JPS626872B2 - - Google Patents

Info

Publication number
JPS626872B2
JPS626872B2 JP53102608A JP10260878A JPS626872B2 JP S626872 B2 JPS626872 B2 JP S626872B2 JP 53102608 A JP53102608 A JP 53102608A JP 10260878 A JP10260878 A JP 10260878A JP S626872 B2 JPS626872 B2 JP S626872B2
Authority
JP
Japan
Prior art keywords
layer
resin
regeneration
tower
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53102608A
Other languages
Japanese (ja)
Other versions
JPS5528762A (en
Inventor
Iwao Seto
Shigeo Mya
Shinichi Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP10260878A priority Critical patent/JPS5528762A/en
Publication of JPS5528762A publication Critical patent/JPS5528762A/en
Publication of JPS626872B2 publication Critical patent/JPS626872B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は、ボイラやタービンなどのスケール生
成および腐蝕を防止するために復水中に含有する
不純物を除去するため、復水を浄化処理する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying condensate in order to remove impurities contained in the condensate in order to prevent scale formation and corrosion in boilers, turbines, etc.

一般に、火力発電所においてはボイラで生成さ
れた高温高圧の水蒸気によつて発電用タービンを
回転させ、使用後の水蒸気の復水器で凝縮させた
のち、再びボイラ給水として使用するという水循
環を行つているが、配管の腐蝕生成物や復水器冷
却水のリークなどによる塩類やシリカなどの不純
物が循環水中に蓄積されるのを防ぐために、大型
ユニツトでは復水処理装置を設けるのが普通であ
る。この復水処理装置には種々の方式があるが、
普通多く用いられているのはH形の強酸性カチオ
ン交換樹脂層(以下カチオン交換樹脂層とよぶ)
とOH形の強塩基性アニオン交換樹脂(以下アニ
オン交換樹脂とよぶ)を混合して充填した脱塩塔
である。一方、循環水のPH調整をすることにより
配管の腐蝕を防ぐことは広く行なわれており、こ
の目的のため循環水中にはアンモニアが注入され
る。復水処理装置の目的は先に示したように不純
物を除去することであるが、その機能からして本
来「不純物」ではないアンモニウムイオンもH形
のカチオン交換樹脂に吸着されるため、これがカ
チオン交換樹脂の負荷となり、結局脱塩塔の再生
頻度が高くなるという問題が生ずる。
Generally, in thermal power plants, high-temperature, high-pressure steam generated in a boiler rotates a power generation turbine, and the used steam is condensed in a condenser and then used again as boiler feed water, which is a water cycle. However, in order to prevent impurities such as salts and silica from accumulating in the circulating water due to corrosion products in pipes or leaks of condenser cooling water, it is common to install a condensate treatment device in large units. be. There are various methods for this condensate treatment equipment, but
The most commonly used is H-type strongly acidic cation exchange resin layer (hereinafter referred to as cation exchange resin layer).
This is a desalination tower filled with a mixture of OH type and strongly basic anion exchange resin (hereinafter referred to as anion exchange resin). On the other hand, it is widely practiced to prevent corrosion of pipes by adjusting the pH of circulating water, and ammonia is injected into circulating water for this purpose. As mentioned above, the purpose of the condensate treatment equipment is to remove impurities, but ammonium ions, which are not originally "impurities" due to their function, are also adsorbed by the H-type cation exchange resin, so they are converted into cations. This results in a load on the exchange resin, resulting in a problem that the frequency of regeneration of the demineralization tower increases.

即ち、再生頻度が高くなるということはそれだ
け高価な再生剤を多量に消費することにもなり不
経済なので、再生頻度を低く抑えるために本来ア
ンモニアブレークの時点で通水を停止して再生す
べきところを、アンモニアブレーク以後も通水を
続けるいわゆる「アンモニアサイクル」方式が採
用されつつある。アンモニアサイクルは脱塩塔の
再生から次の再生までの通水継続時間が長くとれ
るので経済的ではあるが、アンモニアブレーク以
後の処理水質を良好に保つことが難しく、この問
題を解決することが、アンモニアサイクル成否の
鍵であると言つても過言ではない。これまでにも
数々の手段によつてこの問題の解決が図られてき
たが、それぞれ一長一短があり決定的有効な方法
は見い出されていない。
In other words, increasing the regeneration frequency means consuming a large amount of expensive regenerating agent, which is uneconomical, so in order to keep the regeneration frequency low, water flow should be stopped at the point of ammonia break for regeneration. However, the so-called "ammonia cycle" method, in which water continues to flow even after the ammonia break, is being adopted. Although the ammonia cycle is economical because it allows water to continue flowing for a long time from one regeneration to the next regeneration in the desalination tower, it is difficult to maintain the quality of treated water after the ammonia break, and it is difficult to solve this problem. It is no exaggeration to say that this is the key to the success or failure of the ammonia cycle. A number of methods have been used to solve this problem, but each has its own merits and demerits, and no definitively effective method has been found.

本来、混床式脱塩塔はHサイクルで用いたとき
にその特長を発揮する。すなわちH形のカチオン
交換樹脂とOH形のアニオン交換樹脂の混合樹脂
層は、流入水の水質や樹脂相のイオン組成あるい
は再生後の水洗状況などによらず、良好な処理水
質を与えるというすぐれた性質をもつているが、
NH4形のカチオン交換樹脂とOH形のアニオン交
換樹脂の混合樹脂層にはこの性質はない。これは
流入水中の不純物イオンと樹脂相内イオンのイオ
ン交換反応生成物が、前者ではH2Oであり、後者
ではNH4OHであることによる。H2Oの解離定数
は非常に小さい(Kw=10-14)ので、H/OH混床
塔におけるカチオン交換反応とアニオン交換反応
は不可逆的に進行するが、NH4OHの解離は無視
できない(K=1.8×10-5)ので、NH4/OH混床
塔においては塔底部で逆反応を生じ、Na+イオン
やCl-、SO2− イオンを脱離する可能性がある。し
たがつてアンモニアサイクルで用いる脱塩塔はそ
の出口部の樹脂中に不純物を含んでいてはならな
い。またアンモニアサイクルの場合は混床である
必要はないとも言える。
Originally, mixed bed demineralization towers exhibit their advantages when used in the H cycle. In other words, the mixed resin layer of an H-type cation exchange resin and an OH-type anion exchange resin has an excellent property of providing good treated water quality regardless of the quality of the inflow water, the ionic composition of the resin phase, or the washing conditions after regeneration. Although it has properties,
A mixed resin layer of an NH 4 type cation exchange resin and an OH type anion exchange resin does not have this property. This is because the ion exchange reaction products between impurity ions in the inflow water and ions in the resin phase are H 2 O in the former case and NH 4 OH in the latter case. Since the dissociation constant of H 2 O is very small (Kw = 10 -14 ), the cation exchange reaction and anion exchange reaction in the H/OH mixed bed column proceed irreversibly, but the dissociation of NH 4 OH cannot be ignored ( K=1.8×10 −5 ), therefore, in the NH 4 /OH mixed bed column, a reverse reaction may occur at the bottom of the column, and Na + ions, Cl , and SO 2-4 ions may be desorbed. Therefore, the demineralization tower used in the ammonia cycle must not contain impurities in the resin at its outlet. It can also be said that in the case of an ammonia cycle, it is not necessary to use a mixed bed.

従来、アンモニアサイクルの最大の問題はアン
モニアブレーク以後に処理水中にナトリウムイオ
ンがリークすることであつた。このナトリウムリ
ークに対処する手段として従来法では再生時にカ
チオン交換樹脂とアニオン交換樹脂の分離もよく
してアニオン交換樹脂再生塔へ混入するカチオン
交換樹脂量を減らすことや、生じたNa形の樹脂
をアンモニア水や消石灰溶液のような薬品を用い
てNH4形やCa形に交換することが行なわれてき
た。しかしこのために再生に要する時間が長くな
り、また余分な薬品を使わなくてはならないとい
う不利があつた。
Traditionally, the biggest problem with ammonia cycles has been the leakage of sodium ions into the treated water after the ammonia break. As a means of dealing with this sodium leak, conventional methods include improving the separation of cation exchange resin and anion exchange resin during regeneration to reduce the amount of cation exchange resin mixed into the anion exchange resin regeneration tower, and reducing the amount of Na-type resin produced. Chemicals such as aqueous ammonia and slaked lime solutions have been used to exchange it into NH 4 and Ca forms. However, this has the disadvantage of increasing the time required for regeneration and requiring the use of extra chemicals.

本発明は、これら従来の諸問題に関して抜本的
な解決手段を与えるものであり、従来の復水脱塩
方法の欠点を除去し、極めて高純度の処理水を安
定して得る方法を提供することを目的としたもの
である。
The present invention provides a drastic solution to these conventional problems, and provides a method for stably obtaining treated water of extremely high purity by eliminating the drawbacks of conventional condensate desalination methods. The purpose is to

また本発明の他の目的は復水脱塩処理のための
再生剤量を著しく低減させ運転維持管理を容易で
経済的にすることが可能な有効な復水処理方法と
することにある。
Another object of the present invention is to provide an effective condensate treatment method capable of significantly reducing the amount of regenerant for condensate desalination treatment and making operation and maintenance easy and economical.

本発明は復水をイオン交換樹脂を充填した脱塩
塔によつて処理するに際し、脱塩塔内には下流側
から強塩基性アニオン交換樹脂層(以下第2アニ
オン層とする)、強酸性カチオン交換樹脂層(以
下第2カチオン層とする)、強塩基性アニオン交
換樹脂層(以下第1アニオン層とする)、強酸性
カチオン交換樹脂層(以下第1カチオン層とす
る)の順に配備し、塔内へ復水を導入して各層に
順次通水して処理水として導出させることとし、
このとき各樹脂層に用いる樹脂は脱塩塔内の全樹
脂を再生塔に移送し逆洗分離したときに、上層の
強塩基性アニオン交換樹脂のうち上部の樹脂すな
わち上下両樹脂層界面から離れた部分の樹脂をア
ルカリによる再生後に脱塩塔内の第2アニオン層
として用い、下層の強酸性カチオン交換樹脂のう
ち下部の樹脂すなわち同様に上下両樹脂層界面か
ら離れた部分の樹脂を酸による再生後に脱塩塔内
の第2カチオン層として用い、残りの樹脂を常法
にしたがつてアルカリまたは酸による再生後に第
1アニオン層および第1カチオン層として用い通
水および再生をくりかえすことにより復水を脱塩
処理することを特徴とする復水処理方法である。
In the present invention, when condensate is treated with a demineralization tower filled with an ion exchange resin, a strongly basic anion exchange resin layer (hereinafter referred to as the second anion layer), a strongly acidic A cation exchange resin layer (hereinafter referred to as the second cation layer), a strongly basic anion exchange resin layer (hereinafter referred to as the first anion layer), and a strongly acidic cation exchange resin layer (hereinafter referred to as the first cation layer) are arranged in this order. , condensate is introduced into the tower and passed through each layer sequentially to be discharged as treated water.
At this time, when all the resins in the demineralization tower are transferred to the regeneration tower and backwashed and separated, the resin used for each resin layer is separated from the upper layer of the strong basic anion exchange resin, that is, the interface between the upper and lower resin layers. After regeneration with alkali, the resin in the lower part is used as the second anion layer in the demineralization tower, and the lower part of the strongly acidic cation exchange resin in the lower layer, that is, the resin in the part away from the interface between the upper and lower resin layers, is treated with acid. After regeneration, it is used as the second cation layer in the desalting tower, and the remaining resin is used as the first anion layer and first cation layer after regeneration with alkali or acid according to a conventional method, and is restored by repeating water flow and regeneration. This is a condensate treatment method characterized by desalinating water.

即ち、復水を第1カチオン層、第1アニオン層
及び第2カチオン層並びに第2アニオン層の順に
充填した樹脂塔に直列に通水して脱塩処理するこ
とを特徴とするものである。この際、アンモニア
サイクルによる運転を前提としているので、前記
第2アニオン層、第2アニオン層は再生後の通水
開始時点で不純物イオンを含有していてはならな
い。しかし、アニオン層にNa形のカチオン交換
樹脂が混入することはさしつかえない。
That is, the method is characterized in that condensate is desalinated by being passed in series through a resin column filled with a first cation layer, a first anion layer, a second cation layer, and a second anion layer in this order. At this time, since the operation is based on an ammonia cycle, the second anion layer and the second anion layer must not contain impurity ions at the time of starting water flow after regeneration. However, it is acceptable for the Na-type cation exchange resin to be mixed into the anion layer.

本発明の実施態様を図面を参照して説明する
と、第1図に示す例では脱塩工程を一塔の脱塩塔
1を用いて行なうもので、この場合脱塩塔1内の
最下部には第2アニオン層dを充填し、その上に
第2カチオン層cを充填し、その上部には第1ア
ニオン層bを、またさらにその上には第1カチオ
ン層aを充填してある。復水2を塔頂部より流入
させ、下向流で通水し、塔底部から処理水3を流
出させるものである。この場合、樹脂の再生は次
のようにして行なう。まず通水工程を終了した全
樹脂を第2図に示すような再生塔に移送する。続
いて逆洗分離を行ないカチオン交換樹脂とアニオ
ン交換樹脂を分離する。ここで下層のカチオン交
換樹脂層のうち上下両樹脂層の界面から離れた下
部の樹脂はほとんどアニオン交換樹脂を含まない
純粋なカチオン交換樹脂であり、これを酸によつ
て再生したのち脱塩塔内の第2カチオン層cとし
て用いる。上層のアニオン交換樹脂層のうち上下
両樹脂層の界面から離れた上部の樹脂はほとんど
カチオン交換樹脂を含まない純粋なアニオン交換
樹脂であることが実験的に確認されており、これ
をアルカリによつて再生したのち脱塩塔内の第2
アニオン層dとして用いる。残りのカチオン交換
樹脂、アニオン交換樹脂はそれぞれ酸、アルカリ
で再生して前記脱塩塔1内の第1カチオン層a、
第1アニオン層bとして用いる。
An embodiment of the present invention will be described with reference to the drawings. In the example shown in FIG. 1, the desalination process is carried out using one desalination tower 1. is filled with a second anion layer d, a second cation layer c is filled thereon, a first anion layer b is filled above it, and a first cation layer a is further filled thereon. Condensate 2 is introduced from the top of the column, water is passed through the column in a downward flow, and treated water 3 is discharged from the bottom of the column. In this case, the resin is regenerated as follows. First, all the resin that has undergone the water passage process is transferred to a regeneration tower as shown in FIG. Subsequently, backwash separation is performed to separate the cation exchange resin and the anion exchange resin. Here, among the lower cation exchange resin layers, the resin in the lower part away from the interface between the upper and lower resin layers is a pure cation exchange resin containing almost no anion exchange resin, and after being regenerated with an acid, It is used as the second cation layer c within. It has been experimentally confirmed that the resin in the upper anion exchange resin layer that is far from the interface between the upper and lower resin layers is pure anion exchange resin containing almost no cation exchange resin. After regeneration, the second
Used as anion layer d. The remaining cation exchange resin and anion exchange resin are regenerated with acid and alkali, respectively, to form the first cation layer a in the demineralization tower 1,
Used as the first anion layer b.

なお樹脂の再生には次のような方法を用いると
再生塔一塔だけで再生ができ非常に効率的であ
る。すなわち、再生塔4に移送された全樹脂を逆
洗分離したのち、塔底部から酸を上向流で通液
し、塔頂部からアルカリを下向流で通液し、カチ
オン交換樹脂層とアニオン交換樹脂層の界面付近
に設けられた集水機構5から排出することによ
り、両樹脂を同時に再生するものである。再生
後、前記脱塩塔1に樹脂を移送すればよい。
It should be noted that if the following method is used to regenerate the resin, it can be regenerated with only one regeneration tower and is very efficient. That is, after all the resin transferred to the regeneration tower 4 is backwashed and separated, acid is passed in an upward flow from the bottom of the tower, alkali is passed in a downward flow from the top of the tower, and the cation exchange resin layer and anion are separated. By discharging water from a water collection mechanism 5 provided near the interface of the exchange resin layer, both resins are simultaneously regenerated. After regeneration, the resin may be transferred to the demineralization tower 1.

図中6はアルカリ供給管、7は上部デイストリ
ビユータ、8は酸供給管、9は逆洗水供給管、1
0は下部デイストリビユータ、11は逆洗廃水流
出管である。
In the figure, 6 is an alkali supply pipe, 7 is an upper distributor, 8 is an acid supply pipe, 9 is a backwash water supply pipe, 1
0 is a lower distributor, and 11 is a backwash wastewater outflow pipe.

本発明方法によれば、アンモニアサイクルで用
いるため樹脂の再生頻度を低く抑えることができ
て経済的であり、しかも第2カチオン層、第2ア
ニオン層に不純物をほとんど含まないため、処理
水中への不純物リークを著しく低くすることが可
能で、さらに樹脂を混合しないため、混合に伴う
樹脂の破砕が抑えられること例えば、従来では樹
脂の混合には空気を用いるので、激しい撹拌の結
果破砕される樹脂が生ずる傾向があるのに反し本
発明では第1カチオン層を空気でスクラビングす
る以外、空気を用いないので樹脂粒の破砕がかな
りの程度抑えられる。
According to the method of the present invention, since it is used in the ammonia cycle, the frequency of resin regeneration can be kept low, making it economical. Furthermore, since the second cation layer and the second anion layer contain almost no impurities, no impurities are added to the treated water. It is possible to significantly reduce impurity leakage, and since the resin is not mixed, the crushing of the resin due to mixing can be suppressed.For example, conventionally, air is used to mix the resin, so the resin is crushed as a result of vigorous stirring. However, in the present invention, since air is not used except for scrubbing the first cation layer with air, crushing of resin particles can be suppressed to a considerable extent.

また本発明では脱塩工程の第1段にカチオン交
換樹脂層があつてこれに通水して処理されている
ために後段のアニオン交換樹脂の重金属による汚
染が防止できること即ち、カチオン交換樹脂は重
金属(水)酸化物の微細懸濁粒子を効率よく捕捉
する性質をもつていて、この性質は特に再生後の
H形樹脂で著しいが、NH4形の樹脂でもかなりの
程度捕捉するので、後段のアニオン交換樹脂の重
金属汚染がかなり防止でき、連続処理が可能で処
理効率も著しく向上し、さらに従来の復水処理シ
ステムで生じた諸問題点を適確に解決し運転維持
管理も容易で質的に良好で経済的な処理水を得る
ことができるものである。
In addition, in the present invention, a cation exchange resin layer is provided in the first stage of the desalination process, and water is passed through this layer for treatment, so that contamination of the anion exchange resin in the latter stage with heavy metals can be prevented. It has the property of efficiently capturing fine suspended particles of (water) oxides, and this property is particularly remarkable in H-type resin after regeneration, but it also captures a considerable amount of NH4- type resin, so it can be used in the subsequent stages. Heavy metal contamination of the anion exchange resin can be significantly prevented, continuous treatment is possible, and treatment efficiency is significantly improved.Furthermore, various problems that have arisen with conventional condensate treatment systems are appropriately resolved, and operation and maintenance are easy and qualitative. It is possible to obtain good and economical treated water.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は系統説
明図、第2図は本発明の実施に用いられる再生塔
の縦断面図である。 a……第1カチオン層、b……第1アニオン
層、c……第2カチオン層、d……第2アニオン
層、1……脱塩塔、2……復水、3……処理水、
4……再生塔、5……集水機構。
The drawings show embodiments of the present invention, with FIG. 1 being an explanatory diagram of the system, and FIG. 2 being a longitudinal cross-sectional view of a regeneration tower used in carrying out the present invention. a... First cation layer, b... First anion layer, c... Second cation layer, d... Second anion layer, 1... Desalination tower, 2... Condensate, 3... Treated water ,
4... Regeneration tower, 5... Water collection mechanism.

Claims (1)

【特許請求の範囲】 1 復水をイオン交換樹脂を充填した脱塩塔によ
つて処理するに際し、脱塩塔内には下流側から強
塩基性アニオン交換樹脂層(以下第2アニオン層
とする)、強酸性カチオン交換樹脂層(以下第2
カチオン層とする)、強塩基性アニオン交換樹脂
層(以下第1アニオン層とする)、強酸性カチオ
ン交換樹脂層(以下第1カチオン層とする)の順
に配備し、塔内へ復水を導入して各層に順次通水
して処理水を導出させることとし、このとき各樹
脂層に用いる樹脂は脱塩塔内の全樹脂再生塔に移
送し逆洗分離したときに、上層の強化塩基性アニ
オン交換樹脂のうち上部の樹脂すなわち上下両樹
脂層の界面から離れた部分の樹脂をアルカリによ
る再生後に脱塩塔内の第2アニオン層として用
い、下層の強酸性カチオン交換樹脂のうち下部の
樹脂すなわち同様に上下両樹脂層界面から離れた
部分の樹脂を酸による再生後に脱塩塔内の第2カ
チオン層として用い、残りの樹脂を常法にしたが
つてアルカリまたは酸による再生後に第1アニオ
ン層及び第1カチオン層として用い通水および再
生をくりかえすことにより復水を脱塩処理するこ
とを特徴とする復水処理方法。 2 前記脱塩工程が、Hサイクルもしくはアンモ
ニアサイクルで用いるものである特許請求の範囲
第1項記載の復水処理方法。 3 前記再生工程が、脱塩塔への通水工程終了後
に脱塩塔内の全樹脂を再生塔に移送して逆洗分離
を行つたのち、再生塔頂部のデイストリビユータ
よりアルカリを下向流で流し、再生塔底部のデイ
ストリビユータより酸を上向流で流し、上下両樹
脂層の界面付近に設置された集水機構より排出さ
せて処理されるものである特許請求の範囲第1項
又は第2項記載の復水処理方法。
[Scope of Claims] 1. When condensate is treated in a demineralization tower filled with an ion exchange resin, a strongly basic anion exchange resin layer (hereinafter referred to as the second anion layer) is placed in the demineralization tower from the downstream side. ), strongly acidic cation exchange resin layer (hereinafter referred to as the second
cation layer), a strongly basic anion exchange resin layer (hereinafter referred to as the first anion layer), and a strongly acidic cation exchange resin layer (hereinafter referred to as the first cation layer), and condensate water is introduced into the column. At this time, the resin used in each resin layer is transferred to the entire resin regeneration tower in the demineralization tower and backwashed and separated. The upper part of the anion exchange resin, that is, the part of the resin away from the interface between the upper and lower resin layers, is used as the second anion layer in the demineralization tower after regeneration with alkali, and the lower part of the strongly acidic cation exchange resin in the lower layer is used as the second anion layer in the demineralization tower. That is, similarly, the resin in the portion away from the interface between the upper and lower resin layers is used as the second cation layer in the demineralization tower after regeneration with acid, and the remaining resin is used as the first anion layer after regeneration with alkali or acid in the usual manner. A condensate treatment method characterized in that condensate is desalted by repeating water passage and regeneration using the first cation layer and the first cation layer. 2. The condensate treatment method according to claim 1, wherein the desalination step is used in an H cycle or an ammonia cycle. 3 In the regeneration step, after the water passing step to the demineralization tower is completed, all the resin in the demineralization tower is transferred to the regeneration tower and backwashed and separated, and then the alkali is sent downward from the distributor at the top of the regeneration tower. Claim 1: The treatment is performed by flowing the acid in an upward flow from a distributor at the bottom of the regeneration tower, and discharging it from a water collecting mechanism installed near the interface between the upper and lower resin layers. The condensate treatment method described in item 1 or 2.
JP10260878A 1978-08-23 1978-08-23 Condensed water treating method Granted JPS5528762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260878A JPS5528762A (en) 1978-08-23 1978-08-23 Condensed water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260878A JPS5528762A (en) 1978-08-23 1978-08-23 Condensed water treating method

Publications (2)

Publication Number Publication Date
JPS5528762A JPS5528762A (en) 1980-02-29
JPS626872B2 true JPS626872B2 (en) 1987-02-13

Family

ID=14331944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260878A Granted JPS5528762A (en) 1978-08-23 1978-08-23 Condensed water treating method

Country Status (1)

Country Link
JP (1) JPS5528762A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174220A (en) * 1984-02-17 1985-09-07 Kinugawa Rubber Ind Co Ltd Manufacture device of core material
JP4931178B2 (en) * 2005-10-06 2012-05-16 株式会社荏原製作所 Condensate desalination method and apparatus
JP4947174B2 (en) * 2010-03-18 2012-06-06 ダイキン工業株式会社 Single screw compressor
JP2013233531A (en) * 2012-05-11 2013-11-21 Japan Organo Co Ltd Condensate desalination device and condensate desalination method

Also Published As

Publication number Publication date
JPS5528762A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
US4347704A (en) Thermal power plant water treatment process
US6080315A (en) Process for the partial desalination of water
JPS626872B2 (en)
CN111453795A (en) High-magnesium desulfurization wastewater concentration and reduction treatment system and process
US3583908A (en) Condensate purification process
JPH0133227B2 (en)
US4039443A (en) Condensate purification process
JPH0312952B2 (en)
JPS6211916B2 (en)
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JPH10192718A (en) Resin regenerator for condensate desalter
JP3614995B2 (en) Condensate demineralizer
JP4367815B2 (en) Operation method of condensate demineralizer
JPH055998Y2 (en)
RU2447026C2 (en) Method and apparatus for post-treatment of water during fine demineralisation
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPS5841913B2 (en) Condensate treatment method
CA1053810A (en) Method of desalting treatment of condensate water
JP2000354772A (en) Treatment of regenerable waste from condensate demineralizer
JPH0138553B2 (en)
JPH0363439B2 (en)
JPS5811272B2 (en) Condensate treatment method
JPS6259979B2 (en)
JPH10174890A (en) Treatment of ammonia type condensate desalting device and water passage tower using to this
JPS5813229B2 (en) Condensate treatment method