JPH1085739A - Steam condensate desalting device - Google Patents

Steam condensate desalting device

Info

Publication number
JPH1085739A
JPH1085739A JP8248107A JP24810796A JPH1085739A JP H1085739 A JPH1085739 A JP H1085739A JP 8248107 A JP8248107 A JP 8248107A JP 24810796 A JP24810796 A JP 24810796A JP H1085739 A JPH1085739 A JP H1085739A
Authority
JP
Japan
Prior art keywords
exchange resin
resin
ion exchange
specific gravity
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8248107A
Other languages
Japanese (ja)
Other versions
JP3614995B2 (en
Inventor
Noriyuki Sasaki
規行 佐々木
Yoshihiro Segawa
嘉弘 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP24810796A priority Critical patent/JP3614995B2/en
Publication of JPH1085739A publication Critical patent/JPH1085739A/en
Application granted granted Critical
Publication of JP3614995B2 publication Critical patent/JP3614995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent water from becoming qualitatively deteriorated and thereby enhance the efficiency of using an anionic exchange resin by packing a particulate cationic exchange resin and a particulate anionic exchange resin, both of which has an almost equal specific gravity and a particulate cationic exchange resin with a smaller specific gravity than that of the former in a steam condensate desalting tower. SOLUTION: This steam condensate desalting tower 120 is filled with an upper layer ion exchange resin 121 and a lower layer ion exchange resin 122. The upper layer ion exchange resin 121 is formed of a cationic exchange resin. The lower layer ion exchange resin 122 is formed of a uniform mixture of cationic exchange resin and anionic exchange resin which have a larger specific gravity than the upper layer ion exchange resin 121 and an equal specific gravity. The upper layer ion exchange resin 121 takes up main cationic impurities, and the lower layer ion exchange resin removes some leaking from the cationic impurities and a trace of anionic impurities. In addition, it is possible to use the resins for a long time by utilizing an inert gas such as nitrogen originating from an air pipe 38 at the time of back wash.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒状の陽イオン交
換樹脂と陰イオン交換樹脂が充填されている復水脱塩塔
を有する復水脱塩装置に関する。
The present invention relates to a condensate desalination apparatus having a condensate desalination tower filled with a granular cation exchange resin and an anion exchange resin.

【0002】[0002]

【従来の枝術】従来の復水脱塩装置を沸騰水型原子力発
電プラントを例に説明する。
2. Description of the Related Art A conventional condensate desalination apparatus will be described using a boiling water nuclear power plant as an example.

【0003】沸騰水型原子力発電プラントでは原子炉内
を常に清浄な状態にしておかなければならないので、復
水器から原子炉内へ流入する復水を復水ろ過装置及び復
水脱塩装置により浄化処理して高純度に浄化した後、原
子炉の冷却水として利用している。
In a boiling water nuclear power plant, the inside of the reactor must be kept clean at all times, and condensate flowing into the reactor from a condenser is condensed by a condensate filtration device and a condensate desalination device. After purifying to high purity by purification treatment, it is used as cooling water for nuclear reactors.

【0004】図4は従来の沸騰水型原子力発電プラント
の構成を示す図である。
FIG. 4 is a diagram showing a configuration of a conventional boiling water nuclear power plant.

【0005】原子炉圧力容器1内で発生した蒸気は主蒸
気管2を介してタービン3に送られ、このタービン3を
駆動した蒸気は復水器4で凝縮され復水となる。この復
水は低圧復水ポンプ5によって昇圧され空気抽出器6、
グランド蒸気復水器7を介し、復水浄化系に設置されて
いる復水ろ過装置8、復水脱塩装置9により不純物が除
去される。
[0005] The steam generated in the reactor pressure vessel 1 is sent to a turbine 3 via a main steam pipe 2, and the steam driving the turbine 3 is condensed in a condenser 4 to be condensed. This condensate is pressurized by a low-pressure condensate pump 5 and an air extractor 6,
The impurities are removed by the condensate filtration device 8 and the condensate desalination device 9 installed in the condensate purification system via the ground steam condenser 7.

