the ion exchange resins of the first and second ion exchange towers 11 and 123 are regenerated without backwashing the ion exchange resin layers of the first and second ion exchange towers 11 and 123. For example, the regeneration operation of the second
[0056]
In order to perform the regeneration operation of the second
[0057]
After the counter-current regeneration of the strongly acidic cation
[0058]
After the upper layer washing operation, the lower strong base anion
[0059]
Next, the regeneration operation of the first ion exchange column 11 is performed. That is, the acid regenerant is passed downward from the
[0060]
As described above, also in this embodiment, the same effects as those in the above embodiments can be obtained. That is, in the water flow process for obtaining pure water, the strong basic anion
[0061]
Further, in the regeneration step, countercurrent regeneration is performed by passing the respective regenerants in the direction opposite to the flow direction of the raw water without backwashing both the first ion exchange tower and the second ion exchange tower. Therefore, the regeneration efficiency can be maximized as in the above embodiments, and it is not necessary to wash until the alkaline component does not leak from the strong base anion
[0062]
FIG. 5 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0063]
Therefore, when pure water is produced from raw water containing a relatively large amount of mineral acid components, the amount of the alkali regenerant used can be reduced by using a weakly basic anion exchange resin with good regeneration efficiency. Running costs can be reduced. Even if a slight amount of alkali components such as sodium ions remain in the treated water of the strongly basic anion
[0064]
Further, in the regeneration step of the second
[0065]
Therefore, according to the present embodiment, the weak base anion exchange resin layer 12I as the upper layer, the strong base anion
[0066]
FIG. 6 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0067]
FIG. 7 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0068]
FIG. 8 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0069]
The order of regeneration of the respective ion exchange resins in the second
[0070]
FIG. 9 is a view showing another embodiment of the ion exchange tower of the present invention, and this ion exchange tower is used in place of the second
[0071]
In each of the above embodiments, the two-bed / three-column ion exchange apparatus and the second ion-exchange tower have been described. However, the present invention omits the decarboxylation tower when the carbonate ion content is low. It can be applied to a type ion exchange apparatus.
[0072]
【The invention's effect】
As described above, the present invention Each claim According to the invention described in the above, it is possible to realize a small ion exchange device and obtain high-purity treated water. Resin layer Water purification method and ion exchange that can remarkably reduce the washing time and save a great deal of washing water Tower Can be provided.
[0073]
Furthermore, Invention of Claim 6-10 of this invention And inventions according to
[0074]
In addition, according to the present invention, the following effects can be obtained.
(1) When regenerating the strongly acidic cation exchange resin and the strongly basic anion exchange resin (and weakly basic anion exchange resin) laminated in the second ion exchange tower, it is recommended not to carry out backwashing after passing water. The regeneration operation itself can be performed in an ideal state because of the flow regeneration, and the amount of H-type strongly acidic cation exchange resin or OH-type strongly basic anion exchange resin to be generated after regeneration per amount of the regenerant used can be determined. Can be maximized, and the processing capacity can be increased.
(2) When regenerating both ion exchange resins laminated in the second ion exchange tower, regenerating them later by regenerating them in the reverse order of passing the water to be treated through both ion exchange resins. Even if the regenerant of the ion exchange resin comes into contact with the other ion exchange tree that has been regenerated earlier and becomes salt form, this salt form is located at the most upstream part, so that the purity of the treated water is not affected at all. Can be.
(3) Stable ion exchange operation can be carried out without mixing both ion exchange resins even if water passage and regeneration are repeated by partitioning both ion exchange resins with a partition plate.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a two-bed / three-column ion exchange apparatus used in an embodiment of the pure water production method of the present invention.
FIG. 2 is a diagram showing a layer configuration of an ion exchange resin of a second ion exchange tower used in another embodiment of the pure water production method of the present invention.
FIG. 3 is a diagram showing a layer configuration of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
FIG. 4 is a configuration diagram showing a two-bed / three-column ion exchange apparatus used in still another embodiment of the pure water production method of the present invention.
FIG. 5 is a view showing a layer configuration of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
FIG. 6 is a view showing a layer configuration of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
FIG. 7 is a view showing a layer structure of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
FIG. 8 is a diagram showing a layer configuration of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
FIG. 9 is a view showing a layer configuration of an ion exchange resin of a second ion exchange tower used in still another embodiment of the pure water production method of the present invention.
[Explanation of symbols]
10, 10A 2-bed, 3-tower type ion exchanger
11 First ion exchange tower
11A Tower body
11B Strong acid cation exchange resin layer
12, 121, 123, 124, 125 Second ion exchange tower
126, 127, 128, 129 Second ion exchange tower
12A tower body
12B Strongly basic anion exchange resin layer
12C strongly acidic cation exchange resin layer
12F access pipe
12G 3rd partition plate (partition plate)
12H inert resin layer
12I Weakly basic anion exchange resin layer
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35696596A JP3632343B2 (en) | 1996-12-26 | 1996-12-26 | Pure water production method and ion exchange tower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35696596A JP3632343B2 (en) | 1996-12-26 | 1996-12-26 | Pure water production method and ion exchange tower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10180252A JPH10180252A (en) | 1998-07-07 |
JP3632343B2 true JP3632343B2 (en) | 2005-03-23 |
Family
ID=18451676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35696596A Expired - Fee Related JP3632343B2 (en) | 1996-12-26 | 1996-12-26 | Pure water production method and ion exchange tower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3632343B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001219161A (en) * | 2000-02-08 | 2001-08-14 | Nomura Micro Sci Co Ltd | Water cleaning apparatus |
JP4869881B2 (en) * | 2006-11-21 | 2012-02-08 | 野村マイクロ・サイエンス株式会社 | Ion exchange apparatus and ion exchange method |
JP5235091B2 (en) * | 2008-04-07 | 2013-07-10 | オルガノ株式会社 | Method and apparatus for removing aldehyde compound from alcohol-containing liquid |
EP2735546B1 (en) * | 2012-11-21 | 2018-02-07 | Ovivo Inc. | Treatment of water, particularly for obtaining ultrapure water |
JP6228531B2 (en) * | 2014-12-19 | 2017-11-08 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
JP2019118891A (en) * | 2018-01-09 | 2019-07-22 | 栗田工業株式会社 | Pure water producing apparatus and pure water producing method |
CN113896353A (en) * | 2021-10-29 | 2022-01-07 | 珠海隆康电子科技有限公司 | Water filtering and purifying system and treatment method thereof |
-
1996
- 1996-12-26 JP JP35696596A patent/JP3632343B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10180252A (en) | 1998-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4869881B2 (en) | Ion exchange apparatus and ion exchange method | |
JP3632343B2 (en) | Pure water production method and ion exchange tower | |
JP3632331B2 (en) | Ion exchange method and ion exchange column used in this ion exchange method | |
JP4210403B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
WO2007040266A1 (en) | Process and equipment for demineralizing condensate | |
CA1166618A (en) | Methods of ion exchange countercurrent regeneration | |
CN1051725C (en) | Fixed double bunk ion exchange resin regeneration method and device | |
JP2940651B2 (en) | Pure water production equipment | |
JP2576155B2 (en) | Multi-layer ion exchanger | |
JP3922824B2 (en) | High purity water production equipment | |
JP2742976B2 (en) | Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus | |
JP3951456B2 (en) | Pure water production equipment | |
JP2940648B2 (en) | Pure water production equipment | |
JP2607544B2 (en) | Ion exchange tower used for upflow regeneration | |
JP2654053B2 (en) | Condensate desalination equipment | |
JP3963032B2 (en) | Ion exchange device and polishing filter | |
JP2941121B2 (en) | Ultrapure water production equipment | |
JPS582432Y2 (en) | Ion exchange resin tower used for upstream regeneration | |
JP3458317B2 (en) | Ion exchange apparatus and method for regenerating ion exchange resin | |
JP4216998B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JP2001232217A (en) | Method for regenerating ion exchange resin | |
JP3677591B2 (en) | Ion exchange method | |
JPH10128128A (en) | Method for separation and regeneration of ion exchange resin | |
JPH01307457A (en) | Ion-exchange device | |
CN2054374U (en) | Double flow single resin ion-exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |