JPH0249784B2 - ANMONIAOFUKUMUFUKUSUINODATSUENHOHO - Google Patents

ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Info

Publication number
JPH0249784B2
JPH0249784B2 JP57086008A JP8600882A JPH0249784B2 JP H0249784 B2 JPH0249784 B2 JP H0249784B2 JP 57086008 A JP57086008 A JP 57086008A JP 8600882 A JP8600882 A JP 8600882A JP H0249784 B2 JPH0249784 B2 JP H0249784B2
Authority
JP
Japan
Prior art keywords
resin
exchange resin
tower
transferred
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57086008A
Other languages
Japanese (ja)
Other versions
JPS58216743A (en
Inventor
Taizo Sugyama
Takeshi Tsurumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP57086008A priority Critical patent/JPH0249784B2/en
Publication of JPS58216743A publication Critical patent/JPS58216743A/en
Publication of JPH0249784B2 publication Critical patent/JPH0249784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は復水の脱塩方法に関し、詳しくは復
水を混床式脱塩塔を用いて脱塩する方法に関す
る。 火力発電所や原子力発電所における発電用水は
高純度のものが要求されるため、復水はアニオン
交換樹脂およびカチオン交換樹脂からなる混床式
脱塩塔で脱塩処理されている。この脱塩塔ではア
ニオン交換樹脂はOH形で使用され、その再生は
アルカリと接触することにより行われ、またカチ
オン交換樹脂はH形で使用され、その再生は酸と
接触することにより行われる。 混床の再生は、まずアニオン交換樹脂とカチオ
ン交換樹脂とを分離することから開始されるが、
この分離が完全に行われないと、再生後に脱塩に
供されたとき、不純物の漏出量が多くなり種々の
害を及ぼす。例えばアニオン交換樹脂中にカチオ
ン交換樹脂が混入すると、水酸化ナトリウム等の
アルカリによる再生でカチオン交換樹脂がNa形
となり、この樹脂を使つて脱塩を行うとナトリウ
ムイオンが放出され、ボイラーチユーブやタービ
ンに腐食障害を引き起こす。また、カチオン交換
樹脂中にアニオン交換樹脂が混入すると、塩酸や
硫酸などの酸による再生でアニオン交換樹脂が
C1形またはSO4形となり、この樹脂を使つて脱塩
を行うと塩素イオンまたは硫酸イオンが放出さ
れ、腐食障害やスケール障害を引き起こす。 従来、この混床を塔外再生するにあたり、被分
離再生樹脂を分離再生塔に移送し、塔下部から上
向流通水して樹脂層を展開することにより、アニ
オン交換樹脂とカチオン交換樹脂との比重の差を
利用して分離していた。しかし両樹脂の境界付近
では分離が不完全であつたため、カチオン交換樹
脂中へのアニオン交換樹脂の混入による弊害とア
ニオン交換樹脂中へのカチオン交換樹脂の混入に
よる弊害とを、はかりにかけて弊害の少ない前者
を選び、分離再生塔にはカチオン交換樹脂層上部
に若干のアニオン交換樹脂を残留させ、カチオン
交換樹脂のほとんど混入していないアニオン交換
樹脂をアニオン再生塔に移送し、分離再生塔およ
びアニオン再生塔に、それぞれ酸およびアルカリ
を通液して再生したのち、再生した樹脂は樹脂貯
槽に移送し、脱塩に供するまで待機していた。 この方法では、前述のように、分離再生塔には
カチオン交換樹脂層上部にアニオン交換樹脂を残
留させるため、そのアニオン交換樹脂は再生時に
塩形たとえばC1形となり、脱塩に供すると塩素
イオンの漏出が多かつた。このため、分離再生塔
において、上向流通水により両樹脂を成層分離
し、境界付近の分離の不完全な中間層は、樹脂受
槽に一時移送し、再生したカチオン交換樹脂の樹
脂貯槽への移送が終了した分離再生塔に戻し、次
回の被分離再生樹脂と一緒にして分離再生を行う
方法が提案されているが、中間層の一時仮置のた
め樹脂受槽が必要であり、また樹脂量のバランス
を保つため中間層に相当する余分の樹脂が必要と
なり、さらに操作が煩雑であつた。 また、これら問題点を解決するものとして上向
流通水により両樹脂を成層分離し、分離した樹脂
の中間層を再生することなく、次回の脱塩に供す
ることが提案されている。 しかし、これは成層分離した各樹脂を移送して
完全に隔離することなく同一塔内で再生するた
め、上下2本のコレクターおよびそのシール等を
必要とし、高価かつ複雑になると共に、中間層に
与える弊害を完全に除去することは困難であつ
た。 本発明は、上向流通水による成層分離の際に、
境界付近の分離の不完全な中間層を再生すること
が樹脂を汚染することであることに着目し、簡単
な操作で付帯設備を設けることなく再生を行い、
もつて復水の処理水を向上させる方法を提案する
ことを目的とするものである。 本発明はアンモニアを含む復水を混床式脱塩塔
に通水して脱塩し、脱塩塔内の負荷したイオン交
換樹脂を塔外再生するにあたり、前記樹脂を分離
再生塔に移送し、上向流通水によりアニオン交換
樹脂のみの上層、アニオン交換樹脂とカチオン交
換樹脂とが混合している中層、カチオン交換樹脂
のみの下層の三層に成層分離し、さらに上向流通
水して樹脂層を展開させながら分離再生塔中部に
設けた樹脂排出口から、上層はアニオン再生塔
に、中層は樹脂貯槽に移送し、下層は残留させて
三層を完全に隔離し、中層は再生せずアニオン交
換樹脂はアルカリ、カチオン交換樹脂は酸で各々
再生することから成る復水を混床式脱塩塔で脱塩
する方法において、分離再生塔およびアニオン再