【0006】そして、上記復水脱塩装置9で浄化された
復水は、高圧復水ポンプ10でさらに昇圧され、低圧給
水加熱器11に送られて加熱される。そして、さらに給
水ポンプ12により昇圧され高圧給水加熱器13を通過
して加熱され原子炉圧力容器1内に給水される。
[0006] The condensate purified by the condensate desalination unit 9 is further pressurized by a high-pressure condensate pump 10 and sent to a low-pressure feed water heater 11 to be heated. Then, the water pressure is further increased by the water supply pump 12, passed through the high-pressure water heater 13, heated and supplied into the reactor pressure vessel 1.

【0007】ところで、上記復水脱塩装置9には粒状の
イオン交換樹脂が充填されている複数の脱塩塔が設置さ
れており、そのうち1塔は予備とされている。脱塩塔の
中のイオン交換樹脂は陽イオン不純物を捕獲する陽イオ
ン交換樹脂と陰イオン不純物を捕獲する陰イオン交換樹
脂が混合されたものであり、脱塩塔を通過する過程で復
水中の不溶解性および溶解性不純物が除去される。復水
脱塩装置の不純物除去能力が低下した場合には、当該脱
塩塔を系統から取り外し、待機状態にある脱塩塔を系統
に投入して連続的に復水の浄化を行う。
[0007] The condensate desalination unit 9 is provided with a plurality of desalination towers filled with granular ion exchange resin, one of which is reserved. The ion exchange resin in the desalination tower is a mixture of a cation exchange resin that captures cation impurities and an anion exchange resin that captures anion impurities. Insoluble and soluble impurities are removed. When the impurity removal capability of the condensate desalination apparatus decreases, the desalination tower is removed from the system, and the desalination tower in a standby state is introduced into the system to continuously purify the condensate.

【0008】次に図5により粒状のイオン交換樹脂の再
生方法を説明する。
Next, a method for regenerating a granular ion exchange resin will be described with reference to FIG.

【0009】復水脱塩塔20に充填されている粒状のイ
オン交樹脂21の不純物除去能力が低下した場合、予備
の脱塩塔を採水状態とした後、再生を行う脱塩塔が採水
から切り離される。
If the granular ion exchange resin 21 packed in the condensate desalination tower 20 has a reduced impurity removing ability, the desalination tower for regenerating after setting the spare desalination tower to a water sampling state. Separated from water.

【0010】この脱塩塔20より樹脂取出配管26を経
由してイオン交換樹脂21が陽イオン樹脂再生塔28へ
移送される。陽イオン樹脂再生塔28へ移送された粒状
のイオン交換樹脂21は所内空気配管38より導かれた
所内空気によりバブリング作用をうけ不溶解性不純物が
剥離、除去される。
The ion exchange resin 21 is transferred from the desalting tower 20 to a cation resin regeneration tower 28 via a resin extraction pipe 26. The granular ion-exchange resin 21 transferred to the cation resin regeneration tower 28 is subjected to bubbling by the in-house air led through the in-house air pipe 38 to remove and remove insoluble impurities.

【0011】そして、不溶解性不純物の除去されたイオ
ン交換樹脂は補給水配管39を通じて陽イオン樹脂再生
塔28下部より注水される補給水により逆洗展開され、
陽及び陰イオン交換樹脂の比重の違いを利用して下層に
陽イオン交換樹脂、上層に陰イオン交換樹脂に分離され
る。上層の陰イオン交換樹脂は陰イオン交換樹脂抜出配
管30を通じ陰イオン樹脂再生塔29へ移送される。次
に、陽イオン樹脂再生塔28に、再生薬剤として酸通薬
配管31を通じて酸が、また陰イオン樹脂再生塔29に
は、アルカリ通薬配管32を通じて苛性ソーダが通薬さ
れ、陽及び陰イオン交換樹脂の再生が行われる。
The ion-exchange resin from which insoluble impurities have been removed is backwashed and developed by make-up water injected from the lower part of the cation resin regeneration tower 28 through a make-up water pipe 39,
Utilizing the difference in specific gravity between the cation exchange resin and the anion exchange resin, the lower layer is separated into a cation exchange resin and the upper layer is separated into an anion exchange resin. The upper anion exchange resin is transferred to the anion resin regeneration tower 29 through the anion exchange resin extraction pipe 30. Next, an acid is passed as a regenerating agent to the cation resin regenerating tower 28 through an acid passing pipe 31, and caustic soda is passed to the anionic resin regenerating tower 29 through an alkali passing pipe 32 to exchange cations and anions. Regeneration of the resin takes place.

【0012】再生された陰イオン交換樹脂は陰イオン交
換樹脂返送配管33を通じ、陽イオン交換樹脂再生塔2
8へ移迭される。陽イオン交換樹脂再生塔28で所内空
気及び補給水による陽及び陰イオン交換樹脂の混合、洗
浄が行われた後、樹脂戻し配管34を通じ脱塩塔20へ
返送され予備脱塩塔として待機状態となる。
The regenerated anion exchange resin passes through an anion exchange resin return pipe 33 and passes through the cation exchange resin regeneration tower 2.
Moved to 8. After mixing and washing of the cation exchange resin and the anion exchange resin with the in-plant air and make-up water in the cation exchange resin regeneration tower 28, the mixture is returned to the desalination tower 20 through the resin return pipe 34 to be in a standby state as a preliminary desalination tower. Become.

【0013】再生時に発生する廃液は、廃液移送配管3
5を通り、ドレンストレーナ36を経由して廃棄物処理
系37へ移送され処理される。
The waste liquid generated during regeneration is transferred to a waste liquid transfer pipe 3
5 and is transferred to a waste treatment system 37 via a drain strainer 36 for treatment.

【0014】[0014]

【発明が解決しようとする課題】近年のプラントでは復
水脱塩装置上流の材質改善や復水ろ過装置の設置により
復水脱塩装置入口の不純物が低下し化学再生を行わない
運用がおこなわれている。 この場合、極力、脱塩塔内
の陽及び陰イオン交換樹脂が均一に混合されていること
が必要である。しかし陽、陰イオン交換樹脂の比重が異
なることから再生後、脱塩塔に返送した時に分離し易
く、脱塩塔の下部に陽イオン交換樹脂が堆積し易く、通
水時に出口側に捕獲したイオンをリークまたは、陽イオ
ン交換樹脂が酸化劣化により樹脂自体から溶出されるT
OC(全有機炭素)成分をリークし、水質が悪化すると
いう問題がある。
In recent plants, the improvement of the material upstream of the condensate desalination unit and the installation of the condensate filtration unit have reduced the impurities at the inlet of the condensate desalination unit, and have been operated without performing chemical regeneration. ing. In this case, it is necessary that the cation exchange resin and the anion exchange resin in the desalting tower be mixed as uniformly as possible. However, because the specific gravity of the cation and anion exchange resins is different, it is easy to separate when returned to the desalination tower after regeneration, and the cation exchange resin is easily deposited at the bottom of the desalination tower, and captured at the outlet side when passing water T leaks ions or elutes from the resin itself due to oxidative degradation of the cation exchange resin
There is a problem that the OC (total organic carbon) component leaks and the water quality deteriorates.

【0015】また、復水脱塩装置の主な目的は復水器に
海水リークが発生した場合、下流の機器健全性維持のた
め、海水成分のNaClを所定時間除去することにある
が、通常運転時のイオン負荷は金属イオン(火力発電所
の場合はpHコントロール用のアンモニア等の微量薬
品)であり陽イオン不純物が主要なものとなっている。
このため、通常時には余り使用しない陰イオン交換樹脂
を多く保有することとなり陰イオン交換樹脂が利用効率
がわるいという問題があった。
[0015] The main purpose of the condensate desalination apparatus is to remove NaCl as a seawater component for a predetermined time in order to maintain the integrity of downstream equipment when a seawater leak occurs in the condenser. The ion load during operation is metal ions (in the case of a thermal power plant, trace chemicals such as ammonia for pH control), and cation impurities are mainly used.
For this reason, there is a problem that an anion exchange resin which is not usually used much is usually retained, and the utilization efficiency of the anion exchange resin is poor.

【0016】すなわち、本発明の目的は、これらの問題
のない復水脱塩装置を提供することを目的とする。
That is, an object of the present invention is to provide a condensate desalination apparatus free of these problems.

【0017】[0017]

【課題を解決するための手段】本発明の目的は、比重が
ほぼ等しい粒状の陽イオン交換樹脂と陰イオン交換樹
脂、ならびにこれらのイオン交換樹脂より比重の小さい
粒状の陽イオン交換樹脂を復水脱塩塔に充填してなるこ
とを特徴とする復水脱塩装置により達成される。本発明
の復水脱塩装置は、一般に、粒状のイオン交換樹脂の移
送、分離、混合ならびに再生機能を有する再生装置を備
えており、この再生装置は比重の小さい粒状の陽イオン
樹脂のみを分離して化学再生を行う機構を備えいる。
SUMMARY OF THE INVENTION It is an object of the present invention to condense a granular cation exchange resin and an anion exchange resin having substantially the same specific gravities and a granular cation exchange resin having a smaller specific gravity than these ion exchange resins. This is achieved by a condensate desalination apparatus characterized by being packed in a desalination tower. The condensate desalination apparatus of the present invention generally includes a regenerating apparatus having a function of transferring, separating, mixing and regenerating granular ion exchange resin, and the regenerating apparatus separates only granular cationic resin having a small specific gravity. And a mechanism for chemical regeneration.

【0018】イオン交換樹脂の移送、分離、混合に使用
する水としては脱気水を使用することが望ましく、再生
に使用する気体としては窒素ガスのような不活性ガスを
使用することが望ましい。
It is desirable to use degassed water as the water used for transferring, separating and mixing the ion exchange resin, and it is desirable to use an inert gas such as nitrogen gas as the gas used for regeneration.

【0019】[0019]

【発明の実施の形態】本発明の復水脱塩装置において
は、イオン交換で容量を消費される脱塩塔上層部の陽イ
オン交換樹脂のみ化学再生し、下層の陽及び陰イオン交
換樹脂を均一に混合した樹脂は非化学再生の運用が可能
となり、イオン交換樹脂を有効に使用することにより長
期間、良好な出口水質を維持することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the condensate desalination apparatus of the present invention, only the cation exchange resin in the upper part of the desalination tower, which consumes capacity by ion exchange, is chemically regenerated, and the lower cation and anion exchange resins are used in the lower layer. Uniformly mixed resin enables non-chemical regeneration operation, and good outlet water quality can be maintained for a long period of time by effectively using ion exchange resin.

【0020】図1は、この作用を概念的に示したもので
ある。
FIG. 1 conceptually shows this operation.

【0021】すなわち、従来の復水脱塩装置では、陽イ
オン交換樹脂と陰イオン交換樹脂の比重が異なるため、
再生後、脱塩塔に返送した時に、一部陽イオン交換樹脂
と陰イオン交換樹脂が分離して、脱塩塔の下部には陽イ
オン交換樹脂が堆積し、陽及び陰イオン交換樹脂混在ゾ
ーンの下に陽イオン交換樹脂ゾーンが形成されている。
そして、陽及び陰イオン交換樹脂混在ゾーンでは、通
水するにつれて入口側から出口側に向けて順に陽イオン
不純物と陰イオン不純物がイオン交換樹脂に捕獲されて
いき、また出口側に堆積した陽イオン交換樹脂ゾーンで
も陽イオンが捕獲されるが、やがて出口側の陽イオン交
換樹脂ゾーンでは捕獲したイオンがリークするようにな
り、さらに陽イオン交換樹脂自体も酸化劣化し溶出する
TOC(全有機炭素)成分がリークして水質が悪化する
という問題がある。
That is, in the conventional condensate desalination apparatus, the specific gravity of the cation exchange resin is different from that of the anion exchange resin.
After the regeneration, when returning to the desalination tower, the cation exchange resin and the anion exchange resin are partially separated, and the cation exchange resin is deposited at the bottom of the desalination tower. Below the cation exchange resin zone.
In the cation- and anion-exchange resin mixed zone, cation impurities and anion impurities are captured by the ion-exchange resin in order from the inlet side to the outlet side as the water flows, and the cations deposited on the outlet side. The cations are captured in the exchange resin zone, but the captured ions leak in the cation exchange resin zone on the outlet side, and the cation exchange resin itself is oxidatively degraded and eluted. TOC (total organic carbon) There is a problem that components leak and the water quality deteriorates.

【0022】一方、本発明の復水脱塩装置では、上層に
比重の小さい陽イオン交換樹脂ゾーンがあるため、ここ
からの微少な陽イオン不純物のリークは下層の陽及び陰
イオン樹脂ゾーンで捕獲されることとなる。また、下層
のイオン交換樹脂は陽イオン交換樹脂と陰イオン交換樹
脂の比重がほぼ同一なことから完全混合状態となり、脱
塩塔下部に陽イオン樹脂が堆積することは無く安定した
水質を維持することが可能となる。
On the other hand, in the condensate desalination apparatus of the present invention, since the upper layer has a cation exchange resin zone having a small specific gravity, leaks of minute cation impurities therefrom are captured by the lower layer of the positive and anion resin zones. Will be done. In addition, since the specific gravities of the cation exchange resin and the anion exchange resin are almost the same, the lower layer ion exchange resin is in a completely mixed state, and the cation resin does not accumulate at the lower part of the desalting tower and maintains stable water quality. It becomes possible.

【0023】また、化学再生は主要な陽イオン不純物を
捕獲する上層のみ行うことにより化学再生時の廃液を低
減することも可能である。
Further, it is possible to reduce the waste liquid at the time of chemical regeneration by performing chemical regeneration only on the upper layer that captures main cationic impurities.

【0024】なお、イオン交換樹脂は樹脂再生時に空気
及び高溶存酸素濃度の水を使用するため樹脂の酸化劣化
が進行し樹脂自体より有機不純物を溶出し易くなる傾向
があるが、再生時に使用する逆洗用空気・水をそれぞ
れ、窒素等の不活性ガス及び脱気水を使用することによ
り樹脂の酸化劣化を防止することができる。
The ion exchange resin uses air and water with a high dissolved oxygen concentration at the time of resin regeneration, so that the resin tends to be oxidatively degraded and organic impurities tend to elute from the resin itself. By using an inert gas such as nitrogen and degassed water for the backwash air and water, respectively, the oxidation deterioration of the resin can be prevented.

【0025】図2は、脱気水を用いた場合のTOC溶出
量を高溶存酸素水を用いた場合と対比して示したグラフ
であり、縦軸は樹脂からのTOC溶出量を示し、横軸は
通水時間を示している。
FIG. 2 is a graph showing the amount of TOC eluted when degassed water is used in comparison with the case where highly dissolved oxygen water is used. The axis indicates the water flow time.

【0026】このグラフから、実線で示した脱気水を用
いた場合の方が破線で示した高溶存酸素水を用いた場合
よりもTOC溶出量が著しく低く、従って脱気水の方が
樹脂酸化劣化防止の観点から有効であることがわかる。
From this graph, it can be seen that the TOC elution amount is significantly lower when degassed water shown by a solid line is used than when highly dissolved oxygen water shown by a broken line is used. It can be seen that it is effective from the viewpoint of preventing oxidative deterioration.

【0027】[0027]

【実施例】次に、図3を用いて本発明の実施例を説明す
る。
Next, an embodiment of the present invention will be described with reference to FIG.

【0028】復水入口配管123より導入された復水は
復水脱塩塔により浄化され復水出口配管124、樹脂ス
トレーナ125を経由し下流側に供給される。復水脱塩
塔120に充填されている上層のイオン交樹脂121は
陽イオン交換樹脂からなり、下層のイオン交換樹脂12
2は上層より比重が大きく、かつ、比重の均等な陽イオ
ン交換樹脂と陰イオン交換樹脂とを均一に混合したもの
で構成されている。上層のイオン交換樹脂121は主要
な陽イオン不純物を捕獲し、下層のイオン交換樹脂12
2は微量の陰イオン不純物および上層から一部リークし
てくる陽イオン不純物を除去する。 復水脱塩塔120
の不純物除去能力が低下した場合には、予備の脱塩塔を
採水状態とした後脱塩塔を採水から切り離して脱塩操作
を行う。
The condensate introduced from the condensate inlet pipe 123 is purified by the condensate desalination tower and supplied to the downstream side via the condensate outlet pipe 124 and the resin strainer 125. The upper layer ion exchange resin 121 filled in the condensate desalination tower 120 is made of a cation exchange resin, and the lower layer ion exchange resin 12
Reference numeral 2 has a specific gravity greater than that of the upper layer and is made of a mixture of a cation exchange resin and an anion exchange resin having uniform specific gravities. The upper ion-exchange resin 121 captures major cation impurities, and the lower ion-exchange resin 12
2 removes a small amount of anionic impurities and cationic impurities which partially leak from the upper layer. Condensate desalination tower 120
In the case where the impurity removal capacity of the water is reduced, the desalination tower is separated from the water sampling after the spare desalination tower is brought into the water sampling state, and the desalting operation is performed.

【0029】脱塩操作をする場合には、まず、脱塩塔1
20よりイオン交換樹脂121、122が樹脂取出配管
126を経由して樹脂貯槽128へ移送される。
When performing a desalination operation, first, the desalination tower 1
From 20, ion exchange resins 121 and 122 are transferred to a resin storage tank 128 via a resin extraction pipe 126.

【0030】移送されたイオン交換樹脂121、122
は所内空気配管138より導かれた所内空気によるバブ
リング作用をうけ不溶解性不純物が剥離、除去される。
The transferred ion exchange resins 121 and 122
Is subjected to a bubbling action by the in-house air led from the in-house air pipe 138, so that insoluble impurities are separated and removed.

【0031】そして、不溶解性不純物の除去されたイオ
ン交換樹脂は補給水配管139を通じて樹脂貯槽128
下部より注水される補給水により逆洗展開され比重の均
等な陽及び陰イオン交換樹脂及びこれより比重の小さい
陽イオン交換樹脂の、両者の比重の違いを利用して下層
に比重のほぼ等しい陽イオン交換樹脂及び陰イオン交換
樹脂、上層にこれより比重の小さい陽イオン交換樹脂に
分離される。上層の陽イオン交換樹脂は陽イオン交換樹
脂抜出配管130を通じ陽イオン樹脂再生塔129へ移
送される。
Then, the ion-exchange resin from which insoluble impurities have been removed is supplied to a resin storage tank 128 through a makeup water pipe 139.
Positive and negative cation exchange resins, which are backwashed and developed with make-up water injected from the lower part and have equal specific gravity, and cation exchange resins with lower specific gravity, using the difference in specific gravity between the two, have almost the same specific gravity in the lower layer. The ion-exchange resin and the anion-exchange resin are separated into a cation-exchange resin having a lower specific gravity in the upper layer. The upper layer cation exchange resin is transferred to the cation resin regeneration tower 129 through the cation exchange resin extraction pipe 130.

【0032】陽イオン交換樹脂が陽イオン樹脂再生塔1
29に移送されると、陽イオン樹脂再生塔129には再
生薬剤として酸通薬配管131を通じて酸が通薬され、
陽イオン交換樹脂の再生が行われる。再生された陽イオ
ン交換樹脂は、陽イオン交換樹脂返送配管133を通じ
樹脂貯槽128へ移送される。
The cation exchange resin is a cation resin regeneration tower 1
When transferred to the cation resin regeneration tower 129, the acid is passed through the acid delivery pipe 131 as a regenerating agent,
Regeneration of the cation exchange resin is performed. The regenerated cation exchange resin is transferred to the resin storage tank 128 through the cation exchange resin return pipe 133.

【0033】そして、所内空気及び補給水による混合、
洗浄が行われた後、逆洗展開され、下層に比重のほぼ等
しい陽及び陰イオン交換樹脂、上層にこれより比重の小
さい陽イオン交換樹脂となるよう分離される。しかる
後、樹脂戻し配管134を通じ脱塩塔120へ返送され
予備脱塩塔として待機状態となる。
And mixing with in-house air and make-up water,
After the washing, the resin is backwashed and separated so that the lower layer is a cation and anion exchange resin having substantially the same specific gravity, and the upper layer is a cation exchange resin having a lower specific gravity. Thereafter, it is returned to the desalination tower 120 through the resin return pipe 134, and enters a standby state as a preliminary desalination tower.

【0034】再生時に発生する廃液は廃液移送配管13
5を通りドレンストレーナ136を経由し廃棄物処理系
137へ移送し処理される。
Waste liquid generated during regeneration is transferred to a waste liquid transfer pipe 13.
5 through the drain strainer 136 to the waste treatment system 137 for treatment.

【0035】また、所内空気配管138より空気ではな
く、窒素等の不活性ガスを逆洗時に使用することにより
樹脂の酸化劣化が可能となり樹脂の長期使用が可能とな
る。
Further, by using an inert gas such as nitrogen instead of air from the in-house air pipe 138 at the time of backwashing, the resin can be oxidized and deteriorated, and the resin can be used for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用を模式的に示す図FIG. 1 is a diagram schematically showing the operation of the present invention.

【図2】本発明の一実施例の効果を示すグラフ。FIG. 2 is a graph showing the effect of one embodiment of the present invention.

【図3】本発明の一実施例の系統図。FIG. 3 is a system diagram of one embodiment of the present invention.

【図4】従来の復水脱塩装置の系統図。FIG. 4 is a system diagram of a conventional condensate desalination apparatus.

【図5】従来の復水脱塩装置の再生装置を示す系統図。FIG. 5 is a system diagram showing a regeneration device of a conventional condensate desalination device.

【符号の説明】[Explanation of symbols]

1………原子炉圧力容器、2………主蒸気管、3………
タービン、4………復水器、5………低圧復水ポンプ、
6………空気抽出器、7………グランド蒸気復水器、8
………復水ろ過装置、9………復水脱塩装置、10……
…高圧復水ポンプ、11………低圧給水加熱器、12…
……給水ポンプ、13………高圧給水加熱器、20……
…復水脱塩塔、21………イオン交換樹脂層、23……
…復水入口配管、24………復水出口配管、25………
樹脂ストレーナ、26………樹脂取出配管、27………
再生系、28………陽イオン交換樹脂再生塔、29……
…陰イオン交換樹脂再生塔、30………陰イオン交換樹
脂抜出配管、31………酸通薬配管、32………アルカ
リ通薬配管、33………陰イオン交換樹脂返送配管、3
4………樹脂戻し配管、35………廃棄物処理系、36
………ドレンストレーナ、37………放射性廃液処理装
置、38………所内空気配管、39………補給水配管、
120………復水脱塩塔、121………陽イオン交換樹
脂層、122………陽+陰イオン交換樹脂層、123…
……復水入口配管、124………復水出口配管、125
………樹脂ストレーナ、126………樹脂取出配管、1
27………再生系、128………樹脂貯槽、129……
…陽イオン交換樹脂再生塔、130………陽イオン交換
樹脂抜出配管、131………酸通薬配管、133………
陽イオン交換樹脂返送配管、134………樹脂戻し配
管、135………廃液移送配管、136………ドレンス
トレーナ、137………廃棄物処理系、138………所
内空気配管、139………補給水配管
1 ... Reactor pressure vessel, 2 ... Main steam pipe, 3 ...
Turbine, 4 …… Condenser, 5 ……… Low pressure condensate pump,
6 ... Air extractor, 7 ... Grand steam condenser, 8
………………………………………………………………………………………………… Condensed water desalination equipment
... High pressure condensate pump, 11 ... Low pressure feed water heater, 12 ...
...... Feed water pump, 13 ... High pressure feed water heater, 20 ...
... Condensation desalination tower, 21 ... Ion exchange resin layer, 23 ...
… Condenser inlet pipe, 24 …… condenser outlet pipe, 25…
Resin strainer, 26 ... Resin extraction pipe, 27 ...
Regeneration system, 28 Cation exchange resin regeneration tower, 29
... anion exchange resin regeneration tower, 30 ... anion exchange resin extraction pipe, 31 ... acid chemical pipe, 32 ... alkali chemical pipe, 33 ... anion exchange resin return pipe, 3
4 ... resin return pipe, 35 ... waste treatment system, 36
…… Drain strainer, 37 ……………………………………………………………………………… ………………………………………… …………………………… ………………………………………………………………………………………………………………………………… Sending water piping
120 ... condensate desalination tower, 121 ... cation exchange resin layer, 122 ... cation + anion exchange resin layer, 123 ...
…… Condenser inlet pipe, 124 ……… Condenser outlet pipe, 125
…… Resin strainer, 126… Resin extraction pipe, 1
27 Regeneration system, 128 Resin storage tank, 129
... Cation exchange resin regeneration tower, 130 ... Cation exchange resin extraction pipe, 131 ... Acid chemical pipe, 133 ...
Cation exchange resin return pipe, 134 ... Resin return pipe, 135 ... Waste liquid transfer pipe, 136 ... Drain strainer, 137 ... Waste treatment system, 138 ... In-house air pipe, 139 ... … Supply water piping

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 比重がほぼ等しい粒状の陽イオン交換樹
脂と陰イオン交換樹脂、ならびにこれらのイオン交換樹
脂より比重の小さい粒状の陽イオン交換樹脂を復水脱塩
塔に充填してなることを特徴とする復水脱塩装置。
1. A condensate desalination tower packed with a granular cation exchange resin and an anion exchange resin having substantially the same specific gravity, and a granular cation exchange resin having a specific gravity smaller than those of the ion exchange resins. Condensate desalination equipment characterized.
【請求項2】 粒状のイオン交換樹脂の移送、分離、混
合ならびに再生機能をもつ再生装置を備えたことを特徴
とする請求項1記載の復水脱塩装置。
2. The condensate desalination apparatus according to claim 1, further comprising a regenerator having functions of transferring, separating, mixing and regenerating the granular ion exchange resin.
【請求項3】 粒状のイオン交換樹脂の移送、分離、混
合ならびに再生に使用する水および気体として、脱気水
および不活性ガスを使用することを特徴とする請求項1
記載の復水脱塩装置。
3. The method according to claim 1, wherein degassed water and an inert gas are used as water and gas used for transferring, separating, mixing and regenerating the granular ion exchange resin.
The condensate desalination apparatus according to the above.
【請求項4】 再生装置は、比重の小さい粒状の陽イオ
ン樹脂のみを分離して化学再生を行う機構を備えたこと
を特徴とする請求項1記載の復水脱塩装置。
4. The condensate desalination apparatus according to claim 1, wherein the regenerating apparatus has a mechanism for performing chemical regeneration by separating only granular cation resin having a small specific gravity.
JP24810796A 1996-09-19 1996-09-19 Condensate demineralizer Expired - Fee Related JP3614995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24810796A JP3614995B2 (en) 1996-09-19 1996-09-19 Condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24810796A JP3614995B2 (en) 1996-09-19 1996-09-19 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JPH1085739A true JPH1085739A (en) 1998-04-07
JP3614995B2 JP3614995B2 (en) 2005-01-26

Family

ID=17173339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24810796A Expired - Fee Related JP3614995B2 (en) 1996-09-19 1996-09-19 Condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3614995B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080086A (en) * 2001-09-13 2003-03-18 Nippon Rensui Co Ltd Counter flow regeneration type ion exchanger
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009281873A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
WO2013141352A1 (en) * 2012-03-23 2013-09-26 栗田工業株式会社 Method and apparatus for blending ion-exchange resins

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080086A (en) * 2001-09-13 2003-03-18 Nippon Rensui Co Ltd Counter flow regeneration type ion exchanger
JP4691857B2 (en) * 2001-09-13 2011-06-01 日本錬水株式会社 Counter-current regenerative ion exchanger
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009281873A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
US8861670B2 (en) 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization
WO2013141352A1 (en) * 2012-03-23 2013-09-26 栗田工業株式会社 Method and apparatus for blending ion-exchange resins
JP2013198838A (en) * 2012-03-23 2013-10-03 Kurita Water Ind Ltd Method and apparatus for blending ion-exchange resins

Also Published As

Publication number Publication date
JP3614995B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2011058832A (en) System and method for demineralizing condensate
JPH1085739A (en) Steam condensate desalting device
JP3610388B2 (en) Condensate demineralizer
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2000140839A (en) Desalting device of condensate
JP4367815B2 (en) Operation method of condensate demineralizer
JP2007105558A (en) Method and apparatus for demineralizing recovered water
KR900001370B1 (en) Method and apparatus for desalting of water by ion-excanhge
JPS626872B2 (en)
JPH0138553B2 (en)
JP2654053B2 (en) Condensate desalination equipment
JPS6265785A (en) Treatment of condensate
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger
JPH10174890A (en) Treatment of ammonia type condensate desalting device and water passage tower using to this
JPS5841913B2 (en) Condensate treatment method
JPS6036829B2 (en) Condensate treatment method
JP2005296748A (en) Condensate demineralizer and its regeneration method
JPH08215680A (en) Desalting apparatus
JPS6054102B2 (en) Resin regeneration equipment for condensate desalination equipment
JPS62114662A (en) Method for removing substance eluted from ion exchange resin
JPH07155757A (en) Mixed bed desalting device
JP3709645B2 (en) Regeneration method of condensate demineralizer
JP2776722B2 (en) Operation method of ammonia type condensate desalination equipment
JPS6259979B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees