JPS5841913B2 - Condensate treatment method - Google Patents

Condensate treatment method

Info

Publication number
JPS5841913B2
JPS5841913B2 JP54148465A JP14846579A JPS5841913B2 JP S5841913 B2 JPS5841913 B2 JP S5841913B2 JP 54148465 A JP54148465 A JP 54148465A JP 14846579 A JP14846579 A JP 14846579A JP S5841913 B2 JPS5841913 B2 JP S5841913B2
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
resin
regeneration tower
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54148465A
Other languages
Japanese (ja)
Other versions
JPS5673594A (en
Inventor
伸一 臼井
俊文 関
茂夫 宮
巌 勢渡
義和 竹端
甚六 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP54148465A priority Critical patent/JPS5841913B2/en
Publication of JPS5673594A publication Critical patent/JPS5673594A/en
Publication of JPS5841913B2 publication Critical patent/JPS5841913B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ボイラ、タービンなどのスケール生成および
腐食を防止するため、カチオン交換樹脂層と混床式イオ
ン交換樹脂層とを用いて復水中に存在する不純物質を除
去する復水脱塩処理方法に関するものである。
Detailed Description of the Invention The present invention removes impurities present in condensate using a cation exchange resin layer and a mixed bed ion exchange resin layer in order to prevent scale formation and corrosion in boilers, turbines, etc. This invention relates to a condensate desalination treatment method.

一般にボイラ運転条件の高温高圧化に従い、復水処理の
重要性が広く認められるようになり、通常は混床式イオ
ン交換樹脂層を充填した復水脱塩装置で良好な処理が得
られている。
As boiler operating conditions generally become higher temperature and higher pressure, the importance of condensate treatment has become widely recognized, and good treatment is usually achieved with a condensate desalination equipment filled with a mixed bed type ion exchange resin bed. .

この復水脱塩装置には強酸性陽イオン交換樹脂のH形と
強塩基性陰イオン交換樹脂のOH形とを混合して用い、
陽イオン交換樹脂が復水中のアンモニアと交換反応し、
アンモニアが破過した時点で再生を行なうHサイクル処
理方法と、いま一つはアンモニアが破過したあとも引き
続いてアンモニア形に置換された樹脂を利用して処理を
継続するNH3サイクル処理方法とがある。
This condensate desalination equipment uses a mixture of H type of strongly acidic cation exchange resin and OH type of strongly basic anion exchange resin.
The cation exchange resin undergoes an exchange reaction with ammonia in the condensate,
There is an H cycle treatment method in which regeneration is performed once ammonia has passed through, and an NH3 cycle treatment method in which treatment is continued using the resin that has been replaced with ammonia even after ammonia has broken through. be.

最近では、復水脱塩装置の再生薬剤の節約と運転管理の
面から、再生頻度の少ないNH3サイクルの復水処理を
採用するところが多い。
Recently, in order to save on regeneration chemicals for condensate desalination equipment and to improve operation management, many companies have adopted condensate treatment using the NH3 cycle, which requires less regeneration frequency.

しかしながら、NH3サイクルの運転においては、Hサ
イクルとは異なった種々の制限を受けるために、装置が
複雑となったり、特別の再生薬剤を使用し、コスト高と
なるし再生に長時間を要するなどの問題点もあって、必
ずしも完成された技術とは言えないのが現状である。
However, the operation of the NH3 cycle is subject to various restrictions different from the H cycle, so the equipment is complicated, special regeneration chemicals are used, the cost is high, and regeneration takes a long time. At present, it cannot be said that this technology is necessarily perfected due to the following problems.

混床式イオン交換樹脂層NH3サイクルで運転する場合
の問題点の一つは、混床中に存在する塩形樹脂はアンモ
ニアブレーク時に不純物リークの原因となるので、混床
中に含まれる塩形樹脂の割合を低く押えることができる
ような樹脂の再生方法をとる必要があることである。
One of the problems when operating in a mixed bed type ion exchange resin layer NH3 cycle is that the salt form resin present in the mixed bed causes impurity leakage during ammonia break. It is necessary to adopt a resin recycling method that can keep the proportion of resin low.

いま一つの問題点は、NH3サイクル時においてはHサ
イクル時より不純物イオンの除去能力がやや劣るため、
万一海水リークが生じた場合に不純物イオンがIJ−り
し易く、また不純物イオンが破過するに至るまでの時間
もHサイクル時よりも短かいため、海水リーク時の処理
に不安が残ることである。
Another problem is that during the NH3 cycle, the ability to remove impurity ions is slightly inferior to that during the H cycle.
In the event that a seawater leak occurs, impurity ions are likely to escape from the IJ, and the time it takes for the impurity ions to break through is shorter than during the H cycle, so there is concern about how to deal with seawater leaks. It is.

このため現時点ではNH,サイクル時に万一海水リーク
の発生が検知されたならば、直ちに樹脂の再生を開始し
、脱塩塔の運転をNH3サイクルから順次Hサイクルへ
切り換える操作が取られている。
For this reason, at present, if a seawater leak is detected during the NH cycle, the regeneration of the resin is immediately started and the operation of the demineralization tower is sequentially switched from the NH3 cycle to the H cycle.

しかしながら樹脂の再生にはある程度の時間を要するた
め、海水リークの規模によっては樹脂の再生が間に合わ
ず、短時間の内に発電出力を落すか、発電停止を余儀な
くされる場合がある。
However, since it takes a certain amount of time to regenerate the resin, depending on the scale of the seawater leak, the resin may not be regenerated in time, and the power generation output may drop within a short time or the power generation may be forced to stop.

このような危険を避けるため、NH3サイクル運転時に
おいても最低1塔は常時Hサイクルで運転するような提
案もなされているが、このような運転方法においては、
脱塩塔の運転時間もおのずと制限され、NH3サイクル
が本来持つ長所を十分発揮できないのが実情である。
In order to avoid such dangers, it has been proposed that at least one tower should always be operated in the H cycle even during NH3 cycle operation, but in such an operating method,
The operating time of the desalination tower is naturally limited, and the actual situation is that the inherent advantages of the NH3 cycle cannot be fully demonstrated.

本発明は、従来からのNH,サイクル復水脱塩処理方法
が持つこれらの欠点を一挙に解決し、酸、アルカリ以外
の薬剤は一切使用せずにNH3サイクル復水脱塩を行な
い、またNH3サイクル時に万一海水リークが発生して
も、ボイラ、タービンに何ら悪影響を及ぼすことなく安
全に対処できる復水脱塩処理方法を提供することを目的
とするものである。
The present invention solves all of these drawbacks of conventional NH and cycle condensate desalination treatment methods, performs NH3 cycle condensate desalination without using any chemicals other than acids and alkalis, and The object of the present invention is to provide a condensate desalination treatment method that can safely deal with the occurrence of seawater leakage during a cycle without any adverse effects on the boiler or turbine.

本発明は、混床式イオン交換樹脂層を下部に充填し、そ
の上部にカチオン交換樹脂を置いた脱塩塔の上部より復
水を流入せしめ、平常時においては混床式イオン交換樹
脂層のほぼ中間部より処理水を取り出し、海水リーク発
生時においては脱塩塔底部より処理水を取り出す復水脱
塩装置でその使用する樹脂の再生工程において、脱塩塔
より移送された樹脂に、これとは別に用意した分離用の
カチオン交換樹脂、アニオン交換樹脂を加えてカチオン
交換樹脂再生塔内で逆洗分離し、アニオン交換樹脂層を
カチオン交換樹脂層上部の一部と共にアニオン交換樹脂
再生塔へ移送することにより、カチオン交換樹脂再生時
の塩形アニオン交換樹脂の生成をおさえ、カチオン交換
樹脂再生塔内に残留するカチオン交換樹脂は再生薬品を
通薬して再生し一部アニオン交換樹脂再生塔へ移送され
た樹脂は再度逆洗することにより微粉化した樹脂の一部
を除去すると共に、アニオン交換樹脂に混入したカチオ
ン交換樹脂を分離し、アニオン交換樹脂層のみに再生薬
品を通薬することにより、混入したカチオン交換樹脂が
逆再生されるのを防ぎ、樹脂の再生水洗が完了したなら
ば、カチオン交換樹脂再生塔内の樹脂の全量を樹脂貯槽
へ移送し、次いでアニオン交換樹脂再生塔内のアニオン
交換樹脂層の上部の必要量を樹脂貯槽へ移送し、樹脂貯
槽内のカチオン交換樹脂層の略中間部より水、空気等を
導入し、カチオン交換樹脂の上部のものをアニオン交換
樹脂と混合して混床式イオン交換樹脂層を形成し、該樹
脂層を脱塩塔下部に充填し、その上部には樹脂貯槽に残
したカチオン交換樹脂を充填した後再び脱塩工程に入る
ものとし、アニオン交換樹脂再生塔内に残されたカチオ
ン交換樹脂と、アニオン交換樹脂はカチオン交換樹脂再
生塔へ返送し、再生するべき樹脂に加えることを特徴と
する復水処理方法である。
In the present invention, condensate is introduced from the upper part of the demineralization tower, which is filled with a mixed bed type ion exchange resin layer at the bottom and a cation exchange resin is placed on top of the demineralization tower. In the process of regenerating the resin used in the condensate desalination equipment, which takes out the treated water from approximately the middle part and takes out the treated water from the bottom of the demineralization tower in the event of a seawater leak, this is added to the resin transferred from the demineralization tower. Separately prepared cation exchange resin and anion exchange resin are added and backwashed and separated in the cation exchange resin regeneration tower, and the anion exchange resin layer is sent to the anion exchange resin regeneration tower together with a part of the upper part of the cation exchange resin layer. By transporting the cation exchange resin, the generation of salt-form anion exchange resin during regeneration of the cation exchange resin is suppressed, and the cation exchange resin remaining in the cation exchange resin regeneration tower is regenerated by passing the regeneration agent through the anion exchange resin regeneration tower. The transferred resin is backwashed again to remove a part of the finely divided resin, and the cation exchange resin mixed in the anion exchange resin is separated, and the regenerating chemical is passed only through the anion exchange resin layer. This prevents the mixed cation exchange resin from being reversely regenerated, and once the resin has been washed with water for regeneration, the entire amount of resin in the cation exchange resin regeneration tower is transferred to the resin storage tank, and then the anion exchange resin regeneration tower is Transfer the required amount of the upper part of the anion exchange resin layer to a resin storage tank, introduce water, air, etc. from the approximately middle part of the cation exchange resin layer in the resin storage tank, and convert the upper part of the cation exchange resin into an anion exchange resin. Mix to form a mixed bed type ion exchange resin layer, fill the lower part of the desalination tower with this resin layer, fill the upper part with the cation exchange resin left in the resin storage tank, and then enter the desalination process again. This condensate treatment method is characterized in that the cation exchange resin and anion exchange resin left in the anion exchange resin regeneration tower are returned to the cation exchange resin regeneration tower and added to the resin to be regenerated.

