JPH08215680A - Desalting apparatus - Google Patents

Desalting apparatus

Info

Publication number
JPH08215680A
JPH08215680A JP2367695A JP2367695A JPH08215680A JP H08215680 A JPH08215680 A JP H08215680A JP 2367695 A JP2367695 A JP 2367695A JP 2367695 A JP2367695 A JP 2367695A JP H08215680 A JPH08215680 A JP H08215680A
Authority
JP
Japan
Prior art keywords
inlet
desalting
exchange resin
water
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2367695A
Other languages
Japanese (ja)
Inventor
Koichi Takezawa
浩一 竹澤
Yoshihiro Shiozawa
義博 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2367695A priority Critical patent/JPH08215680A/en
Publication of JPH08215680A publication Critical patent/JPH08215680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE: To reduce the erroneous operation caused by the experience difference of an operator by attaching a water quality measuring device measuring a change in the quality of condensed water to the inlet of a condensed water desalting apparatus and detecting the fluctuations of inlet water quality at the time of the generation of a seawater leak to change over the operation system of a desalting column corresponding to a change in water quality. CONSTITUTION: A water quality measuring device 35 detects the fluctuations of the water quality at a condensed water inlet to transmit a signal to a control unit which in turn transmits a valve opening and closing signal to respective valves. That is, at first, the condensed water inlet and outlet valves 12d, 15d of a desalting column 13d standing by as a preparatory column are opened on the basis of signals 38d, 39d and the desalting column 13d is set to an H-OH type to start the supply of water. Next, the condensed water inlet and outlet valves 12a, 15a of the A-desalting column 13a large in integrated flow rate among desalting columns set to an NH4 type to permit water to pass are closed on the basis of signals 38a, 39a to stop the A-desalting tower 13a. Thereafter, a resin inlet valve 34a is opened by signals 46a, 46b and the H-OH type ion exchange resin 14e stored in a resin storage tank 32 to be held to a stand-by state is transferred to the A-desalting column 13a through a resin inlet pipe 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脱塩塔内に樹脂を充填
し、原液中の不純物を除去する脱塩装置に係り、特に、
原液水質に応じて脱塩装置の型式切替えを行うための制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalting apparatus for filling a desalting tower with a resin to remove impurities in a stock solution,
The present invention relates to a control device for changing the type of desalination device according to the quality of undiluted solution.

【0002】[0002]

【従来の技術】例えば、火力発電設備の系統構成を図3
に示す。本図においてボイラ1で発生した蒸気は、蒸気
タービン2を回転させ、復水器3で凝縮され復水とな
る。その後、復水は復水ポンプ4で昇圧され、復水脱塩
装置5で浄化された後、復水ブースタポンプ6,低圧ヒ
ータ7,脱気器8,ボイラ給水ポンプ9,高圧ヒータ1
0を経てボイラ1に戻され、再び蒸気となり循環使用す
る。
2. Description of the Related Art For example, FIG.
Shown in In the figure, the steam generated in the boiler 1 rotates the steam turbine 2 and is condensed in the condenser 3 to be condensed water. After that, the condensate is boosted by the condensate pump 4 and purified by the condensate demineralizer 5, and then the condensate booster pump 6, the low pressure heater 7, the deaerator 8, the boiler feed water pump 9, the high pressure heater 1
After returning to 0, it is returned to the boiler 1 and becomes steam again for recycling.

【0003】ここで、発電設備内の水は腐食やスケール
生成など水質に起因する傷害を防ぎ、事故の未然防止,
高効率運転をするために、高度の水質が要求されてい
る。このため、発電設備では、不純物を除去する目的で
復水脱塩装置を設置している。復水脱塩装置は、図4に
示す脱塩系統と図5に示す再生系統から成る。
Here, the water in the power generation equipment prevents damages caused by water quality such as corrosion and scale formation, and prevents accidents before they occur.
High water quality is required for highly efficient operation. For this reason, power generation equipment is equipped with a condensate demineralizer for the purpose of removing impurities. The condensate demineralizer comprises a desalination system shown in FIG. 4 and a regeneration system shown in FIG.

【0004】復水ポンプ4で昇圧した復水を復水入口管
11及び復水入口弁12a〜dを介して、カチオン交換
樹脂とアニオン交換樹脂の混床状態にあるイオン交換樹
脂14a〜eを充填した脱塩塔13a〜dに導く。この
イオン交換樹脂14a〜eは下記の原理により、復水中
の不純物を除去する。
Condensed water whose pressure is increased by the condensate pump 4 is passed through the condensate inlet pipe 11 and the condensate inlet valves 12a to 12d to the ion exchange resins 14a to 14e in a mixed bed state of the cation exchange resin and the anion exchange resin. Lead to the packed desalting towers 13a-d. The ion exchange resins 14a to 14e remove impurities in the condensate according to the following principle.

【0005】カチオン交換樹脂Cation exchange resin

【0006】[0006]

【化1】 Embedded image

【0007】アニオン交換樹脂Anion exchange resin

【0008】[0008]

【化2】 ここで、Rはイオン交換樹脂の母体を示し、また、復水
中の不純物の例としてNa+,Cl-を用いた。
Embedded image Here, R represents the matrix of the ion exchange resin, and Na + and Cl were used as examples of impurities in the condensate.

【0009】例えば、脱塩塔13a〜dが4系列で、常
用3塔通水,1塔予備運用とした場合、樹脂再生時や、
海水リーク時には予備塔に通水を切替えて対応してい
る。
For example, when the demineralization towers 13a to 13d are of four series, and three regular water passages and one tower preliminary operation are performed, at the time of resin regeneration,
When seawater leaks, the water flow is switched to the spare tower.

【0010】通水によって、復水中の不純物を捕捉し、
イオン交換能力が低下したイオン交換樹脂14a〜e
は、図5に示す再生系統に移送されカチオン交換樹脂は
酸で、アニオン交換樹脂はアルカリでそれぞれ再生さ
れ、再度復水の浄化に使用する。イオン交換樹脂14の
再生原理を下記に示す。
By passing water, impurities in the condensate are captured,
Ion exchange resins 14a to 14e having reduced ion exchange ability
Is transferred to the regeneration system shown in FIG. 5 and the cation exchange resin is regenerated with acid and the anion exchange resin is regenerated with alkali, and used again for purification of condensate. The regeneration principle of the ion exchange resin 14 is shown below.

【0011】カチオン交換樹脂Cation exchange resin

【0012】[0012]

【化3】 アニオン交換樹脂Embedded image Anion exchange resin

【0013】[0013]

【化4】 ここで、Rはイオン交換樹脂の母体を示し、また、酸及
びアルカリの例として硫酸(H2SO4),苛性ソーダ
(NaOH)を用いた。
[Chemical 4] Here, R represents the matrix of the ion exchange resin, and sulfuric acid (H 2 SO 4 ) and caustic soda (NaOH) were used as examples of the acid and alkali.

【0014】イオン交換能力が低下したイオン交換樹脂
14a〜eを再生するに当り、復水入口弁12及び復水
出口弁15a〜dを開し、予備塔に通水とする。脱塩系
統から切り離した脱塩塔13a〜dに充填されたイオン
交換樹脂14を樹脂出口管18を介してカチオン交換樹
脂19に水と空気によって移送する。カチオン交換樹脂
19に移送したイオン交換樹脂14a〜dは下方からの
水,空気によってアニオン交換樹脂20,カチオン交換
樹脂21に分離され、アニオン交換樹脂20は、アニオ
ン再生塔24にアニオン交換樹脂移送管22を介し移送
する。その後、カチオン交換樹脂19のカチオン交換樹
脂21は酸入口管25から供給された酸で、アニオン再
生塔24のアニオン交換樹脂20はアルカリ入口管27
から供給されたアルカリによりそれぞれ再生する。再生
の終了したイオン交換樹脂は、樹脂移送管31を介し樹
脂貯槽32に移送して次の再生時まで待機する。
When regenerating the ion exchange resins 14a to 14e having a reduced ion exchange capacity, the condensate inlet valve 12 and the condensate outlet valves 15a to 15d are opened to pass water to the preliminary column. The ion exchange resin 14 filled in the desalting towers 13a to 13d separated from the desalting system is transferred to the cation exchange resin 19 through the resin outlet pipe 18 by water and air. The ion exchange resins 14a to 14d transferred to the cation exchange resin 19 are separated into the anion exchange resin 20 and the cation exchange resin 21 by water and air from below, and the anion exchange resin 20 is transferred to the anion regeneration tower 24 in the anion exchange resin transfer pipe. Transfer via 22. Thereafter, the cation exchange resin 21 of the cation exchange resin 19 is the acid supplied from the acid inlet pipe 25, and the anion exchange resin 20 of the anion regeneration tower 24 is the alkali inlet pipe 27.
Each is regenerated by the alkali supplied from. The regenerated ion exchange resin is transferred to the resin storage tank 32 via the resin transfer pipe 31 and stands by until the next regeneration.

【0015】H型カチオン樹脂とOH型アニオン交換樹
脂を用いて復水中の不純物を除去する運転方式をH−O
H型という。この方式によると復水中の不純物だけでな
く、pH調整用として復水中に加えているNH4+までも
イオン交換樹脂14によって除去してしまうことにな
る。ここで、カチオン交換樹脂のイオン選択吸着性は、
原子価の高いもの程大きくなり、また、原子価が同じ場
合は、原子番号の大きなもの程大きくなることから、A
3+>Ca2+>Mg2+,Cu2+,Mn2+>K+,NH4+
>Na+>H+となる。
The operating system for removing impurities in the condensate using H-type cation resin and OH-type anion exchange resin is H-O.
It is called H type. According to this method, not only impurities in the condensate but also NH 4 + added to the condensate for pH adjustment will be removed by the ion exchange resin 14. Here, the ion selective adsorption of the cation exchange resin is
The higher the valence, the larger the valence, and when the valence is the same, the higher the valence, the larger.
l 3 +> Ca 2 +> Mg 2 +, Cu 2 +, Mn 2 +> K +, NH 4 +
> Na +> H +.

【0016】このH−OH型復水脱塩装置では、pH調
整用として加えたNH4+が脱塩塔出口にリークしはじめ
ると同時に、カチオン交換樹脂のイオン選択吸着性の関
係から復水中のNa+ は、イオン交換樹脂で捕捉されず
に脱塩塔出口にリークする。このためH−OH型復水脱
塩装置の場合は、約4〜7日に1回程度の樹脂再生を実
施する必要があった。
In this H-OH type condensate demineralizer, NH 4 + added for pH adjustment starts to leak to the outlet of the desalting tower, and at the same time, due to the ion selective adsorption property of the cation exchange resin, Na + leaks to the outlet of the desalting tower without being captured by the ion exchange resin. Therefore, in the case of the H-OH type condensate demineralizer, it was necessary to carry out the resin regeneration about once every 4 to 7 days.

【0017】それに対し、NH4 型カチオン交換樹脂と
OH型アニオン交換樹脂を用いる方式をNH4 型復水脱
塩装置という。この方式は、H−OH型運転を行い、カ
チオン樹脂が復水中のNH4+を捕捉した後はpH調整用
に加えたNH4+をカチオン交換樹脂で捕捉せず通過させ
る方式である。下記にイオン交換樹脂における反応式を
示す。
On the other hand, a system using an NH 4 type cation exchange resin and an OH type anion exchange resin is called an NH 4 type condensate demineralizer. This method performs H-OH type operation, after the cationic resin has captured the NH 4 + of condensate water is a method for passing without capturing the NH 4 + was added for pH adjustment with a cation exchange resin. The reaction formula of the ion exchange resin is shown below.

【0018】カチオン交換樹脂Cation exchange resin

【0019】[0019]

【化5】 Embedded image

【0020】このNH4 型復水脱塩装置の長所として
は、下記に示す通りである。
The advantages of this NH 4 type condensate demineralizer are as follows.

【0021】(1)NH4 型復水脱塩装置はpH調整用と
して復水に加えられたNH4+を捕捉しないため、再生頻
度は、約30日/回程度とH−OH型に比べて長い。
(1) Since the NH 4 type condensate demineralizer does not capture NH 4 + added to the condensate for pH adjustment, the regeneration frequency is about 30 days / time, which is higher than that of the H-OH type. Long.

【0022】(2)(1)により、再生薬品,再生用水,再
生廃水の量を大幅に低減できる。
(2) By means of (1), the amounts of reclaimed chemicals, reclaimed water, and reclaimed wastewater can be greatly reduced.

【0023】このため、最近の復水脱塩装置の運用例と
しては、運転塔3塔のうち2塔をNH4 型復水脱塩装置
とし、1塔を海水リーク発生時のためにH−OH型復水
脱塩装置として運用する場合が多くなっている。
Therefore, as an example of the operation of the recent condensate demineralizer, two of the three operating towers are NH 4 type condensate demineralizers, and one is H- In many cases, it is used as an OH type condensate demineralizer.

【0024】復水器で海水リークが発生した場合は、プ
ラント内に多量のNa+,Cl-が流入することになる。
NH4 型復水脱塩装置で運用している場合には、カチオ
ン交換樹脂がNH4型(R−NH4)であり、カチオン交
換樹脂のイオン吸着選択性NH4+>Na+から、多量に
流入したNa+をカチオン交換樹脂で捕捉できず、処理
水中にリークさせてしまうことになる。復水中にリーク
したNa+ は、発電設備内構成機器の腐食原因となる。
When a seawater leak occurs in the condenser, a large amount of Na + and Cl flows into the plant.
When operating in a NH 4 type condensate demineralizer, the cation exchange resin is NH 4 type (R-NH 4 ), and a large amount is obtained from the ion adsorption selectivity NH 4 +> Na + of the cation exchange resin. The Na + that has flowed into the column cannot be captured by the cation exchange resin, and will leak into the treated water. The leaked Na + in the condensate causes corrosion of the components inside the power generation facility.

【0025】NH4 型復水脱塩装置で運用しているとき
に海水リークが発生した場合は3塔H型として通水する
が、その手順は、海水リークを考慮して、1塔H−OH
型,2塔NH4型で運用している場合は以下の通りであ
る。
When a seawater leak occurs during operation with the NH 4 type condensate desalination unit, water is passed as 3 towers H type, but the procedure is 1 tower H-in consideration of seawater leak. OH
Type, 2 tower NH 4 type is as follows.

【0026】(1)予備塔(H型)に通水を開始する。(1) Start passing water through the preliminary tower (H type).

【0027】(2)NH4 型運転の脱塩塔のうち、積算通
水量が最大の塔の通水を停止し、再生する。再生後、樹
脂貯槽に移送し、待機とする。
(2) Among the NH 4 type demineralization towers, the tower with the largest cumulative water flow is stopped and regenerated. After recycling, it is transferred to the resin storage tank for standby.

【0028】(3)樹脂貯槽の予備樹脂を(2)により空に
なった脱塩塔に移送し、通水(H型)する。
(3) The preliminary resin in the resin storage tank is transferred to the demineralization tower emptied in (2), and water is passed (H type).

【0029】(4)残りのNH4 型で運転している脱塩塔
を停止し、再生する。再生中に樹脂貯槽に待機していた
樹脂を脱塩塔に移送し、通水(H型)する。
(4) Stop the demineralization tower operating with the remaining NH 4 type and regenerate. The resin waiting in the resin storage tank during the regeneration is transferred to the desalting tower to pass water (H type).

【0030】(5)(4)にて再生した樹脂を樹脂貯槽に移
送し、次の樹脂再生時まで待機する。
(5) The resin regenerated in (4) is transferred to the resin storage tank and stands by until the next resin regeneration.

【0031】(6)以下、H−OH型復水脱塩装置と同様
の運転にて対応する。
(6) Hereinafter, the operation is similar to that of the H-OH type condensate demineralizer.

【0032】従来は、以上の装置を運転員が手動にて行
っていたため、運転員の経験の差に起因する誤操作によ
り、プラントの健全性に影響を与えるポテンシャルを有
していた。
Conventionally, since the operator manually performed the above-mentioned device, there was a potential to affect the soundness of the plant due to an erroneous operation caused by a difference in experience of the operator.

【0033】また、従来技術には、復水脱塩装置の入口
水質による復水脱塩装置の運転制御として、入口水質に
応じて復水脱塩装置をバイパスさせるという方法もあ
る。この方法は、復水脱塩装置入口の水質が出口水質と
同等以上となった場合、復水脱塩装置をバイパスさせ、
イオン交換樹脂の交換能力の消耗を防止すると共に、イ
オン交換樹脂の再生頻度を低減するというものである
が、海水リーク発生時のように、復水脱塩装置の入口水
質が変動した場合の出口水質維持のための方法について
は考慮されていなかった。
Further, in the prior art, there is also a method of bypassing the condensate demineralizer according to the inlet water quality as the operation control of the condensate demineralizer depending on the inlet water quality of the condensate demineralizer. This method bypasses the condensate demineralizer when the water quality at the condensate demineralizer inlet is equal to or higher than the outlet water quality,
While it is intended to prevent the exchange capacity of the ion exchange resin from being consumed and to reduce the frequency of regeneration of the ion exchange resin, the outlet when the water quality of the inlet of the condensate demineralizer changes, such as when a seawater leak occurs. No consideration was given to methods for maintaining water quality.

【0034】なお、この種の装置として関連するものに
は、例えば特公平2−13758号公報が挙げられる。
A device related to this type of device is, for example, Japanese Patent Publication No. 2-13758.

【0035】[0035]

【発明が解決しようとする課題】復水脱塩装置は、復水
中の不純物を除去する目的で設置しているが、復水器冷
却管の海水リーク発生時は、脱塩塔の運転型式をNH4
型からH−OH型に順次手動にて切替えて対応していた
ため、運転員の経験の差に起因する誤操作により、プラ
ントの健全性に影響を与えてしまうポテンシャルを有し
ていた。
The condensate demineralizer is installed for the purpose of removing impurities in the condensate. However, when a seawater leak occurs in the condenser cooling pipe, the operation type of the demineralization tower is changed. NH 4
Since it was manually switched from the type to the H-OH type in order, it had a potential to affect the soundness of the plant due to an erroneous operation caused by a difference in experience of operators.

【0036】また、復水脱塩装置の入口水質を監視し、
入口水質によって復水脱塩装置をバイパスさせる方法も
あったが、海水リークのように入口水質が変動する場合
の運転制御は考慮されていなかった。
Further, the inlet water quality of the condensate demineralizer is monitored,
There was also a method of bypassing the condensate desalination equipment depending on the inlet water quality, but operation control when the inlet water quality fluctuates like seawater leak was not considered.

【0037】本発明の目的は、海水リーク発生時などの
入口水質が変動した場合の脱塩塔の運転型式切替えにあ
たり、運転員の経験の差に左右されず、同一の対応をす
ることにある。
It is an object of the present invention to provide the same treatment when switching the operation type of the desalting tower when the water quality of the inlet changes, such as when a sea water leak occurs, regardless of the difference in the experience of operators. .

【0038】[0038]

【課題を解決するための手段】上記目的を達成するた
め、本発明は復水脱塩装置入口に復水水質の変化を測定
する水質測定装置を設け、海水リーク発生時などの入口
水質の変動を検出し、復水脱塩装置入口の水質変化に応
じて脱塩塔の運転型式を切替えることを可能にした。
In order to achieve the above object, the present invention provides a water quality measuring device for measuring a change in condensate water quality at the inlet of the condensate demineralizer, and changes in the inlet water quality when a seawater leak occurs. It was possible to switch the operation type of the desalination tower according to changes in the water quality at the inlet of the condensate desalination device.

【0039】[0039]

【作用】海水リーク発生時などの入口水質異常時におけ
る脱塩塔運転型式の切替制御は、復水脱塩装置入口水質
の監視用として設置の水質測定装置にて実施する。これ
により、脱塩塔の復水出入口弁をはじめ、イオン交換樹
脂移送管,酸及びアルカリ入口管などに設置した弁を自
動的に開閉し、樹脂移送再生を行うことが可能となる。
Operation When the inlet water quality is abnormal, such as when a seawater leak occurs, the desalting tower operation type switching control is performed by the water quality measuring device installed for monitoring the inlet water quality of the condensate demineralizer. As a result, it becomes possible to automatically open and close the condensate inlet / outlet valve of the desalting tower, the ion exchange resin transfer pipe, the valves installed in the acid and alkali inlet pipes, etc. to perform the resin transfer regeneration.

【0040】[0040]

【実施例】以下、本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0041】前記に説明の技術的内容に変わることはな
い。つまり、ボイラ1で発生した蒸気は、蒸気タービン
2に送られ、復水器3で凝縮された後、復水脱塩装置5
で浄化されてボイラ1に戻される基本構成は変わること
はない。
The technical contents described above do not change. That is, the steam generated in the boiler 1 is sent to the steam turbine 2, condensed in the condenser 3, and then condensed in the condensate demineralizer 5.
There is no change in the basic configuration that is purified by and returned to the boiler 1.

【0042】また、図4に示した復水を復水入口管11
から復水入口弁12を介しイオン交換樹脂14を充填し
た脱塩塔13に導いて復水を浄化する採水系統及び図5
に示したイオン交換能力の低下したイオン交換樹脂14
を樹脂出口弁17,樹脂出口管18を介してカチオン交
換樹脂19に移送し、水,空気によりアニオン交換樹脂
20,カチオン交換樹脂21に分離、アニオン交換樹脂
20をアニオン交換樹脂入口弁23,アニオン交換樹脂
移送管22を介してアニオン再生塔24に移送し、カチ
オン交換樹脂19を酸で、アニオン交換樹脂20をアル
カリで再生後、それぞれのイオン交換樹脂を樹脂貯槽3
2に移送して待機する再生系統の構成は、変わることは
ない。
In addition, the condensate shown in FIG.
From the dewatering tower 13 filled with the ion exchange resin 14 through the condensate inlet valve 12 to purify the condensate, and FIG.
Ion exchange resin 14 with reduced ion exchange capacity
Is transferred to the cation exchange resin 19 via the resin outlet valve 17 and the resin outlet pipe 18, and is separated into the anion exchange resin 20 and the cation exchange resin 21 by water and air, and the anion exchange resin 20 is replaced with the anion exchange resin inlet valve 23 and the anion. The cation exchange resin 19 is transferred to the anion regeneration tower 24 through the exchange resin transfer pipe 22, and the cation exchange resin 19 is regenerated with an acid and the anion exchange resin 20 is regenerated with an alkali.
The configuration of the regeneration system that transfers to 2 and stands by does not change.

【0043】ここで、従来技術と変わる点は、復水脱塩
装置の復水入口に復水脱塩装置復水水質測定装置35を
設置し、この信号により脱塩塔の運転型式を自動的に行
うことを可能にしたことである。
Here, the difference from the prior art is that a condensate demineralizer condensate water quality measuring device 35 is installed at the condensate inlet of the condensate demineralizer, and the operation type of the demineralizer tower is automatically generated by this signal. That is what made it possible to do.

【0044】図1に示す実施例は、火力発電設備の復水
脱塩装置に適用したものであり、その構成は、脱塩塔を
4塔とし、3塔常用(2塔NH4 型通水,1塔H型通
水),1塔予備とした場合を例として説明する(NH4
型で通水している脱塩塔13a,脱塩塔13bの積算流
量は脱塩塔13aが大なるものとする。また、図2は、
その対応フローを纏めたものである。)。
The embodiment shown in FIG. 1 is applied to a condensate demineralizer of a thermal power generation facility, and the structure is such that four desalting towers are used and three towers are regularly used (two towers NH 4 type water passage). , 1 tower H type water flow), and 1 tower spare is explained as an example (NH 4
It is assumed that the integrated flow rate of the desalting tower 13a and the desalting tower 13b passing through the mold is large in the desalting tower 13a. Also, in FIG.
The corresponding flow is summarized. ).

【0045】例えば、海水リーク発生時などの復水水質
の変動時には、復水中にNa+ ,Cl- が多量に流入し
てくることから、復水脱塩装置入口の電気伝導率は上昇
する。
For example, when the condensate quality changes, for example, when a seawater leak occurs, a large amount of Na + and Cl flows into the condensate, so that the electric conductivity of the condensate demineralizer inlet increases.

【0046】復水入口水質が変動したことを検出した復
水脱塩装置入口の水質測定装置35は、その信号36を
制御装置37に伝送する。信号を受信した制御装置37
は、各弁に弁開閉信号を伝送する。
The water quality measuring device 35 at the inlet of the condensate demineralizer, which has detected that the water quality of the condensate inlet has changed, transmits the signal 36 to the controller 37. Control device 37 that received the signal
Transmits a valve opening / closing signal to each valve.

【0047】まず、予備塔として待機していた脱塩塔1
3dの復水入口弁12d及び復水出口弁15dを制御装
置37からの信号38d及び39dにより開とし、脱塩
塔13dをH−OH型で通水を開始する。
First, the desalting tower 1 which was on standby as a spare tower
The condensate inlet valve 12d and the condensate outlet valve 15d of 3d are opened by the signals 38d and 39d from the control device 37, and the demineralization tower 13d starts flowing water in the H-OH type.

【0048】次に、NH4 型で通水をしていた脱塩塔の
うち、積算流量が大であるA脱塩塔13aの復水入口弁
12a及び復水出口弁15aを制御装置37からの信号
38a及び39aにより閉としてA脱塩塔13aを停止す
る。
Next, from the controller 37, the condensate inlet valve 12a and the condensate outlet valve 15a of the A desalting tower 13a, which has a large integrated flow rate, among the desalting towers that have been passing water of NH 4 type, are controlled by the controller 37. Signal of
It is closed by 38a and 39a, and the A desalting tower 13a is stopped.

【0049】ここで、H−OH型通水塔は、脱塩塔13
cと脱塩塔13dの2塔、NH4 型通水塔は脱塩塔13
bとなる。この運用状態では、復水中に含まれるNa+
などの不純物の1/3量がリークすることになるため、
もう1塔H−OH型運用とする必要がある。
Here, the H-OH type water tower is the desalting tower 13
c and the desalting tower 13d, the NH 4 type water tower is the desalting tower 13
b. In this operating state, Na + contained in the condensate
1/3 of the impurities such as will leak,
It is necessary to use another tower H-OH type operation.

【0050】このため、A脱塩塔13aに充填していた
イオン交換樹脂14aを再生し、H−OH型とする必要
がある。A脱塩塔13aのイオン交換樹脂14aを再生
するため、樹脂出口弁17aを制御装置37からの信号
40aにより開とし、樹脂出口管18を介して、カチオ
ン交換樹脂19に移送する。
Therefore, it is necessary to regenerate the ion-exchange resin 14a filled in the A desalting tower 13a to make it into an H-OH type. In order to regenerate the ion exchange resin 14a of the A desalting tower 13a, the resin outlet valve 17a is opened by the signal 40a from the control device 37, and transferred to the cation exchange resin 19 via the resin outlet pipe 18.

【0051】その後、制御装置37からの信号46によ
り樹脂入口弁34aを開とし、樹脂入口管33を介し、
樹脂貯槽32に充填して待機状態であったH−OH型イ
オン交換樹脂14eをA脱塩塔13aに移送する。
After that, the resin inlet valve 34a is opened by the signal 46 from the controller 37, and the resin inlet pipe 33 is opened.
The H-OH type ion exchange resin 14e, which was in the standby state after being filled in the resin storage tank 32, is transferred to the A desalting tower 13a.

【0052】脱塩塔13aには、予備として待機状態に
あったイオン交換樹脂14eが充填されたため、復水入
口弁12a及び復水出口弁15aを制御装置37からの
信号38a及び39aにより開とし、脱塩塔13aをH
−OH型で通水開始する。
Since the deionization tower 13a was filled with the ion exchange resin 14e which was in a standby state as a spare, the condensate inlet valve 12a and the condensate outlet valve 15a were opened by the signals 38a and 39a from the control device 37. , H for the desalting tower 13a
-OH type starts water flow.

【0053】A脱塩塔13aがH−OH型で採水開始
後、残りのNH4 型運転中の脱塩塔13bの復水入口弁
12b及び復水出口弁15bを制御装置37からの信号
38b及び39bにより開とし、脱塩塔13bを停止す
る。
After the A-demineralization tower 13a starts to collect water in the H-OH type, the condensate inlet valve 12b and the condensate exit valve 15b of the remaining desalting tower 13b during the NH 4 type operation are signaled from the controller 37.
It is opened by 38b and 39b, and the desalting tower 13b is stopped.

【0054】以上により、運転中の脱塩塔13a,13
c,13d3塔が全てH−OH型運用となり、復水脱塩
装置の出口の水質が維持可能となる。
From the above, the desalting towers 13a, 13 in operation
The c and 13d3 towers are all H-OH type operation, and the water quality at the outlet of the condensate demineralizer can be maintained.

【0055】運転塔3塔をH−OH型運用とした後、再
生系統にあるイオン交換樹脂14a及び、脱塩塔13b
のイオン交換樹脂14bを再生する。この再生方法は従
来で変わることはない。つまり、カチオン交換樹脂19
に移送したイオン交換樹脂14aを水及び空気でその比
重差によりアニオン交換樹脂20及びカチオン交換樹脂
21に分離した後、上部のアニオン交換樹脂20をアニ
オン交換樹脂移送管22を介してアニオン再生塔24に
移送、カチオン交換樹脂19では、酸入口弁26を開と
し、酸入口管25を介して酸を注入し、カチオン交換樹
脂21を再生する。同様に、アニオン再生塔24には、
アルカリ入口弁28を開とし、アルカリ入口管27を介
してアルカリを注入し、アニオン交換樹脂20を再生す
る。
After operating the three operating towers in the H-OH type, the ion exchange resin 14a and the desalting tower 13b in the regeneration system are used.
The ion exchange resin 14b of No. 1 is regenerated. This reproduction method remains unchanged. That is, the cation exchange resin 19
After the ion exchange resin 14a transferred to the water is separated into the anion exchange resin 20 and the cation exchange resin 21 by water and air due to the difference in specific gravity, the upper anion exchange resin 20 is passed through the anion exchange resin transfer pipe 22 to the anion regeneration tower 24. In the cation exchange resin 19, the acid inlet valve 26 is opened and the acid is injected through the acid inlet pipe 25 to regenerate the cation exchange resin 21. Similarly, in the anion regeneration tower 24,
The alkali inlet valve 28 is opened and alkali is injected through the alkali inlet pipe 27 to regenerate the anion exchange resin 20.

【0056】再生の終了したカチオン交換樹脂21をカ
チオン交換樹脂出口弁29を開とし、樹脂移送管31を
介して樹脂貯槽32に移送する。同様に、再生の終了し
たアニオン交換樹脂20をアニオン交換樹脂出口弁30
を開とし、樹脂移送管31を介して樹脂貯槽32に移送
する。
The cation exchange resin 21 which has been regenerated is transferred to the resin storage tank 32 through the resin transfer pipe 31 by opening the cation exchange resin outlet valve 29. Similarly, the anion exchange resin 20 after the regeneration is replaced with the anion exchange resin outlet valve 30.
Is opened and the resin is transferred to the resin storage tank 32 through the resin transfer pipe 31.

【0057】樹脂貯槽32に移送したイオン交換樹脂
は、次の再生時まで待機する。
The ion exchange resin transferred to the resin storage tank 32 stands by until the next regeneration.

【0058】本実施例によれば、海水リーク発生時など
の入口水質の変動時において、復水脱塩装置運転型式制
御が自動で行え、出口水質の維持が可能となると共にプ
ラント内機器の腐食要因の低減が図れる。
According to the present embodiment, when the inlet water quality changes, such as when a seawater leak occurs, the condensate demineralizer operation type control can be automatically performed, the outlet water quality can be maintained, and the equipment in the plant can be corroded. Factors can be reduced.

【0059】また、運転員の経験の差に起因する誤操作
ポテンシャルを低減し、運転員の負担を軽くするなどの
効果がある。
Further, there is an effect such that the erroneous operation potential due to the difference in the experience of the operator is reduced and the burden on the operator is lightened.

【0060】[0060]

【発明の効果】本発明によれば、海水リーク発生時など
の入口水質の変動時における脱塩装置の運転型式切替え
を脱塩装置入口に設置した水質測定装置により自動的に
行うことが可能になり、これにより運転員の経験の差に
起因する誤操作を低減し、海水リーク発生時などの入口
水質の悪化時のプラントの健全性を確保できる、また、
運転員の負担を低減する。
EFFECTS OF THE INVENTION According to the present invention, it is possible to automatically switch the operation type of the desalination device when the quality of the inlet water changes, such as when a seawater leak occurs, by a water quality measuring device installed at the inlet of the desalination device. As a result, it is possible to reduce erroneous operations due to differences in operator experience, and to ensure the integrity of the plant when the quality of inlet water deteriorates, such as when a seawater leak occurs.
Reduce the burden on operators.

【図面の簡単な説明】[Brief description of drawings]

【図1】復水脱塩装置復水水質測定装置により、自動的
に運転型式を切替えることを可能にした復水脱塩装置の
系統図。
FIG. 1 is a system diagram of a condensate demineralizer capable of automatically switching operation types by a condensate demineralizer measuring device.

【図2】入口水質変動時における復水脱塩装置のフロー
チャート。
FIG. 2 is a flowchart of a condensate desalination apparatus when the water quality of the inlet changes.

【図3】火力発電設備の概略系統図。FIG. 3 is a schematic system diagram of thermal power generation equipment.

【図4】復水脱塩装置の脱塩系統図。FIG. 4 is a desalination system diagram of a condensate demineralizer.

【図5】復水脱塩装置の再生系統図。FIG. 5 is a regeneration system diagram of the condensate demineralizer.

【符号の説明】[Explanation of symbols]

11…復水入口管、12a〜d…復水入口弁、13a〜
d…脱塩塔、14a〜e…イオン交換樹脂、15a〜d
…復水出口弁、16…復水出口管、17a〜d…樹脂出
口弁、18…樹脂出口管、19…カチオン交換樹脂、2
0…アニオン交換樹脂、21…カチオン交換樹脂、22
…アニオン交換樹脂移送管、23…アニオン交換樹脂入
口弁、24…アニオン再生塔、25…酸入口管、26…
酸入口弁、27…アルカリ入口管、28…アルカリ入口
弁、29…カチオン交換樹脂出口弁、30…アニオン交
換樹脂出口弁、31…樹脂移送管、32…樹脂貯槽、3
3…樹脂入口管、34a〜d…樹脂入口弁、35…水質
測定装置、37…制御装置。
11 ... Condensate inlet pipe, 12a-d ... Condensate inlet valve, 13a-
d ... desalting tower, 14a to e ... ion exchange resin, 15a to d
... condensate outlet valve, 16 ... condensate outlet pipe, 17a-d ... resin outlet valve, 18 ... resin outlet pipe, 19 ... cation exchange resin, 2
0 ... Anion exchange resin, 21 ... Cation exchange resin, 22
... anion exchange resin transfer pipe, 23 ... anion exchange resin inlet valve, 24 ... anion regeneration tower, 25 ... acid inlet pipe, 26 ...
Acid inlet valve, 27 ... Alkali inlet pipe, 28 ... Alkali inlet valve, 29 ... Cation exchange resin outlet valve, 30 ... Anion exchange resin outlet valve, 31 ... Resin transfer pipe, 32 ... Resin storage tank, 3
3 ... Resin inlet pipe, 34a-d ... Resin inlet valve, 35 ... Water quality measuring device, 37 ... Control device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】イオン交換樹脂が充填された脱塩塔を有
し、この脱塩塔に充填した樹脂で原液中の不純物を除去
する機能を有する脱塩装置において、前記脱塩塔出口の
水質を基準値以下に保つため、原液水質に応じて脱塩塔
の運転型式を切替えることを特徴とする脱塩装置。
1. A desalting apparatus having a desalting tower filled with an ion exchange resin, and having a function of removing impurities in a stock solution by the resin filling the desalting tower, wherein the water quality at the outlet of the desalting tower The desalination apparatus is characterized in that the operation type of the desalination tower is switched according to the quality of the undiluted solution in order to keep the value below the standard value.
【請求項2】請求項1において、前記脱塩塔の入口に水
質測定装置を設け、前記脱塩塔の入口の水質に応じて前
記脱塩塔の運転型式を切替える脱塩装置。
2. The desalination apparatus according to claim 1, wherein a water quality measuring device is provided at the inlet of the desalting tower, and the operation type of the desalting tower is switched according to the water quality at the inlet of the desalting tower.
JP2367695A 1995-02-13 1995-02-13 Desalting apparatus Pending JPH08215680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2367695A JPH08215680A (en) 1995-02-13 1995-02-13 Desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2367695A JPH08215680A (en) 1995-02-13 1995-02-13 Desalting apparatus

Publications (1)

Publication Number Publication Date
JPH08215680A true JPH08215680A (en) 1996-08-27

Family

ID=12117089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2367695A Pending JPH08215680A (en) 1995-02-13 1995-02-13 Desalting apparatus

Country Status (1)

Country Link
JP (1) JPH08215680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283266A (en) * 2006-04-20 2007-11-01 Chugoku Electric Power Co Inc:The Valve switching condition confirmation system in regeneration process of condensate demineralizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283266A (en) * 2006-04-20 2007-11-01 Chugoku Electric Power Co Inc:The Valve switching condition confirmation system in regeneration process of condensate demineralizer

Similar Documents

Publication Publication Date Title
JPH0312952B2 (en)
JP3610388B2 (en) Condensate demineralizer
JPH08215680A (en) Desalting apparatus
JPH1085739A (en) Steam condensate desalting device
JP3707940B2 (en) Condensate treatment system and condensate treatment method
JP2000140839A (en) Desalting device of condensate
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP4367815B2 (en) Operation method of condensate demineralizer
JPH055998Y2 (en)
JPH10174890A (en) Treatment of ammonia type condensate desalting device and water passage tower using to this
JPH0138553B2 (en)
JPS626872B2 (en)
JP2577014B2 (en) Pure water supply device
CA1053810A (en) Method of desalting treatment of condensate water
JPH0929248A (en) Condensate desalting apparatus
JP2654053B2 (en) Condensate desalination equipment
JPS5841913B2 (en) Condensate treatment method
JP2003090895A (en) Method and device for demineralizing condensate
JPS6036829B2 (en) Condensate treatment method
JPH0133227B2 (en)
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger
JPS6259979B2 (en)
JPS6211916B2 (en)
JPS5811272B2 (en) Condensate treatment method