JP2654053B2 - Condensate desalination equipment - Google Patents

Condensate desalination equipment

Info

Publication number
JP2654053B2
JP2654053B2 JP63040678A JP4067888A JP2654053B2 JP 2654053 B2 JP2654053 B2 JP 2654053B2 JP 63040678 A JP63040678 A JP 63040678A JP 4067888 A JP4067888 A JP 4067888A JP 2654053 B2 JP2654053 B2 JP 2654053B2
Authority
JP
Japan
Prior art keywords
tower
condensate
exchange resin
anion exchange
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63040678A
Other languages
Japanese (ja)
Other versions
JPH026893A (en
Inventor
裕幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP63040678A priority Critical patent/JP2654053B2/en
Publication of JPH026893A publication Critical patent/JPH026893A/en
Application granted granted Critical
Publication of JP2654053B2 publication Critical patent/JP2654053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、火力発電所あるいは原子力発電所における
復水脱塩装置に関し、特に当該復水脱塩装置に使用され
ている混床式脱塩塔の処理水中にClイオンやSO4イオン
等の不純物陰イオンが規定の濃度を越えて漏出した場合
に、これらの陰イオンを確実に除去して常に良好な処理
水を得ることが出来る復水脱塩装置に関する。
Description: TECHNICAL FIELD The present invention relates to a condensate desalination device in a thermal power plant or a nuclear power plant, and more particularly to a mixed-bed desalination device used in the condensate desalination device. When impurity anions such as Cl ions and SO 4 ions leak out of the treated water of the tower in excess of the specified concentration, these anions can be reliably removed to obtain always good treated water. It relates to a desalination device.

<従来の技術> 火力発電所あるいは原子力発電所では、蒸気タービン
を駆動させた後の蒸気を海水等で冷却して復水となし、
当該復水を加熱して蒸気を得て、この蒸気で再び蒸気タ
ービンを駆動させるというサイクルを繰り返している
が、当該系内を循環する復水は各種の不純物イオンや酸
化鉄微粒子(クラッド)で汚染されるのでこれらを除去
するため、あるいは冷却水である海水が比較的多量復水
中に漏洩するいわゆる海水リーク時に備えて、系内に復
水脱塩装置が設置される。
<Conventional technology> In a thermal power plant or a nuclear power plant, steam after driving a steam turbine is cooled with seawater or the like, and condensed.
The cycle of heating the condensate to obtain steam and driving the steam turbine again with this steam is repeated, but the condensate circulating in the system is made up of various impurity ions and iron oxide fine particles (cladding). A condensate desalination device is installed in the system to remove the contaminated water or to prepare for a so-called seawater leak in which a relatively large amount of cooling water leaks into the condensate.

当該復水脱塩装置は、複数の混床式脱塩塔(以下脱塩
塔という)からなる通水系統と、脱塩塔にて使用したイ
オン交換樹脂を再生するための再生系統からなり、前記
脱塩塔は塔内にH形あるいはNH4形の強酸性カチオン交
換樹脂と、OH形の強塩基性アニオン交換樹脂との混合イ
オン交換樹脂を充填したなるものである。
The condensate desalination apparatus includes a water flow system including a plurality of mixed-bed desalination towers (hereinafter, referred to as desalination towers) and a regeneration system for regenerating the ion exchange resin used in the desalination towers. The desalination tower is one in which a mixed ion exchange resin of a strongly acidic cation exchange resin of H form or NH 4 form and a strongly basic anion exchange resin of OH form is filled in the tower.

当該復水脱塩装置においては以下のようにして復水の
処理を行う。
In the condensate desalination apparatus, condensate treatment is performed as follows.

すなわち、複数の脱塩塔に復水をそれぞれ並列して通
水し、復水中のNaイオン、Clイオン等の不純物イオンを
イオン交換作用により、また復水中のクラッドを濾過作
用あるいは吸着作用により除去して浄化された処理水を
得る。このような通水を続行して、複数の脱塩塔の内の
一つが、クラッドの蓄積によって圧力損失の増加を招い
たり、あるいは定体積処理量に達した場合または当該脱
塩塔内のイオン交換樹脂が不純物イオンで飽和した場合
等、いわゆる通水終点に達した場合には、当該脱塩塔の
みを通水系統から切り離し、脱塩塔内の使用済混合イオ
ン交換樹脂を前記再生系統内の再生塔に移送する。当該
樹脂移送終了後、既に再生済のカチオン交換樹脂及びア
ニオン交換樹脂を、再生系統から当該脱塩塔に移送して
混合イオン交換樹脂層を形成させ、再び復水の通水を開
始する。
In other words, condensate is passed in parallel to multiple desalination towers, and impurity ions such as Na and Cl ions in the condensate are removed by ion exchange, and the cladding in the condensate is removed by filtration or adsorption. To obtain purified treated water. By continuing such water flow, one of the plurality of desalination towers causes an increase in pressure loss due to the accumulation of cladding, or when a constant volume treatment amount is reached, or when ions in the desalination tower concerned are reached. When the so-called water-flow end point is reached, such as when the exchange resin is saturated with impurity ions, only the desalination tower is disconnected from the water-flow system, and the used mixed ion-exchange resin in the desalination tower is removed from the regeneration system. To the regeneration tower. After the completion of the resin transfer, the already regenerated cation exchange resin and anion exchange resin are transferred from the regeneration system to the desalting tower to form a mixed ion exchange resin layer, and the flow of condensed water is started again.

一方、再生塔の移送した使用済混合イオン交換樹脂
は、十分にバブリングしてクラッドを水洗により除去し
た後、逆洗沈静してカチオン交換樹脂層とアニオン交換
樹脂層に分離し、カチオン交換樹脂層には塩酸等の酸再
生剤を、アニオン交換樹脂層には苛性ソーダ等のアルカ
リ再生剤を通薬してそれぞれ不純物イオンを脱着する。
なお、この場合の再生系統には、両イオン交換樹脂を分
離して下層にカチオン交換樹脂層、上層にアニオン交換
樹脂層を形成させ、当該分離層を保ったままカチオン交
換樹脂層には酸再生剤を、アニオン交換樹脂層にはアル
カリ再生剤を通薬する一塔再生方式と、両イオン交換樹
脂を分離した後、両イオン交換樹脂を別々の再生塔に分
離してそれぞれの再生塔で再生する別塔再生方式とがあ
る。
On the other hand, the used mixed ion-exchange resin transferred from the regeneration tower is sufficiently bubbled, the clad is removed by washing with water, and then backwashed and settled to separate into a cation-exchange resin layer and an anion-exchange resin layer. Then, an acid regenerant such as hydrochloric acid is passed through and an alkali regenerant such as caustic soda is passed through the anion exchange resin layer to desorb impurity ions.
In this case, in the regeneration system, both ion-exchange resins are separated to form a cation-exchange resin layer in the lower layer and an anion-exchange resin layer in the upper layer. One-column regeneration method, in which an alkali regenerant is passed through the anion exchange resin layer to the anion exchange resin layer, and after separation of both ion exchange resins, both ion exchange resins are separated into separate regeneration towers and regenerated in each regeneration tower There is a separate tower regeneration method.

再生を終了した両イオン交換樹脂は、次の脱塩塔が通
水終点に達するまでの間、待機させておく。このように
従来の復水脱塩装置は複数ある脱塩塔の通水時間を互い
にずらし、ほぼ一定時間毎に各脱塩塔が通水終点に達す
るように調整しておき、ほぼ均等の通水間隔で各脱塩塔
の使用済混合イオン交換樹脂を順に前記再生系統で再生
するものである。
Both ion-exchange resins for which regeneration has been completed are kept on standby until the next desalination tower reaches the end point of water flow. As described above, in the conventional condensate desalination apparatus, the water passage times of the plurality of desalination towers are shifted from each other, and the desalination towers are adjusted so as to reach the end point of the water passage at substantially regular intervals, so that the water passage is substantially even. The used mixed ion exchange resin of each desalting tower is sequentially regenerated by the regenerating system at water intervals.

上述のような復水脱塩装置に要求される処理水の水質
は、近年益々高純度化する傾向にあり、例えばNaイオン
0.06μg/以下、Clイオン0.15μg/以下というような
極めて高純度のものが要求されるようになって来てい
る。このような水質の処理水を得るためには、漏出する
NaイオンおよびClイオンの量を決定する因子である再生
後のカチオン交換樹脂におけるNa形分率(R−Na/R−H
+R−Na)及び再生後のアニオン交換樹脂におけるCl形
分率(R−Cl/R−OH+RCl)を、例えばNa形分率は0.02
以下、Cl形分率は0.3以下とする必要がある。上述の数
値に見られるようにCl形分率よりNa形分率をかなり低い
値とする必要があるが、そのためには再生後のNa形分率
に最も大きな影響を及ぼす、再生時におけるカチオン交
換樹脂とアルカリ再生剤である苛性ソーダ溶液との接触
を極力防止し得る再生方法及び装置としなければなら
ず、従来の復水脱塩装置においては、この点にかなりの
配慮がなされている。
The quality of treated water required for a condensate desalination apparatus as described above has tended to become more and more purified in recent years.
Extremely high purity, such as 0.06 μg / or less and Cl ion of 0.15 μg / or less, is required. To obtain treated water of such quality, it leaks
The Na form fraction (R-Na / R-H) in the regenerated cation exchange resin, which is a factor that determines the amount of Na ion and Cl ion
+ R-Na) and the Cl form fraction (R-Cl / R-OH + RCl) in the anion exchange resin after regeneration, for example, the Na form fraction is 0.02
Hereinafter, the Cl type fraction needs to be 0.3 or less. As can be seen from the above figures, it is necessary to make the Na form fraction considerably lower than the Cl form fraction, but for that purpose, the cation exchange during regeneration has the greatest effect on the Na form fraction after regeneration. The regeneration method and apparatus must be designed to minimize contact between the resin and the caustic soda solution as an alkali regenerant, and considerable consideration has been given to this point in conventional condensate desalination equipment.

<発明が解決しようとする問題点> このような復水脱塩装置において、使用するイオン交
換樹脂が比較的新しいうちは処理水中のNaイオン、Clイ
オン等の不純物イオンをかなり低い値とすることが出
来、要求される水質を満足する高純度の処理水が得られ
る。しかしながら、アニオン交換樹脂が復水中の有機物
等による汚染を受けると、特に再生済の両イオン交換樹
脂を脱塩塔に移送した直後の通水初期に、例えばClイオ
ン等の陰イオンの漏出量が多くなり、かなり長時間の通
水を行ってもClイオンの漏出量が規定の数値以内となら
ないという問題が生じる。
<Problems to be Solved by the Invention> In such a condensate desalination apparatus, while the ion exchange resin to be used is relatively new, the impurity ions such as Na ions and Cl ions in the treated water are set to a considerably low value. And high-purity treated water satisfying the required water quality can be obtained. However, when the anion exchange resin is contaminated by organic matter and the like in the condensed water, the amount of anions leaked, for example, Cl ions, especially in the early stage of passing water immediately after transferring both regenerated ion exchange resins to the desalting tower, is reduced. This causes a problem that the amount of leaked Cl ions does not fall within a specified value even when water is passed for a considerably long time.

この原因については、以下のように推定される。 The cause is presumed as follows.

すなわち、再生系統において両イオン交換樹脂を再生
する際に、カチオン交換樹脂の再生剤である塩酸がアニ
オン交換樹脂に接触し、そのために接触したアニオン交
換樹脂がCl形になるとともに当該Cl形アニオン交換樹脂
粒子内部には塩酸が残留することとなり、この塩酸が通
水中に微量づつ処理水中に漏出するためであろうと推定
される。なお、アニオン交換樹脂が塩酸と接触する理由
は以下の如くである。従来の復水脱塩装置においては前
述の如く、再生後のカチオン交換樹脂におけるNa形分率
を極めて少なくする必要があることから、カチオン交換
樹脂がアニオン交換樹脂の再生剤である苛性ソーダ溶液
と接触するのを極力防止し得る再生方法及び装置とし、
その代わりカチオン交換樹脂の再生剤である塩酸がアニ
オン交換樹脂と接触するのはある程度止むを得ないとし
ている。例えば、一塔再生方式の再生塔においては、使
用済の混合イオン交換樹脂を逆洗分離することによって
生ずるアニオン交換樹脂層とカチオン交換樹脂層との境
界面より上方のアニオン交換樹脂層内に再生廃液排出用
のコレクタを付設するとともに、再生剤の通薬に際して
は初めにアルカリ再生剤である苛性ソーダ溶液を再生塔
の上部から下降流でアニオン交換樹脂層に通薬して再生
廃液を前記コレクタから排出し、次いで再生塔の下部か
ら酸再生剤である塩酸を上昇流でカチオン交換樹脂層に
通薬して同じく再生廃液を前記コレクタから排出させる
ようにしている。このようなコレクタの位置及び再生方
法とすることによって、コレクタの下方に存在するカチ
オン交換樹脂を苛性ソーダ溶液との接触機会から遠避
け、万一カチオン交換樹脂の一部が苛性ソーダ溶液と接
触したとしても、その後に塩酸を通薬することによっ
て、苛性ソーダ溶液と接触してNa形となったカチオン交
換樹脂を再生出来るようにしている。その代わり、コレ
クタの下部を含むコレクタ近傍に存在する一部のアニオ
ン交換樹脂が塩酸と接触することは避けられない。
That is, when regenerating both ion exchange resins in the regeneration system, hydrochloric acid as a regenerant of the cation exchange resin comes into contact with the anion exchange resin, so that the contacted anion exchange resin becomes Cl form and the Cl form anion exchange is performed. Hydrochloric acid will remain inside the resin particles, and it is presumed that this hydrochloric acid will leak into the treated water little by little in the flowing water. The reason why the anion exchange resin comes into contact with hydrochloric acid is as follows. As described above, in the conventional condensate desalination apparatus, since the Na form fraction in the cation exchange resin after regeneration needs to be extremely low, the cation exchange resin comes into contact with the caustic soda solution which is a regenerant of the anion exchange resin. And a reproduction method and apparatus that can minimize the
Instead, it is inevitable that hydrochloric acid, a regenerant for the cation exchange resin, comes into contact with the anion exchange resin to some extent. For example, in the regeneration tower of the single-column regeneration method, the used mixed ion exchange resin is regenerated in the anion exchange resin layer above the interface between the anion exchange resin layer and the cation exchange resin layer by backwashing and separating. A collector for discharging the waste liquid is attached, and at the time of passing the regenerant, the caustic soda solution, which is an alkali regenerant, is first passed down through the anion exchange resin layer from the top of the regeneration tower in a downward flow, and the regenerated waste liquid is discharged from the collector. Then, hydrochloric acid, which is an acid regenerant, is passed from the lower part of the regeneration tower through the cation exchange resin layer in ascending flow to discharge the regeneration waste liquid from the collector. By adopting such a position of the collector and the regeneration method, the cation exchange resin existing below the collector is avoided from the opportunity of contact with the caustic soda solution, and even if a part of the cation exchange resin comes into contact with the caustic soda solution. Then, by passing hydrochloric acid through, the cation exchange resin in Na form by contact with the sodium hydroxide solution can be regenerated. Instead, it is inevitable that some anion exchange resins existing near the collector including the lower part of the collector come into contact with hydrochloric acid.

また、別塔再生方式の再生塔においては、使用済の混
合イオン交換樹脂をカチオン再生塔に移送して逆洗分離
を行い、上層のアニオン交換樹脂と下層のカチオン交換
樹脂に分離した後、上層のアニオン交換樹脂のみをスラ
リー状でアニオン再生塔に移送し、両イオン交換樹脂を
それぞれ別の塔で再生する。従って、この場合にはアニ
オン交換樹脂が塩酸と接触することはないように思われ
るが、実際には以下のような理由によってアニオン交換
樹脂の一部がカチオン再生塔に残留し、当該アニオン交
換樹脂が塩酸と接触する。つまり、混合イオン交換樹脂
をカチオン再生塔で逆洗分離した際、両イオン交換樹脂
の比重が比較的接近しているためにこれらを完全に分離
することは困難であって、両イオン交換樹脂層の分離境
界面にはどうしてもアニオン交換樹脂とカチオン交換樹
脂との混合層が生じる。このような分離状態において、
カチオン交換樹脂がアニオン再生塔に混入するのを防止
するには、前記混合層をカチオン再生塔に残し、当該混
合層より上にあるアニオン交換樹脂のみをアニオン再生
塔に移送するようにしなければならない。従って、カチ
オン再生塔には前記混合層に存在するアニオン交換樹脂
が残留して塩酸と接触するのである。なお、別塔再生方
式におけるこのような異種類のイオン交換樹脂の混入を
防止する方法として、分離境界面を両イオン交換樹脂の
混合層を別塔に取り出し、当該混合層を通水に供しない
方法等も採用されているが、この場合においてもカチオ
ン再生塔内には分離困難な極く少量のアニオン交換樹脂
が残留するので、上記再生方式に比べるとClイオンの漏
出量は少ないが、やはり通水初期には規定値を越えたCl
イオンが漏出することがある。
In the regeneration tower of the separate tower regeneration method, the used mixed ion exchange resin is transferred to the cation regeneration tower, subjected to backwash separation, separated into an upper anion exchange resin and a lower cation exchange resin, and then separated into an upper layer. Is transferred to the anion regeneration tower in slurry form, and both ion exchange resins are regenerated in separate towers. Therefore, in this case, it seems that the anion exchange resin does not come into contact with hydrochloric acid, but actually, a part of the anion exchange resin remains in the cation regeneration tower due to the following reason, and the anion exchange resin Comes in contact with hydrochloric acid. That is, when the mixed ion exchange resin is backwashed and separated in the cation regeneration tower, it is difficult to completely separate the ion exchange resins because the specific gravities of the two ion exchange resins are relatively close to each other. Inevitably, a mixed layer of an anion exchange resin and a cation exchange resin is formed on the separation boundary surface. In such a separated state,
In order to prevent the cation exchange resin from being mixed into the anion regeneration tower, the mixed layer must be left in the cation regeneration tower, and only the anion exchange resin above the mixed layer must be transferred to the anion regeneration tower. . Therefore, the anion exchange resin existing in the mixed layer remains in the cation regeneration tower and comes into contact with hydrochloric acid. As a method for preventing such different types of ion exchange resins from being mixed in the separate column regeneration method, the separation boundary surface is taken out of the mixed layer of both ion exchange resins into another column, and the mixed layer is not supplied to water. Although a method and the like are also employed, even in this case, since a very small amount of anion exchange resin that is difficult to separate remains in the cation regeneration tower, the leakage amount of Cl ions is smaller than that of the above regeneration method, but Cl exceeding the specified value at the beginning of water flow
Ions may leak.

以上のような理由により、再生後のアニオン交換樹脂
中には再生時に塩酸と接触してCl形となった樹脂が存在
するとともに当該Cl形アニオン交換樹脂粒子内部には塩
酸が残留することとなる。アニオン交換樹脂が有機物等
による汚染を受けておらず反応速度が低下していない場
合においては、このような状態となっていても特に問題
が生じないが、アニオン交換樹脂が汚染されて反応速度
が低下してくると、前述の樹脂粒子内の塩酸を容易に洗
い出すことが出来なくなり、当該塩酸が通水中に微量ず
ついつまでも処理水に漏出するためClイオン漏出量が多
くなるのではないかと推定される。
For the reasons described above, in the anion exchange resin after the regeneration, there is a resin that has come into contact with hydrochloric acid during regeneration to be in Cl form, and hydrochloric acid remains inside the Cl type anion exchange resin particles. . In the case where the anion exchange resin is not contaminated by organic substances or the like and the reaction rate is not reduced, no particular problem occurs even in such a state, but the reaction rate is contaminated by the anion exchange resin being contaminated. When the concentration decreases, it becomes impossible to easily wash out the hydrochloric acid in the resin particles described above, and it is estimated that a small amount of the hydrochloric acid leaks into the treated water forever in passing water, so that the amount of Cl ion leakage may increase. You.

なお、カチオン交換樹脂の再生剤として硫酸を用いた
場合は、同様の理由により、SO4イオンの漏出量が増加
する。
When sulfuric acid is used as a regenerant for the cation exchange resin, the leakage amount of SO 4 ions increases for the same reason.

本発明は、上述したような従来の復水脱塩装置にとっ
て避けられない問題点、すなわちClイオンあるいはSO4
イオン等の不純物陰イオンが、再生済の両イオン交換樹
脂を再生系統から脱塩塔内に移送して復水の通水を開始
した直後の処理水中に多く漏出するという問題点を解消
し、これらの不純物イオンの量を常に規定の数値内にす
ることの出来る復水脱塩装置を提供すること目的とする
ものである。
The present invention is an inevitable problem for the conventional condensate desalination apparatus as described above, that is, Cl ion or SO 4
Solves the problem that impurity anions such as ions leak out into the treated water immediately after transferring both regenerated ion exchange resins from the regeneration system into the desalination tower and starting condensate flow, It is an object of the present invention to provide a condensate desalination apparatus which can always keep the amount of these impurity ions within a specified value.

<問題点を解決するための手段> 本発明は、復水を処理するための混床式脱塩塔と、こ
の混床式脱塩塔から処理水を導出させるように接続され
た復水流出管と、を備えた復水脱塩装置において、OH形
強塩基性アニオン交換樹脂を充填したアニオン交換塔、
またはOH形強塩基性アニオン交換樹脂とH形強酸性カチ
オン交換樹脂との混合イオン交換樹脂を充填した混床式
イオン交換塔を、前記混床式脱塩塔からの処理水を更に
処理するために導入して処理した後前記復水流出管に導
出できるように設け、更に前記混床式脱塩塔からの処理
水を前記アニオン交換塔または混床式イオン交換塔に通
水する場合と、前記復水流出管に直接流出させる場合と
の間で切換える通水切換手段を設けたことを特徴とする
ものである。
<Means for Solving the Problems> The present invention relates to a mixed-bed desalination tower for treating condensed water, and a condensate effluent connected to draw treated water from the mixed-bed desalination tower. In a condensate desalination apparatus equipped with a tube, an anion exchange column filled with an OH type strong basic anion exchange resin,
Or a mixed bed type ion exchange column filled with a mixed ion exchange resin of an OH type strong basic anion exchange resin and an H type strong acidic cation exchange resin, to further treat the treated water from the mixed bed type desalination column. Provided so that it can be led to the condensate outflow pipe after being introduced into the condensate, and further, when the treated water from the mixed-bed desalination tower is passed through the anion exchange tower or the mixed-bed ion exchange tower, A water flow switching means is provided for switching between a case in which the water is directly discharged to the condensate outflow pipe.

以下に本発明の実施態様の一例を図示を用いて詳細に
説明する。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は脱塩塔を3塔備えた復水脱塩装置のフローを
示す説明図であり、図中1はそれぞれ塔内にH形または
NH4形のカチオン交換樹脂とOH形アニオン交換樹脂との
混合イオン交換樹脂2を充填した脱塩塔で、当該各脱塩
塔1の上部にそれぞれの入口弁3を介して復水流入管4
を連通し、また各脱塩塔1の下部にそれぞれの出口弁5
を介して復水流出管6を連通する。また、7は脱塩塔1
から取り出した使用済の混合イオン交換樹脂を逆洗分離
及び再生するための一塔再生方式の再生塔8は当該再生
塔7で再生したカチオン交換樹脂及びアニオン交換樹脂
を一時貯留するための樹脂貯槽であり、各脱塩塔1の下
部と再生塔7の上部とはぞれぞれ点線で示した樹脂移送
管9で連通し、また再生塔7の下部と樹脂貯槽8の上部
とを同じく点線で示した樹脂移送管10で、更に樹脂貯槽
8の下部と前記各脱塩塔1の上部とをそれぞれ樹脂移送
管11で連通する。なお、各樹脂移送管9、10、11に付設
すべき弁類は、図面が複雑となるので省略してある。
FIG. 1 is an explanatory diagram showing a flow of a condensate desalination apparatus provided with three desalination towers.
A desalination tower filled with a mixed ion exchange resin 2 of a cation exchange resin of the NH 4 type and an anion exchange resin of the OH type, and a condensate inflow pipe 4 above each desalination tower 1 via a respective inlet valve 3.
And each outlet valve 5 at the bottom of each desalination tower 1.
The condensate outflow pipe 6 is communicated via the. 7 is a desalination tower 1
A regeneration tower 8 of a single-column regeneration system for backwashing, separating and regenerating the used mixed ion exchange resin taken out from the tank is a resin storage tank for temporarily storing the cation exchange resin and the anion exchange resin regenerated in the regeneration tower 7. The lower part of each desalting tower 1 and the upper part of the regeneration tower 7 are respectively connected by a resin transfer pipe 9 shown by a dotted line, and the lower part of the regeneration tower 7 and the upper part of the resin storage tank 8 are also dotted lines. Further, the lower part of the resin storage tank 8 and the upper part of each of the desalting towers 1 are communicated with each other by the resin transfer pipe 11. The valves to be attached to each of the resin transfer pipes 9, 10, and 11 are omitted because the drawing becomes complicated.

ここまでは従来の復水脱塩装置の構成と同じである
が、本発明の特徴は上記構成において脱塩塔1群の後段
に、例えばOH形強塩基性アニオン交換樹脂12を単独で塔
内に充填したアニオン交換塔13を付設し、各脱塩塔1の
処理水を当該アニオン交換塔13で更に処理出来るように
する点にある。すなわち、各脱塩塔1の復水流出管6に
付設した各出口弁5の上流側の復水流出管6からそれぞ
れ分岐して、アニオン交換塔13の上部に連通する復水導
入管14を付設することによって、各脱塩塔1の処理水を
アニオン交換塔13に通水出来るようにするとともに、当
該アニオン交換塔13の下部に復水導出管15を付設し、当
該復水導出管15の他端を各脱塩塔1の復水流出管6に付
設した出口弁5の下流側の復水流出管6に分岐接続す
る。また、各復水導入管14の途中にそれぞれ弁16を、復
水導出管15の途中の弁17をそれぞれ付設する。なお、各
脱塩塔1の復水流出管6に付設した前記出口弁5と、復
水導出管15の途中に設けた弁17とによって通水切換手段
が構成される。
Up to this point, the configuration is the same as that of the conventional condensate desalination apparatus. However, the feature of the present invention is that, in the above configuration, for example, an OH type strong basic anion exchange resin 12 alone in the downstream of one group of desalination towers is used. An anion exchange tower 13 packed in the desalting tower 1 is provided so that the treated water of each desalting tower 1 can be further treated in the anion exchange tower 13. That is, the condensate introduction pipes 14 branching off from the condensate outflow pipes 6 upstream of the respective outlet valves 5 attached to the condensate outflow pipes 6 of the respective desalination towers 1 and communicating with the upper part of the anion exchange tower 13. By providing the same, the treated water of each desalting tower 1 can be passed through the anion exchange tower 13, and a condensate discharge pipe 15 is provided below the anion exchange tower 13. Is connected to the condensate outflow pipe 6 downstream of the outlet valve 5 attached to the condensate outflow pipe 6 of each desalination tower 1. Further, a valve 16 is provided in the middle of each condensate introduction pipe 14, and a valve 17 in the middle of the condensate outlet pipe 15 is provided. The outlet valve 5 attached to the condensate outflow pipe 6 of each desalination tower 1 and the valve 17 provided in the middle of the condensate outlet pipe 15 constitute water flow switching means.

<作用> 以下に本発明装置による復水処理を、第1図に基づい
て説明する。
<Operation> The condensate treatment by the device of the present invention will be described below with reference to FIG.

通常時の復水処理にあたっては、各脱塩塔1の入口弁
3と出口弁5を開口し、かつ各脱塩塔1とアニオン交換
塔13とを連通する各復水導入管14に付設した弁16を閉
じ、復水を復水流入管4を介して各脱塩塔1に通水し、
各脱塩塔1内の混合イオン交換樹脂2で処理してNaイオ
ン、Clイオン等の不純物イオンの濃度を規定値以下とな
した処理水を復水流出管6から流出させる。
In the normal condensate treatment, the inlet valve 3 and the outlet valve 5 of each desalination tower 1 were opened, and the condensate introduction pipes 14 connecting the respective desalination towers 1 and the anion exchange tower 13 were provided. Close the valve 16 and pass the condensate to each desalination tower 1 via the condensate inlet pipe 4;
The treated water which has been treated with the mixed ion exchange resin 2 in each desalting tower 1 and the concentration of impurity ions such as Na ions and Cl ions has been reduced to a specified value or less is discharged from the condensate outflow pipe 6.

このような通水を続行して、例えば脱塩塔1A内の混合
イオン交換樹脂2Aが通水終点に達した場合には、他の脱
塩塔1B、1Cの通水を続行したまま脱塩塔1Aの入口弁3A及
び出口弁5Aを閉じて脱塩塔1Aを通水系統から切り離し、
当該脱塩塔1A内の混合イオン交換樹脂2Aを樹脂移送管9A
及び9によりスラリー状で再生塔7に移送する。次いで
樹脂貯槽8内において待機させておいた、既に再生済の
混合イオン交換樹脂2を樹脂移送管11及び11Aによりス
ラリー状で脱塩塔1Aに移送する。移送が完了した時点で
再び入口弁3Aを開けて復水が流入管4より脱塩塔1A内に
復水を流入して通水を開始するが、通水初期に脱塩塔1A
から得られる処理水中には、前述の如く規定の濃度を越
えるClイオンやSO4イオンが漏出する場合があるので、
その時には出口弁5Aを閉じたままで弁16Aを開け、脱塩
塔1Aの処理水を、復水導入管14Aを介してアニオン交換
塔13に流入させる。当該アニオン交換塔13内に流入した
脱塩塔1Aの処理水は、アニオン交換塔13内に充填した、
予め十分に再生及び洗浄されたOH形強塩基性アニオン交
換樹脂12によって処理され、ClイオンやSO4イオン等の
陰イオンを規定値まで低減させた処理水を復水導出管15
から得る。次いでアニオン交換塔13の処理水を弁17を介
して復水流出管6内に導き、当該復水流出管6内を流れ
る他の脱塩塔1B、1Cの処理水と合流させる。
By continuing such water passage, for example, when the mixed ion exchange resin 2A in the desalination tower 1A reaches the end point of water passage, desalination is performed while continuing the water passage of the other desalination towers 1B and 1C. Close the inlet valve 3A and the outlet valve 5A of the tower 1A and disconnect the desalination tower 1A from the water system,
The mixed ion exchange resin 2A in the desalting tower 1A is transferred to a resin transfer pipe 9A.
And 9 to transfer to the regeneration tower 7 in the form of slurry. Next, the mixed ion exchange resin 2 that has been regenerated, which has been waiting in the resin storage tank 8, is transferred to the desalination tower 1A in a slurry state by the resin transfer tubes 11 and 11A. When the transfer is completed, the inlet valve 3A is opened again, and the condensate flows into the desalination tower 1A from the inflow pipe 4 to start flowing water.
In the treated water obtained from the above, Cl ions or SO 4 ions exceeding the specified concentration may leak as described above,
At that time, the valve 16A is opened while the outlet valve 5A is closed, and the treated water of the desalination tower 1A flows into the anion exchange tower 13 via the condensate introduction pipe 14A. The treated water of the desalting tower 1A that has flowed into the anion exchange tower 13 was filled into the anion exchange tower 13,
Are processed by previously sufficiently regenerated and washed OH type strongly basic anion exchange resin 12, the condensate outlet pipe 15 the treated water with reduced anions such Cl ions and SO 4 ions to a specified value
Get from. Next, the treated water of the anion exchange tower 13 is guided into the condensate outflow pipe 6 via the valve 17, and is combined with the treated water of the other desalination towers 1B and 1C flowing in the condensate outflow pipe 6.

ここで、アニオン交換塔13内のOH形強塩基性アニオン
交換樹脂12として、脱塩塔1の処理水を通水した際に規
定値以下のClイオンやSO4イオン濃度の処理水が、通水
直後から直ちに得られるような状態に再生したものを用
いるのは、勿論言うまでもないことである。
Here, as the OH-type strong basic anion exchange resin 12 in the anion exchange tower 13, when passing the treated water of the desalting tower 1, treated water having a Cl ion or SO 4 ion concentration below a specified value is passed. It is needless to say that a material regenerated so as to be obtained immediately after water is used.

すなわち、脱塩塔1内のアニオン交換樹脂におけると
同様、あるいはそれ以上にCl形分率を低下させたものを
用い、例えば再生後の強塩基性アニオン交換樹脂におけ
るCl形分率を0.1以下としたもの等を用いる。
That is, the same as or more than the anion exchange resin in the desalting tower 1 is used, and the Cl form fraction is further reduced. For example, the Cl form fraction in the strongly basic anion exchange resin after regeneration is set to 0.1 or less. Use what is done.

なお、当該アニオン交換塔13は、脱塩塔1の処理水水
質が悪化した場合に一時的に使用する場合がほとんどで
他は待機させておくので、待機中に充填アニオン交換樹
脂粒子内部からイオン等の不純物が微量漏出し、通水時
に当該不純物が処理水中に漏出する恐れもあり、従っ
て、当該アニオン交換塔13を使用する直前に、アニオン
交換塔13に例えば脱塩塔1の処理水を通水して予めOH形
強塩基性アニオン交換樹脂12を洗浄するとよい。また当
該洗浄は極めて短時間(例えば10〜20分)で十分である
ので、復水処理に支障を来すことはない。更に、アニオ
ン交換塔13は、前述の如く、水質悪化時に一時的に使用
し、かつ除去すべき不純物イオンの量も極めて微量であ
るから、当該アニオン交換塔13内に充填したOH形強塩基
性アニオン交換樹脂12に対するイオン負荷は極く僅かで
あり、一度再生した後は極めて長期間、再生を行うこと
なく使用することが出来る。従って、アニオン交換塔13
は、装置内に再生設備を有しない非再生型のものとする
のが設備費的に有利であり、予め他所で十分に再生され
たOH形強塩基性アニオン交換樹脂12を最初に充填するよ
うにし、万一当該アニオン交換樹脂12の能力が低下した
場合には、他所で十分に再生したものと全量交換するよ
うにするとよい。
The anion exchange tower 13 is used temporarily in most cases when the quality of the treated water in the desalination tower 1 is deteriorated, and the others are kept on standby. There is also a possibility that impurities such as a small amount leak out and the impurities may leak into the treated water at the time of passing water. Therefore, immediately before using the anion exchange column 13, the treated water of the desalting column 1 is supplied to the anion exchange column 13, for example. It is preferable to wash the OH-type strong basic anion exchange resin 12 in advance by passing water. In addition, since the cleaning is performed in a very short time (for example, 10 to 20 minutes), there is no problem in condensing the water. Further, as described above, since the anion exchange column 13 is used temporarily when the water quality deteriorates, and the amount of impurity ions to be removed is extremely small, the OH type strong basic solution filled in the anion exchange column 13 is used. The ion load on the anion exchange resin 12 is extremely small, and once regenerated, it can be used for an extremely long time without regenerating. Therefore, the anion exchange column 13
It is advantageous in terms of equipment cost to use a non-regeneration type having no regeneration equipment in the apparatus, so that the OH type strong basic anion exchange resin 12 sufficiently regenerated in advance elsewhere is first charged. In the event that the capacity of the anion exchange resin 12 is reduced, it is preferable to replace the anion exchange resin 12 with the resin which has been sufficiently regenerated elsewhere.

前述のような、脱塩塔1Aの処理水のアニオン交換塔13
への通水を続行して、脱塩塔1Aの処理水中のClイオンあ
るいはSO4イオンの漏出量が規定値以下に低下したら、
脱塩塔1Aの出口弁5Aを開けて弁16Aを閉め、脱塩塔1Aの
処理水流路を復水流出管6側に切り換えて通常の復水処
理を行う。
As described above, the anion exchange column 13 of the treated water of the desalination column 1A
If the leakage of Cl ions or SO 4 ions in the treated water of the desalination tower 1A drops below the specified value,
The outlet valve 5A of the desalting tower 1A is opened, the valve 16A is closed, and the treated water flow path of the desalting tower 1A is switched to the condensate outflow pipe 6 side to perform normal condensate treatment.

一方、脱塩塔1Aから抜き出して再生塔7に移送した混
合イオン交換樹脂2Aは、従来と同様にして逆洗分離、再
生を行い、再生終了したカチオン及びアニオン交換樹脂
は、樹脂移送管10を介して樹脂貯槽8に移送して例えば
次の脱塩塔1Bが通水終点に達するまで待機させる。以
後、同様な操作を繰り返して復水の処理を継続する。
On the other hand, the mixed ion-exchange resin 2A withdrawn from the desalting tower 1A and transferred to the regeneration tower 7 is subjected to backwashing separation and regeneration in the same manner as before, and the regenerated cation and anion exchange resins are passed through the resin transfer tube 10. Then, it is transferred to the resin storage tank 8 and waits, for example, until the next desalination tower 1B reaches the water passing end point. Thereafter, the same operation is repeated to continue the condensate treatment.

本発明装置による復水処理は上述のようにして行う
が、このような復水脱塩装置においては、再生済の混合
イオン交換樹脂を再生系統から脱塩塔へ移送した後の通
水初期等にClイオンやSO4イオンばかりでなく、Naイオ
ンも規定値を越えて漏出する場合が時々う見られる。
The condensate treatment by the apparatus of the present invention is performed as described above. In such a condensate desalination apparatus, the initial stage of water passage after transferring the regenerated mixed ion exchange resin from the regeneration system to the desalination tower, etc. In addition, not only Cl ions and SO 4 ions, but also Na ions sometimes leak out of the specified value.

当該Naイオンの漏出量は一般に規定値を僅かに越える
程度であることが多く、またClイオンやSO4イオンに比
べて極めて短時間内に解消するので一般的には問題とな
らないが、このようなNaイオンの漏出をも防止しようと
する場合には、前記アニオンポリシャーの前段に、ほぼ
完全に再生されたH形強酸性カチオン交換樹脂(例えば
Na形分率を0.01以下に再生したもの)を充填した非再生
型のカチオン交換塔を付設するとよい。
In general, the amount of leakage of the Na ion often slightly exceeds the specified value, and is generally not a problem because it is eliminated within a very short time as compared with Cl ion or SO 4 ion. When it is intended to prevent the leakage of even Na ions, an almost completely regenerated H-form strongly acidic cation exchange resin (for example,
It is advisable to attach a non-regeneration type cation exchange column filled with a regenerated Na form fraction of 0.01 or less).

また、上述の実施態様では塔内にOH形強塩基性アニオ
ン交換樹脂を単独で充填したアニオン交換塔を用いた
が、上層に、有機物の吸着能力に優れた遊離塩基形の弱
塩基性アニオン交換樹脂を、下層にOH形強塩基性アニオ
ン交換樹脂を、それぞれ積層させて同一塔内に充填した
複層床式のアニオン交換塔を用いてもよい。
Further, in the above-described embodiment, the anion exchange column in which the OH-type strong basic anion exchange resin is solely used in the column is used.However, in the upper layer, the weak basic anion exchange in the form of a free base having excellent ability to adsorb organic substances is used. It is also possible to use a multi-layered bed type anion exchange column in which a resin and an OH-type strong basic anion exchange resin are laminated in the lower layer and filled in the same column.

更に本発明においては前記アニオン交換塔に代えて、
OH形強塩基性アニオン交換樹脂とH形強酸性カチオン交
換樹脂との混合イオン交換樹脂を充填した混床式イオン
交換塔を用いることも出来、この場合には復水中のClイ
オンやSO4イオンのみならずNaイオンも同時に除去出来
るので、例えNaイオンが規定値を越えて漏出したとして
もこれに対処することが出来て便利である。なお、混床
式イオン交換塔を用いる場合も、アニオン交換塔の場合
と同様に非再生型の装置とするのがよく、かつ充填する
OH形強塩基性アニオン交換樹脂及びH形強酸性カチオン
交換樹脂としては、前述のアニオン交換塔あるいはカチ
オン交換塔に使用するイオン交換樹脂と同程度に再生し
たものを使用するのは言うまでもないことである。
Further, in the present invention, instead of the anion exchange column,
It is also possible to use a mixed bed type ion exchange column packed with an ion exchange resin mixed with an OH type strongly basic anion exchange resin and an H type strongly acidic cation exchange resin. In this case, Cl ion or SO 4 ion in condensate water can be used. Not only Na ions but also Na ions can be removed at the same time, so even if Na ions leak out beyond the specified value, it can be dealt with conveniently, which is convenient. In the case of using a mixed bed type ion exchange column, it is preferable to use a non-regeneration type device as in the case of the anion exchange column, and to fill the mixture.
It goes without saying that as the OH-type strongly basic anion exchange resin and the H-type strongly acidic cation exchange resin, those regenerated to the same extent as the ion exchange resins used in the aforementioned anion exchange tower or cation exchange tower are used. is there.

<効果> 以上説明した如く、本発明は脱塩塔の後段にOH形強塩
基性アニオン交換樹脂を充填したアニオン交換塔、また
はOH形強塩基性アニオン交換樹脂とH形強酸性カチオン
交換樹脂との混合イオン交換樹脂を充填した混床式イオ
ン交換塔を付設すると共に、脱塩塔から導出する処理済
の復水をそのまま復水流出管に通水(流出)させるか、
アニオン交換塔または混床式イオン交換塔に通水するか
を切換えできるように構成することで、脱塩塔の通水初
期等に規定値を越えて漏出するClイオンやSO4イオン等
の陰イオンを大幅に低下させることが出来、復水脱塩装
置に要求される厳しい水質規準を常に満足させることが
出来る。特に、混床式イオン交換塔を使用する場合には
ClイオンやSO4イオンのみならずNaイオンも除去出来る
ので、Naイオンが漏出した場合にも対処出来て便利であ
る。また、これらのイオン交換塔は脱塩塔処理水中のCl
イオンあるいはSO4イオンの漏出量が規定値を越えた時
に一時的に使用できるので、イオン負荷が極めて少な
い。従って、装置内に再生設備を有しない非再生型のも
のを使用することが出来て、設備的にも比較的安価に済
む。
<Effects> As described above, the present invention relates to an anion exchange column in which an OH-type strong basic anion exchange resin is packed in the subsequent stage of a desalting column, or an OH type strong basic anion exchange resin and an H type strong acidic cation exchange resin. A mixed-bed ion exchange tower filled with the mixed ion-exchange resin is added, and the treated condensate discharged from the desalination tower is passed through the condensate discharge pipe as it is (outflow),
By configuring so that water can be switched between the anion exchange tower and the mixed-bed ion exchange tower, the shade of Cl ions and SO 4 ions etc. The ion can be greatly reduced, and the strict water quality standard required for the condensate desalination unit can always be satisfied. Especially when using a mixed bed type ion exchange column
Since not only Cl ions and SO 4 ions but also Na ions can be removed, it is convenient to cope with leakage of Na ions. In addition, these ion exchange towers use Cl
It can be used temporarily when the leakage amount of ions or SO 4 ions exceeds a specified value, so that the ion load is extremely small. Therefore, it is possible to use a non-regeneration type apparatus having no regeneration equipment in the apparatus, and the equipment can be relatively inexpensive.

なお、本発明は脱塩塔に使用されるアニオン交換樹脂
が、有機物等による汚染を受けることによって生ずる、
通水初期におけるClイオン等の陰イオンの漏出量を低減
することを主目的としているが、前記不純物イオンの量
が規定値を越えるような時にはいかなる場合にも適用出
来ることは言うまでもない。
Incidentally, the present invention, the anion exchange resin used in the desalination tower is caused by contamination by organic substances and the like,
The main purpose is to reduce the amount of leakage of anions such as Cl ions at the beginning of the passage of water. However, it goes without saying that the invention can be applied to any case where the amount of the impurity ions exceeds a specified value.

<実施例> 以下に本発明の効果をより明確とするために実施例を
説明する。
<Examples> Examples will be described below to clarify the effects of the present invention.

加圧水型原子力発電所における復水脱塩装置で用いら
れている強酸性カチオン交換樹脂アンバーライト(登録
商標、以下同様)200CP及び強塩基性アニオン交換樹脂
アンバーライトIRA−900CPの混合イオン交換樹脂を採取
し、当該混合イオン交換樹脂を常法により分離し、次い
で当該アンバーライト200CP及び当該アンバーライトIRA
−900CPを第1表に示した再生条件で再生した。
We sample mixed ion exchange resin of Amberlite (registered trademark, the same applies hereinafter) 200CP and strong basic anion exchange resin Amberlite IRA-900CP used in condensate desalination equipment at pressurized water nuclear power plant Then, the mixed ion exchange resin is separated by a conventional method, and then the Amberlite 200CP and the Amberlite IRA
-900CP was reproduced under the reproduction conditions shown in Table 1.

次に、再生したアンバーライトIRA−900CPの一部を取
り出し、1N塩酸50/−RをSV10で通薬した後、約1
μs/cmのイオン交換水を用い、SV10で流出水の電気伝導
率が20μs/cmまで洗浄し、Cl形のアンバーライトIRA−9
00CPを調整した。
Next, a portion of the regenerated Amberlite IRA-900CP was taken out, and 1N hydrochloric acid 50 / -R was passed through SV10 to give a drug.
Using ion exchanged water of μs / cm, the electric conductivity of the effluent was washed to 20 μs / cm with SV10, and the Amberlite IRA-9 in Cl form was washed.
00CP was adjusted.

次いで、上述のようにして調整したCl形アンバーライ
トIRA−900CP66mlと、上述のようにして再生したアンバ
ーライトIRA−900CP594ml及びアンバーライト200CP1,32
0mlとを直ちに混合して内径45mm、高さ1,500mmのカラム
に充填して混床式脱塩塔を作製し、その後直ちに第2表
に示すような組成の模擬復水をLV100m/Hの流速で通水し
た。なお、この時のアンバーライトIRA−900CPのCl形分
率は16%であった。
Next, 66 ml of Cl-type Amberlite IRA-900CP prepared as described above, and 594 ml of Amberlite IRA-900CP594 and Amberlite 200CP1, 32 reproduced as described above.
0 ml was immediately mixed and packed in a column having an inner diameter of 45 mm and a height of 1,500 mm to produce a mixed-bed desalination tower. Immediately thereafter, a simulated condensate having the composition shown in Table 2 was supplied at a flow rate of LV100 m / H. Water was passed. At this time, the Cl form fraction of Amberlite IRA-900CP was 16%.

上述の通水によって得られた脱塩塔の処理水を、予め
作製しておいた以下のようなアニオン交換塔及び混床式
イオン交換塔のそれぞれに半量づつ並列して通水した。
Half of the treated water of the desalination tower obtained by the above-mentioned water passing was passed in parallel to each of the following anion exchange tower and mixed bed ion exchange tower prepared in advance.

(1)アニオン交換塔 新品のアンバーライトIRA−900CPを第1表と同じ条件
で再生し、その300mlを内径32mm、高さ500mmのカラムに
充填したもの。
(1) Anion exchange tower A new Amberlite IRA-900CP is regenerated under the same conditions as in Table 1, and 300 ml of the regenerated Amberlite IRA-900CP is packed into a column with an inner diameter of 32 mm and a height of 500 mm.

(2)混床式イオン交換塔 新品のアンバーライトIRA−900CPを第1表と同じ条件
で、またアンバーライト200CPを、35%HCl800g/−R
の再生レベルとした以外は第1表と同じ条件で再生し、
それぞれ150mlづつを混合して内径32mm、高さ500mmのカ
ラムに充填したもの。
(2) Mixed bed type ion exchange tower New Amberlite IRA-900CP under the same conditions as in Table 1 and Amberlite 200CP at 35% HCl 800 g / -R
The playback was performed under the same conditions as in Table 1 except that the playback level was
A mixture of 150 ml each packed in a column with an inner diameter of 32 mm and a height of 500 mm.

以上のような通水によって得られた脱塩塔の処理水、
アニオン交換塔の処理水、及び混床式イオン交換塔の処
理のClイオン及びNaィオンを経時的に測定した。アニオ
ン交換塔の通水結果を第2図に、混床式イオン交換塔の
通水結果を第3図にそれぞれ示す。
Treated water of the desalination tower obtained by passing water as above,
The treated water of the anion exchange tower and the Cl ion and Naion of the treatment of the mixed bed type ion exchange tower were measured with time. FIG. 2 shows the results of passing water through the anion exchange tower, and FIG. 3 shows the results of passing water through the mixed-bed ion exchange tower.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施態様の一例を示すフローの説明
図、第2図は実施例におけるアニオン交換塔の通水結果
を示すグラフ、第3図は同じく実施例における混床式イ
オン交換塔の通水結果を示すグラフで、縦軸に処理水の
Clイオン漏出量あるいはNaイオン漏出量を示し、横軸に
通水時間を示す。 1……混床式脱塩塔、2……混合イオン交換樹脂 3……入口弁、4……復水流入管 5……出口弁、6……復水流出管 7……再生塔、8……樹脂貯槽 9、10、11……樹脂移送管 12……OH形強塩基性アニオン交換樹脂 13……アニオン交換塔 14……復水導入管、15……復水導出管 16、17……弁
FIG. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, FIG. 2 is a graph showing the results of passing water through an anion exchange column in the example, and FIG. 3 is a mixed bed type ion exchange column in the same example. Is a graph showing the results of passing water, with the vertical axis representing treated water.
The amount of Cl ion leakage or the amount of Na ion leakage is shown, and the horizontal axis shows the water passage time. DESCRIPTION OF SYMBOLS 1 ... Mixed bed type desalination tower, 2 ... Mixed ion exchange resin 3 ... Inlet valve, 4 ... Condensate inflow pipe 5 ... Outlet valve, 6 ... Condensate outflow pipe 7 ... Regeneration tower, 8 ... ... Resin storage tanks 9,10,11 ... Resin transfer tube 12 ... OH-type strongly basic anion exchange resin 13 ... Anion exchange tower 14 ... Condensate inlet tube, 15 ... Condensate outlet tube 16,17 ... valve

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】復水を処理するための混床式脱塩塔と、こ
の混床式脱塩塔から処理水を導出させるように接続され
た復水流出管と、を備えた復水脱塩装置において、OH形
強塩基性アニオン交換樹脂を充填したアニオン交換塔、
またはOH形強塩基性アニオン交換樹脂とH形強酸性カチ
オン交換樹脂との混合イオン交換樹脂を充填した混床式
イオン交換塔を、前記混床式脱塩塔からの処理水を更に
処理するために導入して処理した後前記復水流出管に導
出できるように設け、更に前記混床式脱塩塔からの処理
水を前記アニオン交換塔または混床式イオン交換塔に通
水する場合と、前記復水流出管に直接流出させる場合と
の間で切換える通水切換手段を設けたことを特徴とする
復水脱塩装置。
1. A condensate desalination tower comprising: a mixed-bed desalination tower for treating condensate; and a condensate outlet pipe connected to draw treated water from the mixed-bed desalination tower. In a salt apparatus, an anion exchange column filled with an OH type strong basic anion exchange resin,
Or a mixed bed type ion exchange column filled with a mixed ion exchange resin of an OH type strong basic anion exchange resin and an H type strong acidic cation exchange resin, to further treat the treated water from the mixed bed type desalination column. Provided so that it can be led to the condensate outflow pipe after being introduced into the condensate, and further, when the treated water from the mixed-bed desalination tower is passed through the anion exchange tower or the mixed-bed ion exchange tower, A condensate desalination apparatus comprising a water passage switching means for switching between a case where the water is directly discharged to the condensate outflow pipe.
【請求項2】請求項1において、アニオン交換塔または
混床式イオン交換塔は非再生型であることを特徴とする
復水脱塩装置。
2. A condensate desalination apparatus according to claim 1, wherein the anion exchange tower or the mixed-bed ion exchange tower is a non-regeneration type.
JP63040678A 1988-02-25 1988-02-25 Condensate desalination equipment Expired - Lifetime JP2654053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040678A JP2654053B2 (en) 1988-02-25 1988-02-25 Condensate desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040678A JP2654053B2 (en) 1988-02-25 1988-02-25 Condensate desalination equipment

Publications (2)

Publication Number Publication Date
JPH026893A JPH026893A (en) 1990-01-11
JP2654053B2 true JP2654053B2 (en) 1997-09-17

Family

ID=12587191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040678A Expired - Lifetime JP2654053B2 (en) 1988-02-25 1988-02-25 Condensate desalination equipment

Country Status (1)

Country Link
JP (1) JP2654053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140916A1 (en) * 2009-06-02 2010-12-09 Закрытое Акционерное Общество "Бapoмeмбpaннaя Технология" (Зао "Бmt") Method for the intensive desalination of water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128091A (en) * 2018-01-24 2019-08-01 三菱日立パワーシステムズ株式会社 Power plant operation method and thermal power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051684B2 (en) * 1976-06-30 1985-11-15 株式会社東芝 Optical fiber splitter/optical coupler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140916A1 (en) * 2009-06-02 2010-12-09 Закрытое Акционерное Общество "Бapoмeмбpaннaя Технология" (Зао "Бmt") Method for the intensive desalination of water

Also Published As

Publication number Publication date
JPH026893A (en) 1990-01-11

Similar Documents

Publication Publication Date Title
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
KR101918771B1 (en) Ion-exchange device
US4528101A (en) Method of separating acid from salt by adsorption with recycling
KR20010062380A (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
JP2654053B2 (en) Condensate desalination equipment
JP3610388B2 (en) Condensate demineralizer
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP3632343B2 (en) Pure water production method and ion exchange tower
JP5075159B2 (en) Separation tower for mixed ion exchange resin
JP4192557B2 (en) Purification method of sugar solution
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2891820B2 (en) Regeneration method of ion exchange resin
JPH0138553B2 (en)
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2940651B2 (en) Pure water production equipment
JP2007105558A (en) Method and apparatus for demineralizing recovered water
GB2063094A (en) Water purification by ion exchange
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPH1085739A (en) Steam condensate desalting device
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JP2742975B2 (en) Regeneration method of ion exchange device
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPH09262486A (en) Regenerating method of ion exchange resin in desalting device for condensate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11