JPS5813229B2 - Condensate treatment method - Google Patents

Condensate treatment method

Info

Publication number
JPS5813229B2
JPS5813229B2 JP53125621A JP12562178A JPS5813229B2 JP S5813229 B2 JPS5813229 B2 JP S5813229B2 JP 53125621 A JP53125621 A JP 53125621A JP 12562178 A JP12562178 A JP 12562178A JP S5813229 B2 JPS5813229 B2 JP S5813229B2
Authority
JP
Japan
Prior art keywords
resin
exchange resin
layer
regeneration
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125621A
Other languages
Japanese (ja)
Other versions
JPS5551481A (en
Inventor
臼井伸一
宮茂夫
勢渡巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP53125621A priority Critical patent/JPS5813229B2/en
Publication of JPS5551481A publication Critical patent/JPS5551481A/en
Publication of JPS5813229B2 publication Critical patent/JPS5813229B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は、ボイラ、タービンなどのスケール生成および
腐蝕を防止するために復水中に存在する不純物質を除去
するため混床式イオン交換樹脂層とカチオン交換樹脂層
とを用いて処理する復水脱塩処理方法に関するものであ
る。
Detailed Description of the Invention The present invention uses a mixed bed type ion exchange resin layer and a cation exchange resin layer to remove impurities present in condensate in order to prevent scale formation and corrosion in boilers, turbines, etc. The present invention relates to a condensate desalination treatment method using the present invention.

一般にボイラ運転条件の高温高圧化にしたがい、復水処
理の重要性が広く認められるようになり、通常は混床式
イオン交換樹脂塔の復水脱塩装置で良好な処理が得られ
ている。
In general, as boiler operating conditions become higher in temperature and pressure, the importance of condensate treatment has become widely recognized, and good treatment is usually achieved with a condensate desalination device using a mixed bed type ion exchange resin tower.

この復水脱塩装置には強酸性陽イオン交換樹脂のH形と
強塩基性陰イオン交換樹脂のOH形とを混合して用い、
陽イオン交換樹脂が復水中のアンモニアで飽和した時点
で再生を行なうHサイクル処理方法と、いま一つは陽イ
オン交換樹脂が復水のアンモニアで破過したあとも引き
続いてアンモニア形に置換した樹脂を利用して処理を継
続するNH3サイクルの処理方法がある。
This condensate desalination equipment uses a mixture of H type of strongly acidic cation exchange resin and OH type of strongly basic anion exchange resin.
One is the H cycle treatment method in which the cation exchange resin is regenerated when it is saturated with ammonia in the condensate, and the other is a resin in which the cation exchange resin is continuously replaced with ammonia even after the resin has been saturated with ammonia in the condensate. There is an NH3 cycle treatment method that uses NH3 to continue treatment.

最近では、復水脱塩装置の再生薬剤の節約と、運転管理
の面から再生頻度の少ないNH3サイクルの復水処理を
採用するところが多い。
Recently, many companies have adopted condensate treatment using the NH3 cycle, which requires less frequency of regeneration, in order to save regeneration chemicals for condensate desalination equipment and to improve operational management.

しかしながら、NH3サイクルの運転においては、Hサ
イクルとは異なった種々の制限を受けるために、装置が
複雑となったり再生に長時間を要するなどの欠点もあっ
て、必ずしも完成された技術とは言えないのが現状であ
る。
However, the operation of the NH3 cycle is subject to various limitations different from those of the H cycle, and there are drawbacks such as the equipment being complicated and regeneration taking a long time, so it cannot necessarily be said that it is a perfected technology. The current situation is that there is no such thing.

即ち、混床式イオン交換樹脂床をアンモニアサイクルで
運転する場合、混床中に存在する塩形樹脂は、アンモニ
アブレーク時に不純物リークの原因となるので、混床中
に含まれる塩形樹脂の割合は低く押えることが必要であ
る。
In other words, when operating a mixed bed type ion exchange resin bed in an ammonia cycle, the salt form resin present in the mixed bed causes impurity leakage during ammonia break, so the proportion of salt form resin contained in the mixed bed is It is necessary to keep it low.

特にアニオン交換樹脂層中に混入したカチオン交換樹脂
は、アニオン交換樹脂の再生剤である苛性ソーダにより
N 形に変換されるが、Na形カチオン交換樹脂は復水
中のNH4+と容易にイオン交換し、ボイラに有害なN
a+のリークを生ずるため、混床中のNa形カチオン交
換樹脂の割合は極めて低く押えなくてはならない。
In particular, the cation exchange resin mixed in the anion exchange resin layer is converted to the N form by caustic soda, which is a regenerating agent for the anion exchange resin, but the Na form cation exchange resin easily exchanges ions with NH4+ in the condensate, and the boiler N harmful to
The proportion of Na type cation exchange resin in the mixed bed must be kept extremely low in order to cause a+ leakage.

しかし、樹脂の比重差を利用して逆洗分離する通常の混
床式イオン交換樹脂の再生方法においては、樹脂の分離
を完全に行なうことは困難で、再生により数パーセント
の塩形樹脂の生成は避け難く、したがってアンモニアサ
イクルでの運転は不可能である。
However, in the normal mixed-bed ion exchange resin regeneration method that uses the difference in specific gravity of the resin to perform backwash separation, it is difficult to completely separate the resin, and several percent of the salt-form resin is produced during regeneration. is difficult to avoid, and therefore operation on an ammonia cycle is impossible.

このアンモニアサイクルでの運転を可能とする復水処理
方法は種々考案されており、通常の方法により再生され
たアニオン交換樹脂層に消石灰、あるいはアンモニアを
通薬し、再生時に生じたNa形カチオン交換樹脂をNH
4+との交換が生じ難いCa形、あるいはボイラに無害
なNH4形へ変換する方法や、カチオン交換樹脂とアニ
オン交換樹脂の中間比重を持った不活性樹脂を加えたり
、中間比重の溶液を用いたりすることにより、樹脂の分
離そのものを完全に行なう方法、あるいま、樹脂の分離
が不充分な部分を除き、完全に分離再生された樹脂のみ
を充填する方法などが知られている。
Various condensate treatment methods have been devised to enable operation in this ammonia cycle. One method involves passing slaked lime or ammonia through an anion exchange resin layer that has been regenerated by a conventional method to exchange Na-type cations generated during regeneration. NH resin
There are methods of converting to Ca type, which is difficult to exchange with 4+, or NH4 type, which is harmless to the boiler, adding an inert resin with an intermediate specific gravity between cation exchange resin and anion exchange resin, or using a solution with intermediate specific gravity. There is a known method in which the resin is completely separated, and a method in which only the completely separated and regenerated resin is filled by removing the portions where the resin has not been sufficiently separated.

しかし、これらの方法では、余分の薬注設備、薬品代等
がかかり、再生に要する時間も長くなるなど、いまだ完
成された技術と認められるものではない。
However, these methods require extra chemical injection equipment, chemical costs, etc., and require a long time for regeneration, so they are not yet recognized as perfected technologies.

本発明者らは、これら従来の欠点を除去するために先に
、通常の再生用薬品以外は何ら余分の薬品を使用するこ
となく、再生された樹脂の全量を用いる経済的な復水処
理方法を提案したが、本発明はこの先に提案した復水処
理方法をさらに改善した有効な方法に関するものである
In order to eliminate these conventional drawbacks, the present inventors first developed an economical condensate treatment method that uses the entire amount of recycled resin without using any extra chemicals other than the usual recycling chemicals. However, the present invention relates to an effective method that further improves the condensate treatment method proposed previously.

すなわち、近年、復水脱塩装置からの微量のNa+リー
クに起因すると考えられるボイラ事故が2〜3経験され
るに至り、Na+に関する水質要求は増々厳しいものと
なりつつある。
That is, in recent years, two or three boiler accidents believed to be caused by trace amounts of Na+ leaking from condensate desalination equipment have been experienced, and water quality requirements regarding Na+ are becoming increasingly strict.

先に提案した復水処理方法においては、再生した樹脂の
全量を再び脱塩塔に充填するものであるため、塩形樹脂
を実質的に含まない樹脂を除いた残りの樹脂を充填する
第2の混床の塩形樹脂含有量は、再生された樹脂の全量
を均一に混合する通常の混床式イオン交換樹脂床より若
干多くなる。
In the condensate treatment method proposed earlier, the entire amount of regenerated resin is charged again into the demineralization tower, so the second stage is filled with the remaining resin after removing the resin that does not substantially contain salt-form resin. The salt form resin content of the mixed bed is slightly higher than that of a normal mixed bed type ion exchange resin bed in which the entire amount of regenerated resin is mixed uniformly.

Hサイクルでのみ運転する混床では、アンモニアサイク
ルで運転する混床と比較し、塩形樹脂含有量の許容量は
大巾に緩やかなものであるため、第2の混床の塩形樹脂
含有量が若干多くなっても何ら支障ないものではあるが
、最近の厳しい水質要求を考えた場合、再生した樹脂の
全量を再び脱塩塔に充填するのは、必ずしも得策でない
場合が考えられる。
In a mixed bed that operates only on the H cycle, the allowable amount of salt resin content is much more relaxed than in a mixed bed that operates on the ammonia cycle. Although there is no problem even if the amount is slightly increased, considering the recent strict water quality requirements, it may not necessarily be a good idea to refill the desalination tower with the entire amount of regenerated resin.

本発明は逆洗分離時の樹脂界面付近に生じ、不純物リー
クの原因となる塩形樹脂の1部を、脱塩塔に充填せず、
再生塔内に残すことにより、主として第2の混床の塩形
樹脂含有量を少なくし、Na+のリーク量を更に減じ、
高度の水質要求に答えようとするものである。
The present invention does not charge part of the salt-form resin that occurs near the resin interface during backwash separation and causes impurity leaks into the demineralization tower.
By leaving it in the regeneration tower, the content of salt-form resin in the second mixed bed is mainly reduced, further reducing the leakage amount of Na+,
This is an attempt to meet high water quality requirements.

本発明の趣旨からして、第2の混床の塩形樹脂含有量は
、通常の混床式イオン交換樹脂床と同程度かやや少ない
もので良く、したがって、単一の混床でアンモニアサイ
クルの運転を実施する場合のように、塩形樹脂含有量を
著しく少なくするために多量の樹脂を再生塔内に残す必
要はなく、樹脂界面付近の混合が著しい部分を若干量残
すことで目的が達成される。
In view of the spirit of the present invention, the salt form resin content of the second mixed bed may be the same as or slightly lower than that of a normal mixed bed type ion exchange resin bed, and therefore a single mixed bed can be used for ammonia cycling. It is not necessary to leave a large amount of resin in the regeneration tower in order to significantly reduce the salt-form resin content, as is the case when operating in achieved.

また本発明の他の目的は通常の再生用薬品以外は何等余
分の薬品を使用することなくかつHサイクルはもとより
NH3(アンモニア)サイクルでの運転が可能で高純度
の処理水を安定して得られると共に、維持管理を容易に
することが可能な処理方法を提供することにある。
Another object of the present invention is that it is possible to stably obtain high-purity treated water without using any extra chemicals other than ordinary regeneration chemicals, and to enable operation in the NH3 (ammonia) cycle as well as the H cycle. It is an object of the present invention to provide a treatment method that can be used in a variety of ways, and that can also facilitate maintenance and management.

本発明は塩形樹脂を実質的に含まないカチオン交換樹脂
床と、混床式イオン交換樹脂床を2床用い、第1の混床
には塩形樹脂を実質的に含まない樹脂を、第2の混床に
は塩形樹脂を若干量含む樹脂を充填し、流入復水水質が
比較的良好な場合には、カチオン交換樹脂床から第1の
混床へ直列に通水し、処理水水質悪化時には最終段に第
2の温床を加え、これら3床直列に通水する脱塩工程に
おいて脱塩塔に再び充填するに際し、再生された全樹脂
層を、アニオン交換樹脂層の上層部と下層部、カチオン
交換樹脂層の上層部、中層部、下層部及び両樹脂の混合
が著しい樹脂界面付近の樹脂とのそれぞれ6つの部分に
分割し、樹脂再生時に塩形となった樹脂を若干量含む部
分同志、すなわち、再生時に逆洗分級されたカチオン交
換樹脂層の上層部のものと、再生時に逆洗分級されたア
ニオン交換樹脂層の下層部のものとを混合し、第2の混
床に充填し、さらに塩形樹脂を実質的に含まない部分同
志、すなわち、再生時に逆洗分級されたカチオン交換樹
脂層の下層部のものと、再生時に逆洗分級されたアニオ
ン交換樹脂の上層部のものとを混合し、第1の混床に充
填し、再生時に逆洗分級されたカチオン交換樹脂層の中
層部のものを単独でカチオン交換樹脂床に充填し、両樹
脂の混合が著しい樹脂界面付近の部分は充填せずに残し
ておき、次回の樹脂再生時に脱塩工程を終了した樹脂に
加えて再生を行うことを特徴とするものである。
The present invention uses two beds: a cation exchange resin bed that does not substantially contain salt form resin, and a mixed bed type ion exchange resin bed. The second mixed bed is filled with a resin containing a small amount of salt-form resin, and when the inflow condensate water quality is relatively good, water is passed in series from the cation exchange resin bed to the first mixed bed, and the treated water is When the water quality deteriorates, a second hot bed is added to the final stage, and when refilling the desalination tower in the desalination process where water is passed through these three beds in series, the entire regenerated resin layer is added to the upper layer of the anion exchange resin layer. The lower layer, the upper layer of the cation exchange resin layer, the middle layer, the lower layer, and the resin near the resin interface where both resins are significantly mixed are each divided into 6 parts, and a small amount of the resin that became salt form during resin regeneration is removed. The containing parts, that is, the upper layer of the cation exchange resin layer that was backwashed and classified during regeneration, and the lower layer of the anion exchange resin layer that was backwashed and classified during regeneration, are mixed, and a second mixed bed is prepared. The lower part of the cation exchange resin layer which was backwashed and classified during regeneration, and the upper part of the anion exchange resin layer which was backwashed and classified during regeneration. The middle layer of the cation exchange resin layer, which has been backwashed and classified during regeneration, is packed alone into the cation exchange resin bed, and the mixture of both resins is significantly mixed. The feature is that the area near the interface is left unfilled and is recycled in addition to the resin that has undergone the desalination process during the next resin regeneration.

本発明の一実施態様を図面を参照して説明すると、復水
処理を継続し、処理能力を失なった脱塩塔1を脱塩工程
からはずし、内部の全樹脂を樹脂移送ライン20により
脱塩塔1からカチオン再生塔2へ移送する。
One embodiment of the present invention will be described with reference to the drawings. The condensate treatment is continued, the demineralization tower 1 that has lost its processing capacity is removed from the demineralization process, and all the resin inside is demineralized by the resin transfer line 20. The salt is transferred from the salt tower 1 to the cation regeneration tower 2.

逆洗によりカチオン交換樹脂とアニオン交換樹脂を分離
した後、カチオン再生塔底部よりカチオン交換樹脂層に
鉱酸を上向流で通薬し、樹脂界面付近にもうけた酸排出
管18より廃酸を抜き出し、カチオン交換樹脂層を再生
する。
After separating the cation exchange resin and anion exchange resin by backwashing, mineral acid is passed upward through the cation exchange resin layer from the bottom of the cation regeneration tower, and waste acid is discharged from the acid discharge pipe 18 provided near the resin interface. It is extracted and the cation exchange resin layer is regenerated.

この間に塔上部から水を流して酸排出管18より塔外へ
排出させて、酸が上層部のアニオン交換樹脂層へ拡散す
るのを避けるとともに、カチオン交換樹脂層を固定層に
保つ。
During this time, water is flowed from the upper part of the tower and discharged outside the tower from the acid discharge pipe 18 to prevent the acid from diffusing into the anion exchange resin layer in the upper layer and to maintain the cation exchange resin layer as a fixed bed.

上向流での通薬においては、カチオン交換樹脂層の下層
部の再生率が若干高くなることが期待され、本発明にと
ってより好都合となる。
When the drug is passed in an upward flow, it is expected that the regeneration rate of the lower layer of the cation exchange resin layer will be slightly higher, which is more convenient for the present invention.

そして通薬後、カチオン交換樹脂層を水洗し、次いで樹
脂界面の若干下方に開口した樹脂移送ライン21より、
アニオン交換樹脂層と樹脂界面付近の樹脂混合の著しい
部分とをアニオン再生塔3へ移送し、移送した樹脂を再
び逆洗してアニオン交換樹脂と、若干量のカチオン交換
樹脂とを分離し、苛性ソーダによりアニオン交換樹脂を
再生した後、樹脂層を水洗する。
After passing the medicine, the cation exchange resin layer was washed with water, and then the resin transfer line 21 opened slightly below the resin interface.
The anion exchange resin layer and the heavily mixed portion of the resin near the resin interface are transferred to the anion regeneration tower 3, and the transferred resin is backwashed again to separate the anion exchange resin and a small amount of cation exchange resin. After regenerating the anion exchange resin, the resin layer is washed with water.

前記カチオン再生塔2で再生した樹脂の内、カチオン交
換樹脂層の上層部6を樹脂移送ライン22で脱塩塔1へ
、中層部7を樹脂移送ライン23でカチオン交換樹脂層
5へ、また、下層部8は樹脂移送ライン24で樹脂混合
槽4へ移送し、且つアニオン再生塔3内におけるアニオ
ン交換樹脂層の上層部9を樹脂移送ライン25で樹脂混
合槽4へ、下層部10は樹脂移送ライン26で脱塩塔1
へ移送し、一方アニオン再生塔底部に残した樹脂界面部
分11は樹脂移送ライン27を経てカチオン再生塔2へ
移送し、次回に再生する樹脂に加える。
Of the resin regenerated in the cation regeneration tower 2, the upper layer 6 of the cation exchange resin layer is sent to the demineralization tower 1 via the resin transfer line 22, and the middle layer 7 is transferred to the cation exchange resin layer 5 via the resin transfer line 23. The lower layer 8 is transferred to the resin mixing tank 4 via the resin transfer line 24, the upper layer 9 of the anion exchange resin layer in the anion regeneration tower 3 is transferred to the resin mixing tank 4 via the resin transfer line 25, and the lower layer 10 is transferred to the resin mixing tank 4. Desalination tower 1 in line 26
On the other hand, the resin interface portion 11 left at the bottom of the anion regeneration tower is transferred to the cation regeneration tower 2 via the resin transfer line 27 and added to the resin to be regenerated next time.

次に前記脱塩塔1へ樹脂を再び充填するには、脱塩塔1
へ移送した樹脂を混合、水洗し、塩形樹脂を若干量含む
混床14を塔下部に形成し、その上部へは樹脂混合槽4
で混合、水洗した樹脂を移送ライン28を経て充填し、
塩形樹脂を実質的に含まない混床13を形成し、更にそ
の上部にカチオン交換樹脂貯槽5へ移送した樹脂を樹脂
移送ライン29を経て充填し、塩形樹脂を実質的に含ま
ないカチオン交換樹脂床12を上部層として形成する。
Next, in order to refill the resin into the demineralization tower 1, the demineralization tower 1
The transferred resins are mixed and washed with water to form a mixed bed 14 containing a small amount of salt-form resin at the bottom of the column, and a resin mixing tank 4 is placed at the top of the column.
The resin mixed and washed with water is filled through the transfer line 28,
A mixed bed 13 substantially free of salt-form resin is formed, and the resin transferred to the cation-exchange resin storage tank 5 is filled in the upper part of the mixed bed 13 via the resin transfer line 29 to form a cation-exchange bed 13 substantially free of salt-form resin. A resin bed 12 is formed as the top layer.

一方、通水に際しては、復水を脱塩塔上部の復水流入管
15より流入せしめ、流入復水水質が比較的良好な場合
には塔中間部の処理水流出管16より処理水を取り出す
が、この場合には復水は塩形樹脂を実質的に含まないカ
チオン交換樹脂床12、及び混床13で処理されるため
、極めて高純度の処理水が得られ、アンモニアサイクル
で運転しても何ら支障が生じない。
On the other hand, when passing water, condensate is allowed to flow in from the condensate inflow pipe 15 at the top of the desalination tower, and when the quality of the inflow condensate water is relatively good, the treated water is taken out from the treated water outflow pipe 16 at the middle of the tower. In this case, since the condensate is treated with the cation exchange resin bed 12 and the mixed bed 13, which do not substantially contain salt-form resin, treated water of extremely high purity can be obtained, and even when operated in an ammonia cycle, No hindrance will occur.

加えてカチオン交換樹脂床12をもうけているため、金
属酸化物等の懸濁物質除去性能に優れ、混床中のアニオ
ン交換樹脂の汚染も防止できる。
In addition, since the cation exchange resin bed 12 is provided, the performance of removing suspended substances such as metal oxides is excellent, and the contamination of the anion exchange resin in the mixed bed can be prevented.

この状態で復水処理を継続し、カチオン交換樹脂床12
と混床13のみで処理できなくなった場合、あるいはコ
ンデンサリークが生じた場合には、弁の開閉により処理
水の取り出し口を処理水流出管16より塔底部の処理水
流出管17へ切り換え、全樹脂層を使用して処理を行な
うことになる。
Condensate treatment continues in this state, and the cation exchange resin bed 12
If treatment is no longer possible with only the mixed bed 13, or if a condenser leak occurs, the treated water outlet is switched from the treated water outlet pipe 16 to the treated water outlet pipe 17 at the bottom of the tower by opening and closing a valve, and all Processing will be performed using a resin layer.

この場合、混床14は塩形樹脂を若干量含むため、アン
モニアサイクルでの運転はできないが、樹脂混合による
塩形樹脂生成の著しい部分は取り除いてあるので、Hサ
イクルで運転する限りにおいては、通常の混床式脱塩塔
による処理水質と同等、あるいはそれ以上の処理水質を
得ることができる。
In this case, since the mixed bed 14 contains a small amount of salt-form resin, it cannot be operated in the ammonia cycle, but since the significant portion of salt-form resin production due to resin mixing has been removed, as long as it is operated in the H cycle, It is possible to obtain treated water quality that is equal to or higher than that of a normal mixed bed desalination tower.

なお全樹脂層を使用した処理ではアンモニアサイクルで
の運転ができないため、脱塩工程はアンモニアブレーク
の直前で終了し、全樹脂を脱塩塔1よりカチオン再生塔
2へ移送し、前回の樹脂再生時に残しておいた樹脂界面
部分11を加え、樹脂の再生操作を行なうのが効果的で
ある。
In addition, since it is not possible to operate in an ammonia cycle in a process using the entire resin layer, the desalting process ends immediately before the ammonia break, and all the resin is transferred from the desalting tower 1 to the cation regeneration tower 2, where the previous resin regeneration process is carried out. It is effective to add the resin interface portion 11 left at the time and perform a resin regeneration operation.

図中19は集水器、30,31,32,33,34,3
5,36,37,38,39,40は弁、41は集水器
、42,43は再生液供給管、44,45は排液管、4
6,47,48は弁、49は洗浄用給水管、50は弁で
ある。
In the figure, 19 is a water collector, 30, 31, 32, 33, 34, 3
5, 36, 37, 38, 39, 40 are valves, 41 is a water collector, 42, 43 are regeneration liquid supply pipes, 44, 45 are drain pipes, 4
6, 47, 48 are valves, 49 is a cleaning water supply pipe, and 50 is a valve.

本発明により復水処理を行なえば、余分の薬品等を使う
ことなくアンモニアサイクルでの運転が可能となり、脱
塩塔上部の混床は塩形樹脂を実質的に含まないのでCl
−,SO:一等のアニオンのリークもほとんど生じない
If condensate treatment is performed according to the present invention, it becomes possible to operate in an ammonia cycle without using extra chemicals, and since the mixed bed at the top of the demineralization tower does not substantially contain salt-form resin, Cl.
-, SO: Almost no leakage of first-class anions occurs.

また平常は全樹脂量の半分程度のものをH形、OH形で
待機させているため、コンデンサリークに対しても充分
な処理能力を持っていることになると共に、2つの混床
の性質を若干変えることもでき、より経済的な処理を行
なうことができる。
In addition, since about half of the total amount of resin is normally kept in H type and OH type, it has sufficient treatment capacity against capacitor leaks, and also has the properties of two mixed beds. Slight changes can be made to make the process more economical.

またカチオン樹脂の再生を上向流で行なえば、混床式樹
脂層には再生率の高いカチオン樹脂がくるのでより好都
合となる。
Furthermore, if the cationic resin is regenerated in an upward flow, the cationic resin with a high regeneration rate will be delivered to the mixed bed type resin layer, which will be more convenient.

以上に述べたように、本発明により樹脂の再生、充填を
行なえば、通常の再生用薬品以外に何ら余分の薬品を使
用することなくアンモニアサイクルでの運転が可能とな
るため、経済的な復水処理を行なうことができ、前段に
カチオン交換樹脂床をもうけているので金属酸化物等の
懸濁物質も効率良く除去できるし、また再生塔に残す樹
脂量も比較的少量であるので、樹脂バランスも取り易く
、したがって高純度の処理水を安定して得ることができ
る。
As described above, if the resin is regenerated and filled according to the present invention, it becomes possible to operate in an ammonia cycle without using any extra chemicals other than the usual regeneration chemicals, resulting in economical recovery. Water treatment can be performed, and suspended solids such as metal oxides can be efficiently removed because a cation exchange resin bed is provided at the front stage.Also, the amount of resin left in the regeneration tower is relatively small, so the resin It is also easy to maintain a balance, so highly purified treated water can be stably obtained.

しかもアンモニアブレーク時のNaリークを適確に防止
しコンデンサリーク時においても余裕を持った復水処理
が行なえ連続的に復水処理を行なって処理能率を著しく
高めることができ、復水処理装置の再生率も著しく高め
られ、運転維持管理も容易となると共に、従来の復水脱
塩方法の欠点を排除し、HサイクルはもとよりNH3サ
イクルの運転においても極めて高純度の処理水を安定し
て大量に得られ処理コストも経済的にできる利益がある
In addition, Na leakage during ammonia break can be accurately prevented, condensate treatment can be performed with sufficient margin even in the event of capacitor leakage, and treatment efficiency can be significantly increased by performing condensate treatment continuously. The regeneration rate has been significantly increased, operation and maintenance has become easier, and the drawbacks of conventional condensate desalination methods have been eliminated, allowing stable and large amounts of extremely high-purity treated water to be produced not only in the H cycle but also in the NH3 cycle. There are also benefits that can be obtained and the processing costs are also economical.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施態様を示す系統説明図である。 1・・・・・・脱塩塔、2・・・・・・カチオン再生塔
、3・・・・・・アニオン再生塔、4・・・・・・樹脂
混合槽、5・・・・・・カチオン交換樹脂貯槽、6・・
・・・・カチオン交換樹脂層の上層部、7・・・・・・
カチオン交換樹脂層の中間部、8・・・・・・カチオン
交換樹脂層の下層部、9・・・・・・アニオン交換樹脂
層の上層部、10・・・・・・アニオン交換樹脂層の中
間部、11・・・・・・樹脂界面部分、12・・・・・
・カチオン交換樹脂床、13,14・・・・・・混床、
15・・・・・・復水流入管、16,17・・・・・・
処理水流出管、20,21 ,22,23,24,25
,26,27,28,29・・・・・・樹脂移送ライン
The drawing is a system explanatory diagram showing one embodiment of the present invention. 1... Desalting tower, 2... Cation regeneration tower, 3... Anion regeneration tower, 4... Resin mixing tank, 5...・Cation exchange resin storage tank, 6...
... Upper layer of cation exchange resin layer, 7...
Middle part of the cation exchange resin layer, 8... Lower part of the cation exchange resin layer, 9... Upper part of the anion exchange resin layer, 10... Lower part of the anion exchange resin layer. Middle part, 11...Resin interface part, 12...
・Cation exchange resin bed, 13, 14...mixed bed,
15... Condensate inflow pipe, 16, 17...
Treated water outflow pipe, 20, 21, 22, 23, 24, 25
, 26, 27, 28, 29... Resin transfer line.

Claims (1)

【特許請求の範囲】 1 カチオン交換樹脂層から混床式イオン交換樹脂層へ
直列に復水を通水して復水中の不純物を除去する復水脱
塩工程において、脱塩工程を終了した樹脂を脱塩塔から
再生塔へ移送し、通常、混床式イオン交換樹脂の再生を
行なう場合と同様に、逆洗分離、通薬、水洗を行なった
後、脱塩塔に再び充填するに際し、再生された全樹脂層
を、アニオン交換樹脂層の上層部と下層部、カチオン交
換樹脂層の上層部、中層部、下層部、及び両樹脂の混合
が著しい樹脂界面付近の樹脂とのそれぞれ6つの部分に
分割し、樹脂再生時に塩形となった樹脂を若干量含む部
分同志、すなわち、再生時に逆洗分級されたカチオン交
換樹脂層の上層部のものと、再生時に逆洗分級されたア
ニオン交換樹脂層の下層部のものとを混合し、第2の混
床に充填し、さらに塩形樹脂を実質的に含まない部分同
志、すなわち、再生時に逆洗分級されたカチオン交換樹
脂層の下層部のものと、再生時に逆洗分級されたアニオ
ン交換樹脂の上層部のものとを混合し、第1の混床に充
填し、再生時に逆洗分級されたカチオン交換樹脂層の中
層部のものを単独でカチオン交換樹脂床に充填し、両樹
脂の混合が著しい樹脂界面付近の部分は充填せずに残し
ておき、次回の樹脂再生時に脱塩工程を終了した樹脂に
加えて再生を行うことを特徴とする復水処理方法。 2 塩形樹脂を実質的に含まないカチオン交換樹脂床と
、混床式イオン交換樹脂床を2床用い、第1の混床には
塩形樹脂を実質的に含まない樹脂を、第2の混床には塩
形樹脂を若干量含む樹脂を充填し、流入復水水質が比較
的良好な場合には、カチオン交換樹脂床から第1の混床
へ直列に通水し、処理水水質悪化時には最終段に第2の
混床を加え、これら3床直列に通水するものである特許
請求の範囲第1項記載の復水処理方法。 3 前記脱塩工程が再生時に逆洗分級されたカチオン交
換樹脂層の中層部のものと、再生時に逆洗分級されたア
ニオン交換樹脂層の上層部のものとを混合し、第1の混
床に充填し、再生時に逆洗分級されたカチオン樹脂層の
下層部のものを単独でカチオン交換樹脂床に充填して行
なわれるものである特許請求の範囲第1項又は第2項記
載の復水処理方法。 4 前記再生工程が、再生塔を2塔用いるものであって
、逆洗分離後の樹脂層の内、アニオン交換樹脂層と、両
樹脂の混合が著しい樹脂界面付近のものとをそれぞれア
ニオン交換樹脂再生塔に移送し、カチオン交換樹脂とア
ニオン交換樹脂への通薬を別個に行ない、再生樹脂の充
填時には、アニオン交換樹脂再生塔の底部に位置する両
樹脂の混合が著しい部分は充填せずに残しておき、次回
の樹脂再生時に脱塩工程を終了した樹脂に加えて再生を
行うものである特許請求の範囲第1項、第2項又は第3
項記載の復水処理方法。 5 前記カチオン交換樹脂の再生工程が、カチオン交換
樹脂層への鉱酸の通薬を上向流で行なうものである特許
請求の範囲第1項、第2項、第3項又は第4項記載の復
水処理方法。 6 前記再生工程がカチオン交換樹脂再生塔でカチオン
交換樹脂とアニオン交換樹脂を逆洗分離後、さらにカチ
オン交換樹脂層へ鉱酸を上向流で通薬、水洗した後、ア
ニオン交換樹脂層と、両樹脂の混合が著しい樹脂界面付
近のものをアニオン交換樹脂再生塔へ移送するものであ
る特許請求の範囲第4項又は第5項記載の復水処理方法
[Scope of Claims] 1. A resin that has undergone a desalination process in a condensate desalination process in which impurities in the condensate are removed by passing condensate in series from a cation exchange resin layer to a mixed bed ion exchange resin layer. is transferred from the demineralization tower to the regeneration tower, and after performing backwash separation, chemical passage, and water washing, as in the case of normally regenerating mixed-bed ion exchange resins, when filling the demineralization tower again, The regenerated entire resin layer was divided into six regions, each with the upper and lower parts of the anion exchange resin layer, the upper part, middle part, and lower part of the cation exchange resin layer, and the resin near the resin interface where both resins were significantly mixed. The upper layer of the cation-exchange resin layer is divided into two parts and contains a small amount of resin that has become salt form during resin regeneration, namely, the upper layer of the cation-exchange resin layer that has been backwashed and classified during regeneration, and the anion-exchange resin layer that has been backwashed and classified during regeneration. The lower layer of the resin layer is mixed with the lower layer of the cation exchange resin layer, and the mixture is filled into a second mixed bed. and the upper layer of the anion exchange resin that was backwashed and classified during regeneration, and filled into the first mixed bed, and the middle layer of the cation exchange resin that was backwashed and classified during regeneration It is recommended to fill the cation exchange resin bed alone, leave the area near the resin interface where there is significant mixing of both resins without filling, and add it to the resin that has completed the desalination process during the next resin regeneration. Characteristic condensate treatment method. 2 A cation exchange resin bed that does not substantially contain a salt form resin and two mixed bed type ion exchange resin beds are used, the first mixed bed contains a resin that does not substantially contain a salt form resin, and the second The mixed bed is filled with a resin containing a small amount of salt-form resin, and when the inflow condensate water quality is relatively good, water is passed in series from the cation exchange resin bed to the first mixed bed to prevent deterioration of the treated water quality. The condensate treatment method according to claim 1, wherein a second mixed bed is sometimes added to the final stage and water is passed through these three beds in series. 3. In the desalination step, the middle layer of the cation exchange resin layer that has been backwashed and classified during regeneration is mixed with the upper layer of the anion exchange resin layer that has been backwashed and classified during regeneration, and a first mixed bed is formed. The condensate according to claim 1 or 2 is carried out by filling the lower layer of the cation exchange resin bed, which has been backwashed and classified during regeneration, alone into the cation exchange resin bed. Processing method. 4 The regeneration step uses two regeneration towers, and among the resin layers after backwashing and separation, the anion exchange resin layer and the resin layer near the resin interface where both resins are significantly mixed are treated with anion exchange resin respectively. The resin is transferred to the regeneration tower, and the cation exchange resin and anion exchange resin are passed through the resin separately. When filling the regenerated resin, the part located at the bottom of the anion exchange resin regeneration tower where the two resins are significantly mixed is not filled. Claims 1, 2, or 3, which are retained and recycled in addition to the resin that has undergone the desalting process during the next resin regeneration.
Condensate treatment method described in section. 5. Claims 1, 2, 3, or 4, wherein the cation exchange resin regeneration step involves passing mineral acid through the cation exchange resin layer in an upward flow. condensate treatment method. 6. In the regeneration step, after backwashing and separating the cation exchange resin and anion exchange resin in a cation exchange resin regeneration tower, the cation exchange resin layer is further treated with mineral acid in an upward flow and washed with water, and then the anion exchange resin layer is The condensate treatment method according to claim 4 or 5, wherein the condensate near the resin interface where both resins are significantly mixed is transferred to an anion exchange resin regeneration tower.
JP53125621A 1978-10-12 1978-10-12 Condensate treatment method Expired JPS5813229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53125621A JPS5813229B2 (en) 1978-10-12 1978-10-12 Condensate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53125621A JPS5813229B2 (en) 1978-10-12 1978-10-12 Condensate treatment method

Publications (2)

Publication Number Publication Date
JPS5551481A JPS5551481A (en) 1980-04-15
JPS5813229B2 true JPS5813229B2 (en) 1983-03-12

Family

ID=14914594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53125621A Expired JPS5813229B2 (en) 1978-10-12 1978-10-12 Condensate treatment method

Country Status (1)

Country Link
JP (1) JPS5813229B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534126A (en) * 1978-08-31 1980-03-10 Ebara Infilco Co Ltd Method and apparatus for condensing treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534126A (en) * 1978-08-31 1980-03-10 Ebara Infilco Co Ltd Method and apparatus for condensing treatment

Also Published As

Publication number Publication date
JPS5551481A (en) 1980-04-15

Similar Documents

Publication Publication Date Title
US3385787A (en) Condensate purification process
US3531401A (en) Method of regenerating ion exchangers
US3414508A (en) Condensate purification process
US3583908A (en) Condensate purification process
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JPS5813229B2 (en) Condensate treatment method
JPH0312952B2 (en)
JPS5811272B2 (en) Condensate treatment method
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
US3585127A (en) Method for treating water by ion exchange
JPH1085739A (en) Steam condensate desalting device
JPS5841913B2 (en) Condensate treatment method
JPS5966354A (en) Regeneration of ion-exchange resin
JPH0138553B2 (en)
JPS6153117B2 (en)
JP2654053B2 (en) Condensate desalination equipment
JPH0133227B2 (en)
JPS626873B2 (en)
JPS6211916B2 (en)
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPS59183398A (en) Maintenance system of condensate desalt tower
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger
SU1386579A1 (en) Method and apparatus for regenerating ion exchange in countercurrent flow filter
JPH0249784B2 (en) ANMONIAOFUKUMUFUKUSUINODATSUENHOHO