JPS59136141A - Regenerating method of ion exchange resin for condensate desalting device - Google Patents

Regenerating method of ion exchange resin for condensate desalting device

Info

Publication number
JPS59136141A
JPS59136141A JP58009828A JP982883A JPS59136141A JP S59136141 A JPS59136141 A JP S59136141A JP 58009828 A JP58009828 A JP 58009828A JP 982883 A JP982883 A JP 982883A JP S59136141 A JPS59136141 A JP S59136141A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
regeneration
ion exchange
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009828A
Other languages
Japanese (ja)
Inventor
Yusaku Nishimura
勇作 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58009828A priority Critical patent/JPS59136141A/en
Publication of JPS59136141A publication Critical patent/JPS59136141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To maintain high desalting performance for a long time and to decrease the amt. of the waste liquid of regeneration to be produced from resin regeneration in a titled regenerating method in nuclear power generation by passing chemicals through anion and cation exchange resins respectively in upward current to regenerate said resins. CONSTITUTION:The ion exchange resins having the decreased desalting performance in a desalting column 5 are transferred into an ion exchange resin regenerating column 8, where the resins are separated to anion and cation exchange resins 9, 10 according to a difference in specific gravity by the water 15 and air 16 injected into said column. The resin 9 is transferred into an anion exchange resin regenerating column 11, where the resin is regenerated in upward current by caustic soda 13. The resin 10 is regenerated in upward current by a sulfuric acid 12 in the column 9. The regenerated resins are transferred to a resin mixing column 14 where the resins 9, 10 are mixed and thereafter the resin mixture is again packed in the column 5. Condensate 17 is treated and feed water 18 is obtd.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は復水脱塩装置のイオン交換樹脂再生方法に係シ
、特に原子力発電における復水の脱塩に使用した樹脂の
再生に好適な復水脱塩装置のイオン交換樹脂再生方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for regenerating an ion exchange resin for a condensate desalination device, and in particular to a method for regenerating an ion exchange resin used in condensate desalination in nuclear power generation. The present invention relates to a method for regenerating an ion exchange resin for a water desalination device.

〔従来技術〕[Prior art]

原子炉、特に沸騰水型原子炉において、−次系機器、配
管の腐食によシ腐食生成物が発生し炉内での放射化を誦
で機器配管内に付着することにより、プラント?fs量
率が上昇することが問題となっている。このため、復水
浄化系において腐食生成物を極力除去し、該腐食生成物
の炉内持込量を低減する仁とが重要である。
In nuclear reactors, especially boiling water reactors, corrosion products are generated due to corrosion of sub-system equipment and piping. The problem is that the fs quantity rate increases. Therefore, it is important to remove as much corrosion products as possible in the condensate purification system and reduce the amount of corrosion products brought into the furnace.

第1図は従来の沸騰水型原子炉の系統概要例を示したも
のである。原子炉圧力容器1から出た蒸気は高圧タービ
ン2及び低圧タービン3を経て復水器4で凝縮水となる
。復水器4.タービン3と給水ヒータ6を連結する抽気
系7及び給水ヒータ6等で発生した腐食生成物(鉄、コ
バルト等のイオン及び酸化物)は、復水中の不純物とな
り復水脱塩塔5で脱塩され、給水ヒータ6を通り原子炉
圧力容器1に戻シ循環される。なお、通常復水器4は海
水等によシ冷却されている。
FIG. 1 shows an example of a system outline of a conventional boiling water reactor. Steam discharged from the reactor pressure vessel 1 passes through a high-pressure turbine 2 and a low-pressure turbine 3, and becomes condensed water in a condenser 4. Condenser 4. Corrosion products (ions and oxides of iron, cobalt, etc.) generated in the extraction system 7 that connects the turbine 3 and the feedwater heater 6 and the feedwater heater 6 become impurities in the condensate and are desalinated in the condensate demineralization tower 5. The water is then circulated through the feed water heater 6 and back to the reactor pressure vessel 1. Note that the condenser 4 is normally cooled by seawater or the like.

ところで、復水脱塩塔5で除去されなかった不純物は原
子炉へ持込まれ、ここで放射化されることになる。最近
、上記給水系から原子炉内へ持込まれる不純物の一つで
ある鉄の低減を図ることにより、原子カプラントの線量
上昇率を低減し得ることが明確となり、給水持込鉄の目
標f:1ppb以下と呻るようになってきている。この
ため、復水脱塩塔5の高性能化が要求されている。一方
、復水脱塩塔5は復水器4での冷却用海水のリーク等の
緊急時を想定し、L(型陽イオンA!、僕樹脂とOH型
陰イオン交換樹脂を混合充填した樹脂量、数m3/塔の
ものが数基設置されている。
By the way, impurities that are not removed in the condensate demineralization tower 5 are carried into the nuclear reactor, where they are activated. Recently, it has become clear that the rate of increase in dose in the nuclear couplant can be reduced by reducing iron, which is one of the impurities brought into the reactor from the water supply system, and the target f: 1 ppb for iron brought into the feed water. I'm starting to moan like this. For this reason, there is a demand for higher performance of the condensate demineralization tower 5. On the other hand, the condensate demineralization tower 5 is filled with L (type cation A!, a mixture of Boku resin and OH type anion exchange resin) in case of an emergency such as a leak of cooling seawater in the condenser 4. Several units with a volume of several m3/tower have been installed.

ところで、沸騰水型原子カプラントにおける従来からの
復水脱塩塔の樹脂再生は、復水、給水ラインの汚染を避
けるため復水脱塩塔より樹脂を取出(7、別途再生する
塔外再生方式が一般的であり、これらの樹脂再生に伴う
再生廃液等の廃棄物量の増大が問題となっている。
By the way, conventional resin regeneration in a condensate demineralization tower in a boiling water atomic coupler plant involves removing resin from the condensate demineralization tower in order to avoid contamination of condensate and water supply lines (7. Out-of-column regeneration method in which resin is regenerated separately). are common, and an increase in the amount of waste such as recycled waste liquid accompanying the recycling of these resins has become a problem.

第2図は上記従来の塔外再生方式による混床式復水脱塩
装置の再生系統を示しだものでるる。脱塩塔5の脱塩性
能の低下したイオン交換樹脂はイオン交換樹脂再生塔8
に移送され、注入される用水15.空気16により、こ
こでイオン交換樹脂は比重差に応じて隈イオン交換樹脂
9と陽イオン交換樹脂10に分離される。分離された陰
イオン交換樹脂9は陰イオン交換樹脂再生塔11に移送
される。イオン交換樹脂再生塔8で陽イオン交換樹脂1
0は硫酸12により下向流再生され、陰イオン変換樹脂
再生塔11で、陰イオン交換樹脂9は苛性ソーダ13で
下向流再生される。再生樹脂は樹脂混合塔14に移送さ
れ、ここで陽イオン交換樹脂と陰イオン交換樹脂を混合
した後、再び復水脱塩塔5に充填され、復水17を処理
し給水18を得る。
FIG. 2 shows the regeneration system of the mixed bed type condensate desalination apparatus using the conventional outside-column regeneration method. The ion exchange resin whose desalination performance has decreased in the desalination tower 5 is transferred to the ion exchange resin regeneration tower 8.
15. The ion exchange resin is separated here by the air 16 into a ion exchange resin 9 and a cation exchange resin 10 according to the difference in specific gravity. The separated anion exchange resin 9 is transferred to an anion exchange resin regeneration tower 11. Cation exchange resin 1 in ion exchange resin regeneration tower 8
0 is regenerated in a downward flow with sulfuric acid 12, and anion exchange resin 9 is regenerated in a downward flow with caustic soda 13 in an anion conversion resin regeneration tower 11. The regenerated resin is transferred to the resin mixing tower 14, where the cation exchange resin and anion exchange resin are mixed, and then packed into the condensate demineralization tower 5 again, where the condensate 17 is treated and feed water 18 is obtained.

上記のような従来の復水脱塩装置では、脱塩性能の低下
した樹脂を陰イオン交換樹脂9と陽イオン交換樹脂10
とに分離した後、陽イオン交換樹脂10を硫酸、陰イオ
ン交換樹脂9を苛性ソーダでそれぞれ再生し、陽イオン
交換樹脂10の対立イオンをH型、陰イオン交換樹脂9
の対立イオンeOHmとして再利用している。ここで、
復水17中の不純物としては、機器配管の腐食により生
ずる鉄、銅、コバルト等の金属イオン及び微粒子(クラ
ッド)並びに、復水器での海水リークによるナトリウム
イオン、塩素イオン等であるにのため、脱塩性能の低ド
した樹脂の対立イオンは、陽イオン交換樹脂10では鉄
、銅、コバルトで1陰イオン交換樹脂9では塩素等とな
る。このような不純物のうち、特に鉄等の重金属の放射
性物質は半減期が長く、復水からの高度の除去が必要で
あシ、こ7tには樹脂の脱塩性能を常に商レベルに維持
しておかなければならない。
In the conventional condensate desalination equipment as described above, resins with reduced desalination performance are separated into anion exchange resin 9 and cation exchange resin 10.
After separation, the cation exchange resin 10 is regenerated with sulfuric acid and the anion exchange resin 9 is regenerated with caustic soda.
It is reused as the opposite ion eOHm. here,
Impurities in condensate 17 include metal ions such as iron, copper, and cobalt and fine particles (crud) caused by corrosion of equipment piping, as well as sodium ions and chloride ions caused by seawater leaks in the condenser. The opposing ions of the resin with low desalting performance are iron, copper, and cobalt for the cation exchange resin 10, and chlorine for the anion exchange resin 9. Among these impurities, radioactive substances, especially heavy metals such as iron, have long half-lives and require high-level removal from condensate. I have to keep it.

このため、脱塩性能の低下した陽、陰イオン交換樹脂は
再生塔において長屋の再生剤により再生されているが、
再生効率が十分でないとか、再生廃液量が多い等の問題
があった。
For this reason, cationic and anionic exchange resins with reduced desalination performance are regenerated using Nagaya's regenerating agent in the regeneration tower.
There were problems such as insufficient regeneration efficiency and large amount of recycled waste liquid.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高脱塩性能全長時間維持し、樹脂再生
に伴う再生廃液量を低減した復水脱塩装置のイオン交換
樹脂再生方法を提供することにある。
An object of the present invention is to provide a method for regenerating an ion exchange resin for a condensate desalination apparatus, which maintains high desalination performance for a long period of time and reduces the amount of recycled waste liquid accompanying resin regeneration.

〔発明の概要〕[Summary of the invention]

本発明は、復水の処理によシ脱塩性能の低下したイオン
交換樹脂の再生において、復水脱塩塔でのイオン交換樹
脂充填層内の復水中不純物の捕捉状態を考慮し効果的な
再生が行えるよう、イオン交換樹脂の粒径分布によシ生
ずる静水中の樹脂沈降速度の差を利用し、再生時に樹脂
層が固定ノーを保った状態で再生剤を上向流で通薬する
ことによシ、脱塩性能の低下したイオン交換樹脂の効果
的な再生を可能にすることにより、上記の目的を達成す
るものである。
The present invention provides an effective way to regenerate ion exchange resins whose desalination performance has deteriorated due to condensate treatment, by taking into account the state of capture of impurities in condensate in the ion exchange resin packed bed in the condensate demineralization tower. In order to perform regeneration, the regenerant is passed in an upward flow while the resin layer remains fixed during regeneration by utilizing the difference in resin sedimentation speed in still water caused by the particle size distribution of the ion exchange resin. In particular, the above object is achieved by making it possible to effectively regenerate ion exchange resins whose desalination performance has deteriorated.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第3図は復水の処理を行った後、再生操作に入る直前の
復水脱塩塔でのイオン交換樹脂充填層内の復水中不純物
の捕捉状態を示すものである。通常、復水脱塩器は大量
の復水を高速で処理するため樹脂層の安定状態が保てる
下向流で通水してい/h程度と高速であるため樹脂層内
で実際にイオン交換反応の起っているイオン交換帯20
の巾は数十(7)もある。イオン交換樹脂層底部から捕
捉不純物の漏出が起ると(イオン交換帯の先端が樹脂充
填層の底部に達した時)不純物の原子炉持込みを極力少
なくするため直ちに再生操作に入る。このため再生状態
に入った樹脂には一部未汚染(不純物を捕捉していすく
、不純物捕捉能を有しているンの樹脂21を含んでいる
。イオン交換樹脂の再生は逆洗展開し陽、陰イオン交換
樹脂に分離した後、それぞれ酸、アルカリで通薬再生さ
れる。
FIG. 3 shows the state of capture of impurities in the condensate in the ion exchange resin packed bed in the condensate demineralization tower immediately before starting the regeneration operation after the condensate has been treated. Normally, a condensate demineralizer processes a large amount of condensate at high speed, so the water is passed in a downward flow that keeps the resin layer in a stable state.Because the water is so fast as to keep the resin layer stable, ion exchange reactions actually occur within the resin layer. Ion exchange zone 20 where
The width is several tens (7). When trapped impurities leak from the bottom of the ion exchange resin bed (when the tip of the ion exchange zone reaches the bottom of the resin packed bed), regeneration operations are immediately initiated to minimize the amount of impurities carried into the reactor. For this reason, the resin that has entered the regenerated state contains some uncontaminated resin 21 (which has the ability to capture impurities).Ion exchange resin regeneration is carried out by backwashing and positive After separating into anion exchange resin, they are regenerated by passing with acid and alkali, respectively.

ここでも、通常再生速度を高められる下向流再生が行わ
れている。
Here, too, downward flow regeneration is performed, which usually increases the regeneration speed.

この様な従来の復水脱塩器での復水処理及び樹脂の再生
方法を詳測に検討した結果、下記の事柄が判明した。す
なわち復水脱塩器に充填されるイオン交換樹脂の粒径が
分布を持っておシ、通常300へ一1200μm程度で
あシ、このため静水中での沈降速度に差が生じ、復水脱
塩器へ充填した状態では沈降速度の速い大粒径樹脂が充
填層底部に、沈降速度の遅い小粒径樹脂が充填層上部に
存在する。このため、第3図から分るように、イオン交
換樹脂の再生操作に入るとさ、充填層底部の大粒径樹脂
はまだ汚染されていないことが分る。
As a result of detailed investigation into the condensate treatment and resin regeneration methods in such conventional condensate demineralizers, the following points were found. In other words, the particle size of the ion exchange resin filled in the condensate demineralizer has a distribution, and is usually about 300 to 1,200 μm, which causes a difference in sedimentation rate in still water, resulting in a difference in condensate demineralization. When packed in a salt chamber, large particle size resin with a fast settling rate is present at the bottom of the packed bed, and small particle size resin with a slow settling rate is present at the top of the packed bed. Therefore, as can be seen from FIG. 3, when the ion exchange resin regeneration operation is started, it is found that the large particle diameter resin at the bottom of the packed bed is not yet contaminated.

この状態の樹脂を逆洗展開し陽、陰イオン交換樹脂に分
離した後、それぞれの再生塔に移送し充填した後、薬液
を下向流で通水して再生しているが、この状態でも沈降
速度の速い大粒径の樹脂は樹脂層底部に、沈降速度の遅
い小粒径の樹脂は樹脂層上部にあシ、高汚染の樹脂が上
層に、未汚染の樹脂が底部にある。このため下向流で通
薬すると、上層の高汚染樹脂が順次再生され、これに伴
い再生廃液が底部に整向し未汚染の樹脂が順次汚染され
るため、再生効率が悪く、かつ、多量の再生剤を必要と
する。
After the resin in this state is backwashed and separated into cationic and anionic exchange resins, it is transferred to each regeneration tower and filled, and then the chemical solution is passed through in a downward flow for regeneration. Large particle size resin with a fast settling rate is at the bottom of the resin layer, small particle size resin with a slow settling rate is at the top of the resin layer, highly contaminated resin is at the top layer, and uncontaminated resin is at the bottom. For this reason, when the drug is passed in a downward flow, the highly contaminated resin in the upper layer is sequentially regenerated, and the recycled waste liquid is directed to the bottom and the uncontaminated resin is sequentially contaminated, resulting in poor regeneration efficiency and a large amount of Requires regenerating agent.

第4図は本発明の復水脱塩装置の再生方法を適用した塔
外再生方式による混床式復水脱塩装置のイオン交換樹脂
再生系統を示した説明図である。
FIG. 4 is an explanatory diagram showing an ion exchange resin regeneration system of a mixed bed type condensate desalination apparatus using an external regeneration method to which the method for regenerating a condensate desalination apparatus of the present invention is applied.

脱塩塔5の脱塩性能の低下したイオン交換樹脂はイオン
交換樹脂再生塔8に移送され、注入される用水15、空
気16によシ、ここでイオン交換樹脂は比重差に応じて
陰イオン交換樹脂9と陽イオン交換樹脂10に分離され
る。分離された陰イオン交換樹脂9は陰イオン交換樹脂
再生塔11に移送される。イオン交換樹脂再生塔8で陽
イオン交換樹脂10は硫酸12により上向流再生され、
陰イオン交換樹脂再生塔11で、陰イオン交換樹脂9は
苛性ソーダ13で上向流再生される。再生樹脂は樹脂混
合塔14に移送され、ここで陽イオン交換樹脂と陰イオ
ン交換樹脂を混合した後、再び復水脱塩塔5に充填され
、復水17′f:処理し給水18f:得る。
The ion exchange resin whose desalination performance has decreased in the desalination tower 5 is transferred to the ion exchange resin regeneration tower 8, where the ion exchange resin is converted into anions according to the difference in specific gravity. It is separated into an exchange resin 9 and a cation exchange resin 10. The separated anion exchange resin 9 is transferred to an anion exchange resin regeneration tower 11. In the ion exchange resin regeneration tower 8, the cation exchange resin 10 is regenerated in an upward flow with sulfuric acid 12,
In the anion exchange resin regeneration tower 11 , the anion exchange resin 9 is regenerated in an upward flow with caustic soda 13 . The regenerated resin is transferred to the resin mixing tower 14, where the cation exchange resin and anion exchange resin are mixed, and then charged into the condensate demineralization tower 5 again, where the condensate 17'f is treated and the feed water 18f is obtained. .

上記のように脱塩性能の低下した樹脂の再生において、
通薬再生を上向流で行うことにより、未汚染の樹脂を汚
染することなく、更に向流再生が行なえるので、ド向流
再生に比べ再生し易く、低レベル再生(薬液使用量少ン
で高い再生率が得られ、再生廃液量の減少と脱塩性能の
低下を妨げることが出来る。ここで、J向流再生におい
て、樹脂層の浮上が起ると効果的な再生が行えない。こ
のため上向流の流速は樹脂の浮上が起らず固定層状態を
保ちうる値でなければならない。従来のド向流再生にお
ける通薬速度はイオン交換再生反応を十分性わせるため
1 m / h程度と遅く、この程度の流速であれば上
向流でも樹脂の浮上は起らず、従来と同程度の再生時間
で効果的な樹脂の再生が行える。
In the regeneration of resins whose desalination performance has deteriorated as described above,
By performing chemical regeneration in an upward flow, countercurrent regeneration can be performed without contaminating uncontaminated resin, making regeneration easier and lower-level regeneration (lower chemical usage) than in countercurrent regeneration. A high regeneration rate can be obtained, and a reduction in the amount of recycled waste liquid and deterioration of desalination performance can be prevented.In J countercurrent regeneration, if the resin layer floats up, effective regeneration cannot be performed. For this reason, the flow velocity of the upward flow must be such that the resin does not float and maintains a fixed bed state.The chemical passing velocity in conventional countercurrent regeneration is 1 m to ensure sufficient ion exchange regeneration reaction. /h, and at this flow rate, the resin will not float even with an upward flow, and the resin can be effectively regenerated in the same regeneration time as conventional methods.

〔発明の効果〕〔Effect of the invention〕

以上前述した如く本発明の復水脱塩装置のイオン交換樹
脂再生方法によれば、高説塩性能を長時間維持し、樹脂
再生に伴う再生廃液量を低減することができる。
As described above, according to the ion exchange resin regeneration method for a condensate desalination apparatus of the present invention, high salt performance can be maintained for a long time and the amount of regenerated waste liquid accompanying resin regeneration can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の沸騰水型原子力発電プラントの概略構成
図、第2図は従来の塔外再生方式にょる混床式復水脱塩
装置の再生系統を示した構成図、第3図は復水処理後の
イオン交換樹脂層の不純物イオンの捕捉状態を示す図、
第4図は本発明の復水脱塩装置の再生方法を示す構成図
である。 訃・・脱塩塔、8・・・イオン交換樹脂再生塔、9・・
・陰イオン交換樹脂、10・・・陽イオン交換樹脂、1
2・・・硫酸、13・・・苛性ソーダ、14・・・樹脂
混合塔、15・・・用水、16・・・空気、17・・・
復水、18・・・給水。
Figure 1 is a schematic configuration diagram of a conventional boiling water nuclear power plant, Figure 2 is a configuration diagram showing the regeneration system of a mixed bed condensate desalination equipment using the conventional out-of-column regeneration method, and Figure 3 is A diagram showing the capture state of impurity ions in the ion exchange resin layer after condensate treatment,
FIG. 4 is a block diagram showing the method for regenerating the condensate desalination apparatus of the present invention. Death...Demineralization tower, 8...Ion exchange resin regeneration tower, 9...
・Anion exchange resin, 10...Cation exchange resin, 1
2... Sulfuric acid, 13... Caustic soda, 14... Resin mixing tower, 15... Water, 16... Air, 17...
Condensate, 18... Water supply.

Claims (1)

【特許請求の範囲】[Claims] ■、陽イオン交換樹脂と陰イオン交換樹脂を混合充填し
た混床式脱塩器における脱塩性能の低下したイオン交換
樹脂の薬品再生において、混合状態の陽、陰イオン交換
樹脂を展開分離した後、樹脂層が固定床状態を保つ条件
下で陽、陰イオン交換樹脂の通薬再生をそれぞれ上向流
で行うことを特徴とする復水脱塩装置のイオン交換樹脂
再生方法。
■, In chemical regeneration of ion exchange resins with degraded desalination performance in a mixed bed demineralizer filled with a mixture of cation exchange resins and anion exchange resins, after the mixed state of cation and anion exchange resins are expanded and separated. A method for regenerating an ion exchange resin for a condensate desalination apparatus, characterized in that the cation and anion exchange resins are regenerated in an upward flow under conditions where the resin layer remains in a fixed bed state.
JP58009828A 1983-01-26 1983-01-26 Regenerating method of ion exchange resin for condensate desalting device Pending JPS59136141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009828A JPS59136141A (en) 1983-01-26 1983-01-26 Regenerating method of ion exchange resin for condensate desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009828A JPS59136141A (en) 1983-01-26 1983-01-26 Regenerating method of ion exchange resin for condensate desalting device

Publications (1)

Publication Number Publication Date
JPS59136141A true JPS59136141A (en) 1984-08-04

Family

ID=11730989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009828A Pending JPS59136141A (en) 1983-01-26 1983-01-26 Regenerating method of ion exchange resin for condensate desalting device

Country Status (1)

Country Link
JP (1) JPS59136141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126943A (en) * 1988-11-06 1990-05-15 Kotobuki Kogyo Kk Method for regenerating ion-exchange resin of mixed-bed deionizer
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126943A (en) * 1988-11-06 1990-05-15 Kotobuki Kogyo Kk Method for regenerating ion-exchange resin of mixed-bed deionizer
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant

Similar Documents

Publication Publication Date Title
JP4931178B2 (en) Condensate desalination method and apparatus
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPS595015B2 (en) How to clean ion exchange resin
US4039443A (en) Condensate purification process
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JPS5815016B2 (en) How to clean ion exchange resin
JP2001314855A (en) Condensed water desalting apparatus
JPS59183398A (en) Maintenance system of condensate desalt tower
JPS5841913B2 (en) Condensate treatment method
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPS6159794B2 (en)
JPS58153580A (en) Method for regeneration of desalting device for condensate
JP3671454B2 (en) Performance recovery method for anion exchange resin in condensate demineralizer
JP2898125B2 (en) Regeneration method of cation exchange resin in condensate desalination equipment
JP2001079424A (en) Equipment and method for regenerating ion exchange resin
JPH0214114B2 (en)
JPS58216776A (en) Mixed bed desalting column of condensate and operating method thereof
JPS61234951A (en) Regenerating method for anion exchange resin in mixed bed type condensate desalting method
JPS5966354A (en) Regeneration of ion-exchange resin
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPS5919551A (en) Retrenchment of regenerating agent during regeneration of ion-exchange resin, reduction of total solid part and apparatus therefor
JP2002159867A (en) Method for regenerating anion-exchange resin
JPS59186685A (en) Resin transfer system to desalting tower of condensed water
JPS6059013B2 (en) How to regenerate mixed ion exchange resin
JPH0777599A (en) Processing method of radioactive liquid