生塔内の再生したカチオン交換樹脂およびアニオ
ン交換樹脂を樹脂貯槽に移送して中層と混合し、
さらにこの樹脂貯槽内の樹脂を脱塩塔に移送して
脱塩に供することを特徴とするアンモニアを含む
復水の脱塩方法である。 本発明法では、まず常法に従い混床式脱塩塔で
使用したアニオン交換樹脂およびカチオン交換樹
脂の混合物を分離再生塔に移送し、塔下部から上
向流通水して樹脂層を展開させ、アニオン交換樹
脂とカチオン交換樹脂との比重差を利用して、ア
ニオン交換樹脂のみの上層、アニオン交換樹脂と
カチオン交換樹脂とが混合している中層およびカ
チオン交換樹脂のみの下層の三層に成層分離す
る。次に従来法では、上層をアニオン再生塔に移
送し、分離再生塔には、中層および下層を残留さ
せていたが、本発明では、上層をアニオン再生塔
に移送したのち、中層を樹脂貯槽に移送し、分離
再生塔には下層を残留させる。移送は塔下部から
移送水を上向流通水して樹脂層を展開しながら、
塔中部から排出することにより行う。 このようにして各層を他の層から隔離し、アニ
オン再生塔および分離再生塔にそれぞれの再生剤
を通液する。再生は常法に従つて行い、上層であ
るアニオン交換樹脂を収容しているアニオン再生
塔には2〜10%程度の水酸化ナトリウム溶液等の
アルカリを通液し、下層であるカチオン交換樹脂
を収容している分離再生塔には2〜10%程度の塩
酸または硫酸等の酸を通液して行い、その後押出
し、水洗を行う。再生を終つた上層および下層は
それぞれ樹脂貯槽へ移送する。樹脂貯槽には、既
に中層が収容されているが、この中層と再生され
た上層および下層とを混合して、脱塩に供するた
めに待機する。 本発明では、中層は再生されないけれど、本発
明の処理対象である復水はアンモニアを主たる含
有成分とするものであるから、中層中のアニオン
交換樹脂はほとんどOH形であり、カチオン交換
樹脂はNH4形になつている。したがつて、従来
法のように中層を再生剤と接触させることによ
り、中層中のアニオン交換樹脂をカチオン交換樹
脂再生剤によりCl形またはSO4形にしてしまうお
それが全くない。NH4形になつているカチオン
交換樹脂は復水中のアンモニウムイオンを捕捉で
きないだけであり、それ自体害はない。加えて、
中層は全体のせいぜい5%程度であり、脱塩塔の
イオン交換容量をほとんど低下させることがな
い。 本発明は、原子力発電所、特に加圧水型原子力
発電所の二次冷却水系における復水処理に有効で
ある。この系では、復水の処理水純度もさること
ながら、処理水中のNa+/Cl-(モル比)が0.7〜
0.3に制御することが要求される。これは蒸気発
生器の細管において、ナトリウムイオンの濃縮が
起り、水酸化ナトリウムによる細管の脆化を引き
起すことを防止するためである。すなわち、処理
水中のナトリウムイオンを極力、低くするととも
に極微量存在するナトリウムイオンに対して、対
イオンとして塩素イオンを確保し、水酸化ナトリ
ウムの生成を抑制するためである。 前述の従来法では、処理水中のナトリウムイオ
ン濃度は低くすることができるが、塩素イオン濃
度は高く、またNa+/Cl-(モル比)も0.3〜0.1で
あり、要求値を満足することができなかつたが、
本発明によれば、常時複数の脱塩塔を用い、これ
に復水を分配して並列に脱塩している通常の発電
所の場合、複数の脱塩塔のうち必要数の脱塩塔に
本発明の運転方法を採用し、他塔を従来法の運転
方法を採用することにより、処理水水質、Na+
Cl-(モル比)の両方を要求に合わせることができ
る。複数の脱塩塔のうち、何塔を本発明法で運転
するかは復水の水質により決定するが、通常は5
塔のうち2塔程度である。 すなわち、数個の混床式脱塩塔に復水を分配し
て並列に通水する復水の脱塩方法について、少な
くとも1塔の脱塩には再生法により再生したイ
オン交換樹脂を充填して脱塩に供し、他の脱塩塔
には再生法により再生したイオン交換樹脂を充
填して脱塩に供する。 再生法は、本発明における再生法であり、脱
塩塔内の負荷したイオン交換樹脂を塔外再生する
にあたり、前記樹脂を分離再生塔に移送し、上向
流通水によりアニオン交換樹脂のみの上層、アニ
オン交換樹脂とカチオン交換樹脂とが混合してい
る中層、カチオン交換樹脂のみの下層の三層に成
層分離し、上層はアニオン再生塔に移送してアル
カリで再生し、中層は樹脂貯槽に移送し、残留し
た下層は酸で再生し、分離再生塔およびアニオン
再生塔内の再生したカチオン交換樹脂およびアニ
オン交換樹脂を樹脂貯槽に移送し、さらにこの樹
脂貯槽内の樹脂を脱塩塔に移送して脱塩に供する
ものである。 再生法は、従来法における再生法であり、脱
塩塔内の負荷したイオン交換樹脂を塔外再生する
にあたり、前記樹脂を分離再生塔に移送し、上向
流通水によりアニオン交換樹脂のみの上層、アニ
オン交換樹脂とカチオン交換樹脂とが混合してい
る中層、カチオン交換樹脂のみの下層の三層に成
層分離し、上層はアニオン再生塔に移送してアル
カリで再生し、残留した中層および下層は酸で再
生し、分離再生塔およびアニオン再生塔内の再生
したカチオン交換樹脂およびアニオン交換樹脂を
樹脂貯槽に移送し、さらにこの樹脂貯槽内の樹脂
を脱塩塔に移送して脱塩に供するものである。こ
れは本発明の運転方法によれば、処理水中のナト
リウムイオンおよび塩素イオンの濃度を共に低く
することができるが、Na+/Cl-(モル比)を必ず
しも0.7〜0.3にすることができないので、微量の
塩素イオンの確保を他塔を従来法で運転すること
により行うためであり、それぞれの処理水を混合
することによつて要求を満足することができる。 以上本発明を説明したが、本発明は三層に分離
した各樹脂を完全に隔離して中層を除く各樹脂を
再生した後、全樹脂を混合して脱塩に供するもの
である。これによつて、 中間層を一時仮置するための槽が不要である
と共に、再生塔に移送するための配管、弁等が
不要となる。また、コレクタ等を複数設けたり
しなくて良いので安価である。更にまた既存の
設備でも再生後、混合した樹脂を脱塩塔に移送
するよう配管を変更するだけで良く改良も簡単
である。 アニオン、カチオンの両樹脂を完全に隔離し
て再生したものと、中層の各樹脂全てを混合移
送して次回の脱塩に供することができるので樹
脂量のバランスが常に一定に保たれると共に、
中層は再生剤と接触させないので、中層中のア
ニオン交換樹脂をカチオン交換樹脂再生剤によ