本発明においてカチオン交換樹脂再生塔内で逆洗分離さ
れたアニオン交換樹脂層のアニオン交換樹脂再生塔への
移送時に、カチオン交換樹脂の上層部をも移送するのは
、カチオン交換樹脂再生塔内にアニオン交換樹脂を残さ
ないためであるが、カチオン交換樹脂層中に混入するア
ニオン交換樹脂の許容量は比較的大きいので、分離用の
カチオン交換樹脂層の層高としては1007g711〜
300朋とれば十分である。
In the present invention, when the anion exchange resin layer that has been backwashed and separated in the cation exchange resin regeneration tower is transferred to the anion exchange resin regeneration tower, the upper layer of the cation exchange resin is also transferred to the cation exchange resin regeneration tower. This is to avoid leaving any anion exchange resin, but since the allowable amount of anion exchange resin mixed into the cation exchange resin layer is relatively large, the height of the cation exchange resin layer for separation is 1007g711~
300 tomo is enough.

この操作によりカチオン交換樹脂再生塔に残したカチオ
ン交換樹脂層はアニオン交換樹脂をほとんど含まなくな
るため、塩酸、硫酸等の鉱酸で再生後、NH3サイクル
に使用してもアニオンリークは生じない。
By this operation, the cation exchange resin layer left in the cation exchange resin regeneration tower contains almost no anion exchange resin, so no anion leak occurs even if it is used in the NH3 cycle after being regenerated with a mineral acid such as hydrochloric acid or sulfuric acid.

本発明において、アニオン交換樹脂再生塔′\移送され
た樹脂は再度逆洗を行なう際に、微粉化した樹脂の一部
を逆洗排水と共に該塔外へ除去することは、脱塩工程に
おける圧損を下げるのに有効であり、またアニオン交換
樹脂層中に混入している微粉化したカチオン交換樹脂の
除去にも有効である。
In the present invention, when the transferred resin is backwashed again in the anion exchange resin regeneration tower, removing a part of the pulverized resin to the outside of the tower along with the backwash waste water is a method that reduces the pressure loss during the desalination process. It is effective in reducing the amount of water and is also effective in removing the finely divided cation exchange resin mixed in the anion exchange resin layer.

該微粉状の樹脂除去の粒径の目安としては30〜50メ
ツシユより細かいものが好ましい。
As a guideline for the particle size for removing the resin in the form of fine powder, a particle size finer than 30 to 50 mesh is preferable.

この場合アニオン交換樹脂再生塔における再生を完全に
行なうためには、通薬時に該再生塔の塔底部より水を導
入し、前記分離用のカチオン交換樹脂の上層部への再生
薬品の拡散を押さえればよい。
In this case, in order to perform complete regeneration in the anion exchange resin regeneration tower, water must be introduced from the bottom of the regeneration tower during drug passage to prevent the regenerated chemicals from diffusing into the upper layer of the cation exchange resin used for separation. Bye.

分離用のアニオン交換樹脂層の層高は(脱塩用)アニオ
ン交換樹脂へのカチオン交換樹脂の混入率あるいは分離
用カチオン交換樹脂の再生薬品による逆再生に影響を及
ぼすものであるが、通常150〜700mm、またはア
ニオン交換樹脂層の全層高に対し20〜50俤とすれば
よい。
The layer height of the anion exchange resin layer for separation affects the mixing rate of the cation exchange resin into the anion exchange resin (for desalination) or the reverse regeneration of the cation exchange resin for separation using regeneration chemicals, but it is usually 150. ~700 mm, or 20 to 50 mm relative to the total height of the anion exchange resin layer.

本発明において、脱塩塔へ充填する樹脂の層高は流入復
水水質、処理水水質、差圧等を考慮して決定されなけれ
ばならない。
In the present invention, the bed height of the resin to be filled into the desalination tower must be determined in consideration of the quality of inflow condensate water, the quality of treated water, differential pressure, etc.

最上部に充填するカチオン交換樹脂層の層高(層の厚み
)は、薄すぎると懸濁粒子除去の効果が低く、また均一
な層を形成するのが困難となり、厚すぎた場合には差圧
増大をもたらすので通常100〜6001mが適当であ
る。
If the layer height (layer thickness) of the cation exchange resin layer filled at the top is too thin, the effect of removing suspended particles will be low, and it will be difficult to form a uniform layer. Generally, a range of 100 to 6001 m is appropriate since this results in an increase in pressure.

中間部の混床式イオン交換樹脂層の層高はNH3サイク
ルで運転する平常時の処理水質に影響するが、平常時に
おけるイオン性不純物濃度は極めて低いため、従来法に
おける樹脂層高より低くても良く、300〜11000
i程度が適当であり、カチオン交換樹脂層との合計で6
00〜12001m程度が望ましい。
The height of the mixed-bed ion exchange resin layer in the middle area affects the quality of treated water during normal operation using the NH3 cycle, but since the concentration of ionic impurities during normal times is extremely low, it is lower than the resin layer height in conventional methods. Good, 300-11000
i is appropriate, and the total with the cation exchange resin layer is 6
A distance of about 0.00 to 12001 m is desirable.

最下部の混床式イオン交換樹脂層の層高は海水リーク時
の処理継続時間に影響するが、海水リーク時には全樹脂
層に通水するので、層高を取り過ぎると差圧の増大をき
たす。
The height of the mixed bed ion exchange resin layer at the bottom affects the treatment duration in the event of a seawater leak, but in the event of a seawater leak, water passes through all the resin layers, so if the layer height is too high, the differential pressure will increase. .

したがってその層高としては300〜1000+sが適
当であり、全樹脂層高としては1000、〜1800n
yxとなる。
Therefore, the appropriate layer height is 300 to 1000+s, and the total resin layer height is 1000 to 1800n.
It becomes yx.

本発明を実施態様につき図面によって説明すると、第1
図の樹脂の再生工程において、脱塩工程を終了した樹脂
を脱塩塔1から樹脂移送ライン11によりカチオン交換
樹脂再生塔2′\移送し、分離用の樹脂(後記アニオン
交換樹脂再生塔3から返送されるアニオン交換樹脂AR
2およびカチオン交換樹脂CR2)J共に逆洗分離を行
ない、カチオン交換樹脂層CR,,CR2とアニオン交
換樹脂層(AR1+AR2’)&に分離する。
To explain the present invention with reference to the drawings, the first embodiment is as follows.
In the resin regeneration process shown in the figure, the resin that has completed the desalination process is transferred from the demineralization tower 1 to the cation exchange resin regeneration tower 2'\ by the resin transfer line 11, and the resin for separation (from the anion exchange resin regeneration tower 3 described later) Anion exchange resin AR returned
2 and cation exchange resin CR2)J are backwashed and separated into cation exchange resin layers CR, , CR2 and anion exchange resin layers (AR1+AR2')&.

次いでアニオン交換樹脂層AR1,AR,4量とカチオ
ン交換樹脂層(CRI +CR2)の上層部の分離用カ
チオン交換樹脂CR2を樹脂移送ライン12によりアニ
オン交換樹脂再生塔3へ移送する。
Next, the amounts of the anion exchange resin layers AR1, AR, and the cation exchange resin CR2 for separation in the upper layer of the cation exchange resin layer (CRI + CR2) are transferred to the anion exchange resin regeneration tower 3 through the resin transfer line 12.

カチオン交換樹脂再生塔2内に残したカチオン交換樹脂
層CR1は再生薬品供給管7から塩酸、硫酸を通薬して
再生する。
The cation exchange resin layer CR1 left in the cation exchange resin regeneration tower 2 is regenerated by passing hydrochloric acid and sulfuric acid through the regeneration chemical supply pipe 7.

一方、アニオン交換樹脂再生塔3へ移送した樹脂AR1
,AR2,CR2は再度逆洗を行なってアニオン交換樹
脂層AR0,AR2とカチオン交換樹脂CR217)3
層に分離したのち該アニオン交換樹脂層AR1゜ARρ
再生を行なう。
On the other hand, the resin AR1 transferred to the anion exchange resin regeneration tower 3
, AR2, CR2 are backwashed again to form anion exchange resin layers AR0, AR2 and cation exchange resin CR217)3.
After separating into layers, the anion exchange resin layer AR1゜ARρ
Perform playback.

なお、アニオン交換樹脂AR□は脱塩工程に使用する樹
脂であり、アニオン交換樹脂AR2は脱塩工程では使用
せず再生工程を効率良く、適確に行なう為の樹脂すなわ
ち再生専用の樹脂であるが前記再逆洗の際AR1とAR
2は比重差によって層分離される。
Note that the anion exchange resin AR□ is a resin used in the desalination process, and the anion exchange resin AR2 is not used in the desalination process but is a resin for efficiently and accurately performing the regeneration process, that is, a resin exclusively for regeneration. During the re-backwashing, AR1 and AR
2 is separated into layers due to the difference in specific gravity.

該アニオン交換樹脂層AR1,AR2は再生薬品供給管
8から苛性ソーダ水溶液を通薬して再生し、分離用アニ
オン交換樹脂層ARρ底部から再生廃液配管23によっ
て廃液を抜き出す。
The anion exchange resin layers AR1, AR2 are regenerated by passing a caustic soda aqueous solution through the regenerating chemical supply pipe 8, and the waste liquid is extracted from the bottom of the separation anion exchange resin layer ARρ through the regenerated waste liquid pipe 23.

かくして得られた塩形樹脂を殆ど含まないカチオン交換
樹脂層CR0は樹脂移送ライン13により樹脂貯槽4へ
移送し、該樹脂層・CR1の上部へ、やはり塩形樹脂を
殆ど含まないアニオン交換樹脂層AR1を樹脂移送ライ
ン14によって移送する。
The thus obtained cation exchange resin layer CR0 containing almost no salt form resin is transferred to the resin storage tank 4 via the resin transfer line 13, and an anion exchange resin layer containing almost no salt form resin is transferred to the upper part of the resin layer CR1. AR1 is transferred by resin transfer line 14.

次に脱塩塔1への樹脂の充填工程および脱塩工程を第2
図に従って説明すると、樹脂貯槽4へ移送されたカチオ
ン交換樹脂層CR1のほぼ中間部から配管25によって
空気と水を導入して該カチオン交換樹脂層CR1の上部
とアニオン交換樹脂AR1を撹拌、混合して混床式イオ
ン交換樹脂層MBを形成し、カチオン交換樹脂層CR1
の下層部はそのまま脱塩塔1におけるカチオン交換樹脂
層CRsとする。
Next, the step of filling the resin into the desalting tower 1 and the desalting step are carried out in the second step.
To explain according to the diagram, air and water are introduced through the pipe 25 from approximately the middle of the cation exchange resin layer CR1 transferred to the resin storage tank 4, and the upper part of the cation exchange resin layer CR1 and the anion exchange resin AR1 are stirred and mixed. to form a mixed bed type ion exchange resin layer MB, and a cation exchange resin layer CR1.
The lower layer is directly used as the cation exchange resin layer CRs in the demineralization tower 1.

次いで前記混床式イオン交換樹脂層MBを樹脂移送ライ
ン15により脱塩塔1の下部に充填した後、樹脂移送ラ
イン16により前記カチオン交換樹脂層CRY混床式イ
オン交換樹脂層MBの上部に充填する。
Next, the mixed bed type ion exchange resin layer MB is packed into the lower part of the demineralization tower 1 through the resin transfer line 15, and then the cation exchange resin layer CRY is packed into the upper part of the mixed bed type ion exchange resin layer MB through the resin transfer line 16. do.

アニオン交換樹脂再生塔3に残したカチオン交換樹脂C
R2およびアニオン交換樹脂層ARJ樹脂移送ライン1
7によりカチオン交換樹脂再生塔2へ返送し、次回の再
生工程において、脱塩塔1からの樹脂と混合して脱塩塔
1における逆洗分離等に再使用する。
Cation exchange resin C left in anion exchange resin regeneration tower 3
R2 and anion exchange resin layer ARJ resin transfer line 1
7, the resin is returned to the cation exchange resin regeneration tower 2, and in the next regeneration step, it is mixed with the resin from the demineralization tower 1 and reused for backwash separation, etc. in the demineralization tower 1.

アニオン交換樹脂再生塔3に残した分離用のカチオン交
換樹脂層CR2と同じく分離用のアニオン交換樹脂AR
ノこは、樹脂の再生を繰り返すにつれ微細なカチオン交
換樹脂、及び大粒径のアニオン交換樹脂が蓄積され、し
だいに樹脂の分離が行ない難くなる。
Anion exchange resin AR for separation as well as cation exchange resin layer CR2 for separation left in the anion exchange resin regeneration tower 3
As the saw repeatedly regenerates the resin, fine cation exchange resin and large particle size anion exchange resin accumulate, making it gradually difficult to separate the resin.

また微粉樹脂の生成も樹脂分離を悪化させる。The formation of fine resin particles also worsens resin separation.

そこで本発明においては、樹脂分離が悪化するようであ
れば、アニオン交換樹脂再生塔3からカチオン交換樹脂
再生塔2への樹脂の移送を前記移送ライン17のみによ
って行なうかわり一にまず樹脂移送ライン18によって
分離用のアニオン交換樹脂AR2のみをカチオン交換樹
脂再生塔2へ移送し、その後分離用カチオン交換樹脂C
R2を逆洗し、該樹脂層CR2中の微細樹脂のみを樹脂
移送ライン19により塔外へ排出し、残ったカチオン交
換樹脂は樹脂移送ライン17でカチオン交換樹脂再生塔
2へ返送し、前記排出した樹脂に見合う量の新品樹脂を
樹脂ホッパ5から樹脂移送ライン20により補給する。
Therefore, in the present invention, if the resin separation deteriorates, instead of transferring the resin from the anion exchange resin regeneration tower 3 to the cation exchange resin regeneration tower 2 only through the transfer line 17, first, the resin transfer line 18 , only the anion exchange resin AR2 for separation is transferred to the cation exchange resin regeneration tower 2, and then the cation exchange resin C for separation is transferred to the cation exchange resin regeneration tower 2.
R2 is backwashed, and only the fine resin in the resin layer CR2 is discharged to the outside of the column via the resin transfer line 19, and the remaining cation exchange resin is returned to the cation exchange resin regeneration column 2 via the resin transfer line 17, and the remaining cation exchange resin is returned to the cation exchange resin regeneration column 2 via the resin transfer line 17. New resin in an amount corresponding to the added resin is supplied from the resin hopper 5 through the resin transfer line 20.

微細なカチオン交換樹脂排出の粒径の目安としては、3
0〜50メツシユより細かいものが好ましい。
As a guideline for the particle size of fine cation exchange resin discharge, 3
Preferably, the mesh is finer than 0 to 50 meshes.

分離用のカチオン交換樹脂層CB、h部のカチオン交換
樹脂の粒径分布と、アニオン交換樹脂層に混入するカチ
オン交換樹脂の粒径分布とは、互に重複するところがか
なりあるので、分離用カチオン交換樹脂層CR,h部の
微細なカチオン交換樹脂を除去することで、脱塩用アニ
オン交換樹脂層AR1へ混入するカチオン交換樹脂の割
合を容易に適正なレベルまで下げることができる。
Since the particle size distribution of the cation exchange resin in the separation cation exchange resin layer CB and part h and the particle size distribution of the cation exchange resin mixed in the anion exchange resin layer overlap considerably with each other, the separation cation By removing the fine cation exchange resin in the exchange resin layer CR, h portion, the proportion of the cation exchange resin mixed into the desalting anion exchange resin layer AR1 can be easily lowered to an appropriate level.

なお、前記微細なカチオン交換樹脂の除去操作を通常は
行なわず、微細なカチオン交換樹脂が蓄積し、樹脂の逆
洗分離に支障をきたすようになった場合に9み該除去操
作を行なってもよい。
Note that the removal operation of the fine cation exchange resin is not normally performed, but if the fine cation exchange resin accumulates and becomes a hindrance to the backwashing separation of the resin, even if the removal operation is performed. good.

一方脱塩工程については、復水を脱塩塔1の上部より流
入せしめ、平常時においては混床式イオン交換樹脂層M
Bの略中間部から流出管9により処理水Aとして取り出
す。
On the other hand, for the desalination process, condensate is introduced from the upper part of the desalination tower 1, and in normal times, the mixed bed type ion exchange resin layer M
The treated water A is taken out from approximately the middle of the water B through the outflow pipe 9.

この処理において復水中の鉄酸化物等の懸濁物質は、カ
チオン交換樹脂層CRsJ、こより効率良く除去される
ため、混床式イオン交換樹脂層MB中のアニオン交換樹
脂の汚染が防止される。
In this treatment, suspended substances such as iron oxides in the condensate are more efficiently removed from the cation exchange resin layer CRsJ, thereby preventing contamination of the anion exchange resin in the mixed bed type ion exchange resin layer MB.

また該混床式イオン交換樹脂層MBの上層部MB1に通
水することにより不純物イオンが除去される。
Furthermore, impurity ions are removed by passing water through the upper layer MB1 of the mixed bed type ion exchange resin layer MB.

カチオン交換樹脂層CRs と前記上層部MB1を用
いた処理はアンモニアブレーク後も継続し、Hサイクル
からNH3サイクルの運転に移行する。
The treatment using the cation exchange resin layer CRs and the upper layer MB1 continues even after the ammonia break, and the operation shifts from the H cycle to the NH3 cycle.

このNH,サイクルにおいて万一海水リークが検出され
たならば、弁26を閉め、弁27を開けて処理水Aの取
り出しを中止し、流入する復水を前記混床式イオン交換
樹脂層MBの下層部MB2へも通水し、処理水Bとして
脱塩塔1の下部の流出管10より取り出す。
If a seawater leak is detected in this NH cycle, the valve 26 is closed, the valve 27 is opened to stop taking out the treated water A, and the inflowing condensate is transferred to the mixed bed type ion exchange resin layer MB. Water is also passed to the lower part MB2 and taken out as treated water B from the outflow pipe 10 at the bottom of the desalination tower 1.

前記下層部MB2は、再生直後のH形のままで保存され
ていたのでこの操作により脱塩塔1の運転はNH3サイ
クル不純物イオン除去能力の高いHサイクルへ短時間の
内に切り換えることができる。
Since the lower part MB2 was stored in the H-type immediately after regeneration, this operation allows the operation of the demineralization tower 1 to be switched to the H-cycle, which has a high ability to remove NH3-cycle impurity ions, within a short time.

図中6は復水流入管、21.24は洗浄水配管、22は
再生廃液配管である。
In the figure, 6 is a condensate inflow pipe, 21.24 is a wash water pipe, and 22 is a recycled waste liquid pipe.

以上に述べたように本発明による復水脱塩処理方法は簡
単な再生操作によって塩形樹脂を殆ど含まないアニオン
交換樹脂およびカチオン交換樹脂が確実に得られるもの
であり、特殊な再生薬剤を使用することなくNH3サイ
クル復水脱塩を可能とし、またNH3サイクルからHサ
イクルへの切換えを、樹脂の再生を行なうことなく、短
時間のうちに行ない得る特徴を持っており、これらの特
徴により、NH3サイクル復水脱塩の長所を充分に発揮
すると共に、従来のNH3サイクル復水脱塩に付きまと
っていた海水リークに対する不安をも一掃したものとな
っているため、復水器冷却水として海水を使用する汽力
発電所にとって極めて大きな利用価値を有するものであ
る。
As described above, the condensate desalination treatment method according to the present invention reliably produces anion exchange resins and cation exchange resins containing almost no salt-form resin through simple regeneration operations, and uses a special regeneration agent. It has the characteristics that it enables NH3 cycle condensate desalination without having to regenerate the resin, and that it can switch from NH3 cycle to H cycle in a short time without regenerating the resin. In addition to fully demonstrating the advantages of NH3 cycle condensate desalination, it also eliminates concerns about seawater leaks that were associated with conventional NH3 cycle condensate desalination, making it possible to use seawater as condenser cooling water. It has extremely great utility value for the steam power plants that use it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示し、第1図は樹脂再生工程
のフローシート、第2図は樹脂充填工程および脱塩工程
のフローシートである。 1・・・・・・脱塩塔、2・・・・・・カチオン交換樹
脂再生塔、3・・・・・・アニオン交換樹脂再生塔、4
・・・・・・樹脂貯槽、5・・・・・・樹脂ホッパ 6
・・・・・・流入管、7,8・・・・・・再生薬品供給
管、9,10・・・・・・流出管、11,12゜13.
14,15,16,17,18,19゜20・・・・・
・樹脂移送ライン、21,22,23゜24 、25・
・・・・・配管、26 、27・・・・・・弁、A、B
・・・・・・処理水、ARl−・・・・・脱塩用アニオ
ン交換樹脂又は樹脂層、AR2・・・・・・分離用アニ
オン交換樹脂又は樹脂層、CR1,CR8・・・・・脱
塩用カチオン交換樹脂又は樹脂層、CR2−・・・・・
分離用カチオン交換樹脂又は樹脂層、MB・・・・・・
混床式イオン交換樹脂層、MBi・・・・・混床式イオ
ン交換樹脂層の上層部、MB2・・・・・・混床式イオ
ン交換樹脂層の下層部。
The drawings show embodiments of the present invention; FIG. 1 is a flow sheet of the resin regeneration process, and FIG. 2 is a flow sheet of the resin filling process and the desalination process. 1...Demineralization tower, 2...Cation exchange resin regeneration tower, 3...Anion exchange resin regeneration tower, 4
... Resin storage tank, 5 ... Resin hopper 6
...... Inflow pipe, 7, 8... Regeneration chemical supply pipe, 9, 10... Outflow pipe, 11, 12゜13.
14, 15, 16, 17, 18, 19°20...
・Resin transfer line, 21, 22, 23゜24, 25・
...Piping, 26, 27...Valve, A, B
... Treated water, ARl - ... Anion exchange resin or resin layer for desalination, AR2 ... Anion exchange resin or resin layer for separation, CR1, CR8 ... Cation exchange resin or resin layer for desalting, CR2-...
Cation exchange resin or resin layer for separation, MB...
Mixed bed ion exchange resin layer, MBi... upper layer of the mixed bed ion exchange resin layer, MB2... lower layer of the mixed bed ion exchange resin layer.

Claims (1)

【特許請求の範囲】 1 混床式イオン交換樹脂層を下部に充填し、その上部
にカチオン交換樹脂を配備した脱塩塔の上部から復水を
流入せしめ、平常時においては混床式イオン交換樹脂層
のほぼ中間部から処理水を取り出し、海水リーク発生時
においては脱塩塔底部から処理水を取り出す復水脱塩処
理で、その使用する樹脂の再生工程において、カチオン
交換樹脂再生塔内で予め逆洗分離したのちアニオン交換
樹脂層をカチオン交換樹脂層上部の一部と共にアニオン
交換樹脂再生塔へ移送し、カチオン交換樹脂再生塔内に
残留するカチオン交換樹脂は再生薬品を通薬して再生し
、一方これら移送された樹脂は再度逆洗分離し、アニオ
ン交換樹脂層のみに再生薬品を通薬し樹脂の再生、水洗
を行なったのち、前記カチオン交換樹脂再生塔内の樹脂
を樹脂貯槽へ移送し、次いで前記アニオン交換樹脂再生
塔内のアニオン交換樹脂層の上部の樹脂を樹脂貯槽へ移
送し、樹脂貯槽内のカチオン交換樹脂層のほぼ中間部以
上を混床式イオン交換樹脂層となし、該混床式イオン交
換樹脂層の樹脂を脱塩塔下部に充填し、その上部には樹
脂貯槽に残したカチオン交換樹脂を充填したのち再び脱
塩工程に入るものとし、しかも前記アニオン交換樹脂再
生塔内に残されたカチオン交換樹脂とアニオン交換樹脂
はカチオン交換樹脂再生塔へ返送し、該カチオン交換樹
脂再生塔において再使用することを特徴とする復水処理
方法。 2 前記カチオン交換樹脂再生塔における樹脂の逆洗分
離が、該逆洗分離専用のアニオン交換樹脂および同じく
逆洗分離専用のカチオン交換樹脂を前記カチオン交換樹
脂再生塔における再生工程のバッチ毎に、前記アニオン
交換樹脂再生塔から返送、混合して行なわれるものであ
る特許請求の範囲第1項記載の復水処理方法。 3 前記アニオン交換樹脂再生塔からの樹脂の返送工程
が、まずアニオン交換樹脂再生塔上部のアニオン交換樹
脂を前記カチオン交換樹脂再生塔へ移送し、次いでカチ
オン交換樹脂層内の微細なカチオン交換樹脂をアニオン
交換樹脂再生塔外へ逆洗によって除去したのちに、前記
カチオン交換樹脂を前記カチオン交換樹脂再生塔へ移送
して行なわれるものである特許請求の範囲第1項又は第
2項記載の復水処理方法。 4 前記カチオン交換樹脂再生塔における樹脂の再生工
程が、前記樹脂の返送時に前記アニオン交換樹脂再生塔
外へ排出された量に相当する量の新品樹脂を補給して行
なわれるものである特許請求の範囲第3項記載の復水処
理方法。 5 前記返送工程が、前記アニオン交換樹脂再生塔内に
おけるアニオン交換樹脂、カチオン交換樹脂の逆洗分離
に支障をきたすようになった場合にのみ微細なカチオン
交換樹脂の除去操作を行ったのち、残部の正常晶たるカ
チオン交換樹脂を前記カチオン交換樹脂再生塔へ移送し
て行なわれるものである特許請求の範囲第3項又は第4
項記載の復水処理方法。 6 前記アニオン交換樹脂再生塔における樹脂の再生工
程が、苛性ソーダ水溶液をアニオン交換樹脂層のみに通
薬して行なわれるものであって、該通薬時にカチオン交
換樹脂層の下端部から水が導入されるものである特許請
求の範囲第1項、第2項、第3項、第4項又は第5項記
載の復水処理方法。
[Scope of Claims] 1. Condensate is introduced from the upper part of the desalination tower, which is filled with a mixed bed ion exchange resin layer in the lower part and a cation exchange resin is arranged in the upper part. In the condensate desalination process, the treated water is extracted from approximately the middle of the resin layer, and when a seawater leak occurs, the treated water is extracted from the bottom of the desalination tower. After backwashing and separation in advance, the anion exchange resin layer and a part of the upper part of the cation exchange resin layer are transferred to an anion exchange resin regeneration tower, and the cation exchange resin remaining in the cation exchange resin regeneration tower is regenerated by passing regeneration chemicals through it. On the other hand, these transferred resins are backwashed and separated again, and the regenerating chemicals are passed only through the anion exchange resin layer to regenerate the resin and wash with water.Then, the resin in the cation exchange resin regeneration tower is transferred to the resin storage tank. Then, the resin at the upper part of the anion exchange resin layer in the anion exchange resin regeneration tower is transferred to a resin storage tank, and approximately the middle part or more of the cation exchange resin layer in the resin storage tank is made into a mixed bed type ion exchange resin layer. , the resin of the mixed bed ion exchange resin layer is filled in the lower part of the desalination tower, and the cation exchange resin left in the resin storage tank is filled in the upper part of the desalination tower, and then the desalination process is started again, and the anion exchange resin is A condensate treatment method characterized in that the cation exchange resin and anion exchange resin left in the regeneration tower are returned to the cation exchange resin regeneration tower and reused in the cation exchange resin regeneration tower. 2. The backwash separation of the resin in the cation exchange resin regeneration tower is performed by using the anion exchange resin dedicated to the backwash separation and the cation exchange resin also dedicated to the backwash separation for each batch of the regeneration process in the cation exchange resin regeneration tower. The condensate treatment method according to claim 1, wherein the condensate treatment method is carried out by returning and mixing from an anion exchange resin regeneration tower. 3. The step of returning the resin from the anion exchange resin regeneration tower first transfers the anion exchange resin in the upper part of the anion exchange resin regeneration tower to the cation exchange resin regeneration tower, and then transports the fine cation exchange resin in the cation exchange resin layer. The condensate according to claim 1 or 2, wherein the cation exchange resin is removed by backwashing to the outside of the anion exchange resin regeneration tower, and then transferred to the cation exchange resin regeneration tower. Processing method. 4. The resin regeneration step in the cation exchange resin regeneration tower is performed by replenishing an amount of new resin corresponding to the amount discharged outside the anion exchange resin regeneration tower when the resin is returned. The condensate treatment method according to scope 3. 5. Only when the return process interferes with the backwash separation of the anion exchange resin and cation exchange resin in the anion exchange resin regeneration tower, after performing the operation to remove fine cation exchange resin, remove the remaining part. Claim 3 or 4 is carried out by transferring the normal crystal cation exchange resin to the cation exchange resin regeneration tower.
Condensate treatment method described in section. 6. The resin regeneration step in the anion exchange resin regeneration tower is carried out by passing a caustic soda aqueous solution only through the anion exchange resin layer, and during the passage, water is introduced from the lower end of the cation exchange resin layer. The condensate treatment method according to claim 1, 2, 3, 4, or 5, wherein:
JP54148465A 1979-11-16 1979-11-16 Condensate treatment method Expired JPS5841913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54148465A JPS5841913B2 (en) 1979-11-16 1979-11-16 Condensate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54148465A JPS5841913B2 (en) 1979-11-16 1979-11-16 Condensate treatment method

Publications (2)

Publication Number Publication Date
JPS5673594A JPS5673594A (en) 1981-06-18
JPS5841913B2 true JPS5841913B2 (en) 1983-09-16

Family

ID=15453351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54148465A Expired JPS5841913B2 (en) 1979-11-16 1979-11-16 Condensate treatment method

Country Status (1)

Country Link
JP (1) JPS5841913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421212Y2 (en) * 1988-08-26 1992-05-14
CN104445519A (en) * 2014-11-27 2015-03-25 董双剑 Multistage synchronous mixed bed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128091A (en) * 2018-01-24 2019-08-01 三菱日立パワーシステムズ株式会社 Power plant operation method and thermal power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421212Y2 (en) * 1988-08-26 1992-05-14
CN104445519A (en) * 2014-11-27 2015-03-25 董双剑 Multistage synchronous mixed bed
CN104445519B (en) * 2014-11-27 2017-08-11 董双剑 A kind of multistage synchronous mixed bed

Also Published As

Publication number Publication date
JPS5673594A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US3531401A (en) Method of regenerating ion exchangers
US3385787A (en) Condensate purification process
US3862032A (en) Ion exchange waste water treatment process
US3583908A (en) Condensate purification process
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JPS5841913B2 (en) Condensate treatment method
JPH0312952B2 (en)
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3614995B2 (en) Condensate demineralizer
KR100499644B1 (en) Method and apparatus for recycling ion-exchange resin of condensate polishing plants
CN109979635A (en) Novel presurized water reactor Steam Generators in NPP blowdown water treatment system
JP2005296748A (en) Condensate demineralizer and its regeneration method
JPS5817884A (en) Treatment of condensate
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger
JPS6265785A (en) Treatment of condensate
JPS5813229B2 (en) Condensate treatment method
JPS5966354A (en) Regeneration of ion-exchange resin
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JP2001079424A (en) Equipment and method for regenerating ion exchange resin
JPH0363439B2 (en)
JPS6211916B2 (en)
JPH026893A (en) Condensate desalting device
JPS6153117B2 (en)
JPS5811272B2 (en) Condensate treatment method