りCl形またはSO4形にしてしまうおそれが全く
なく、また逆に中層中のカチオン交換樹脂をア
ニオン交換樹脂再生剤によりNa形にしてしま
うおそれが全くない。 従つて、脱塩効率の低下がなく、PWRにみ
られるような厳しい要求にも対応することがで
きると共に、中間層に相当する余分の樹脂等不
要であり操作性が良く長期間の連続運転も効率
良く行うことが可能となる。 という優れた効果が得られる。 実施例 1 復水の一部を内径3000mmの脱塩塔で脱塩処理し
た。脱塩塔にはH形に再生したカチオン交換樹脂
ダイヤイオンPK228(三菱化成工業株式会社製、
商登商標)7000lおよびOH形に再生したアニオン
交換樹脂ダイヤイオンPA3123300lを充填して脱
塩に使用した。再生にあたり、まず負荷した樹脂
混合物を内径2200mmの分離再生塔に移送し、塔下
部から線速度(LV)15m/hで純水を上向流通
水して上層、中層および下層に成層分離し、さら
に上向流通水して樹脂層を展開させながら分離再
生塔中部に設けられた排出口から上層の樹脂
3100lを内径1800mmのアニオン再生塔に移送し、
次に中層の樹脂300lを内径2300mmの樹脂貯槽に移
送し、アニオン再生塔には5%水酸化ナトリウム
を再生レベル200g−NaOH/l−Rで通液し、
分離再生塔には5%塩酸を再生レベル140g−
HCl/l−Rで通液して再生し、次いでそれぞれ
押出、水洗を行なつた。再生後の各樹脂を樹脂貯
槽に移送し、中層の樹脂と混合して脱塩塔に戻
し、復水を通水して処理水を得た。結果を第1表
に示す。また、比較のため中層を樹脂貯槽へ移送
せずに分離再生塔に残留させ下層とともに塩酸と
接触させる従来法の場合も併せて第1表に示し
た。
The present invention relates to a method for desalinating condensate, and more particularly to a method for desalinating condensate using a mixed bed desalination tower. Since water for power generation in thermal power plants and nuclear power plants is required to be of high purity, condensate is desalinated in a mixed-bed desalination tower made of anion exchange resin and cation exchange resin. In this demineralization tower, the anion exchange resin is used in the OH form, the regeneration of which takes place by contacting with an alkali, and the cation exchange resin is used in the H form, the regeneration of which takes place by contacting with an acid. Regeneration of the mixed bed begins by separating the anion exchange resin and cation exchange resin.
If this separation is not carried out completely, when desalination is performed after regeneration, a large amount of impurities will leak out, causing various harms. For example, if a cation exchange resin is mixed into an anion exchange resin, the cation exchange resin becomes the Na form when regenerated with an alkali such as sodium hydroxide, and when desalination is performed using this resin, sodium ions are released, which can be used in boiler tubes and turbines. cause corrosion damage. In addition, if anion exchange resin is mixed into cation exchange resin, the anion exchange resin will be regenerated by acid such as hydrochloric acid or sulfuric acid.
It becomes C1 form or SO 4 form, and when this resin is used for desalination, chloride ions or sulfate ions are released, causing corrosion and scale damage. Conventionally, when regenerating this mixed bed outside the tower, the resin to be separated and regenerated is transferred to the separation and regeneration tower, and the resin layer is developed by flowing water upward from the bottom of the tower, thereby separating the anion exchange resin and cation exchange resin. They were separated using the difference in specific gravity. However, since separation was incomplete near the boundary between the two resins, we weighed the harm caused by the mixing of the anion exchange resin into the cation exchange resin and the harm caused by the mixing of the cation exchange resin into the anion exchange resin, and found that the problem was less harmful. By choosing the former, some anion exchange resin remains in the upper part of the cation exchange resin layer in the separation and regeneration tower, and the anion exchange resin containing almost no cation exchange resin is transferred to the anion regeneration tower. After regenerating the resin by passing acid and alkali through the tower, the regenerated resin was transferred to a resin storage tank and waited until it was desalted. In this method, as mentioned above, since the anion exchange resin remains in the upper part of the cation exchange resin layer in the separation and regeneration tower, the anion exchange resin becomes a salt form, for example, a C1 form, during regeneration, and when subjected to desalting, it becomes a chlorine ion. There were many leaks. For this reason, in the separation and regeneration tower, both resins are stratified and separated using upward flowing water, and the incompletely separated intermediate layer near the boundary is temporarily transferred to a resin receiving tank, and the regenerated cation exchange resin is transferred to a resin storage tank. A method has been proposed in which the separation and regeneration is carried out by returning the resin to the separation and regeneration tower after the completion of the separation and regeneration together with the resin to be separated and regenerated next time, but this method requires a resin receiving tank for temporary storage of the intermediate layer, and also requires a In order to maintain balance, an extra resin corresponding to the intermediate layer was required, and furthermore, the operation was complicated. In addition, as a solution to these problems, it has been proposed to stratify and separate both resins using upward flowing water, and to use the separated intermediate layer of the resin for the next desalination without regenerating it. However, this method requires two collectors (upper and lower) and their seals, etc., because each layer of resin is transferred and regenerated in the same tower without being completely isolated, making it expensive and complicated. It has been difficult to completely eliminate the harmful effects caused by this. In the present invention, during stratified separation by upward flowing water,
Focusing on the fact that regenerating the incompletely separated intermediate layer near the boundary can contaminate the resin, we performed regeneration with simple operations and without the need for additional equipment.
The purpose of this study is to propose a method for improving the quality of treated condensate water. The present invention desalinates condensate containing ammonia by passing it through a mixed-bed demineralization tower, and when regenerating the loaded ion exchange resin in the demineralization tower outside the tower, the resin is transferred to a separation and regeneration tower. , the upward flow of water causes the layer to separate into three layers: an upper layer containing only anion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a lower layer containing only cation exchange resin. While developing the layers, the upper layer is transferred to the anion regeneration tower, the middle layer is transferred to the resin storage tank from the resin outlet provided in the middle of the separation and regeneration tower, the lower layer is left to completely isolate the three layers, and the middle layer is not regenerated. In a method of desalting condensate in a mixed bed desalination tower, in which the anion exchange resin is regenerated with an alkali and the cation exchange resin is regenerated with an acid, the regenerated cation exchange resin and anions in the separation regeneration tower and the anion regeneration tower are The exchange resin is transferred to a resin storage tank and mixed with the middle layer,
The method for desalinating condensate containing ammonia is further characterized in that the resin in the resin storage tank is transferred to a desalination tower and subjected to desalination. In the method of the present invention, first, a mixture of anion exchange resin and cation exchange resin used in a mixed bed demineralization tower is transferred to a separation and regeneration tower according to a conventional method, and water is allowed to flow upward from the bottom of the tower to develop a resin layer. Utilizing the difference in specific gravity between anion exchange resin and cation exchange resin, the layer is separated into three layers: an upper layer containing only anion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a lower layer containing only cation exchange resin. do. Next, in the conventional method, the upper layer was transferred to the anion regeneration tower, and the middle and lower layers were left in the separation and regeneration tower. However, in the present invention, after the upper layer is transferred to the anion regeneration tower, the middle layer is transferred to the resin storage tank. The lower layer remains in the separation and regeneration tower. The transfer is carried out by flowing water upward from the bottom of the tower to develop the resin layer.
This is done by discharging from the middle of the tower. In this way, each layer is isolated from other layers, and the respective regenerants are passed through the anion regeneration tower and the separation and regeneration tower. Regeneration is carried out according to a conventional method, and an alkali such as a 2 to 10% sodium hydroxide solution is passed through the anion regeneration tower containing the anion exchange resin in the upper layer to remove the cation exchange resin in the lower layer. This is carried out by passing about 2 to 10% acid such as hydrochloric acid or sulfuric acid through the separation and regeneration tower, which is then extruded and washed with water. The upper layer and lower layer that have been regenerated are each transferred to a resin storage tank. The resin storage tank already contains the middle layer, and the middle layer is mixed with the regenerated upper layer and lower layer, and the mixture is on standby for desalination. In the present invention, although the middle layer is not regenerated, since the condensate that is the target of the present invention contains ammonia as its main component, the anion exchange resin in the middle layer is mostly in the OH form, and the cation exchange resin is in the NH form. It has 4 shapes. Therefore, by bringing the middle layer into contact with a regenerant as in the conventional method, there is no possibility that the anion exchange resin in the middle layer will be converted into Cl form or SO 4 form by the cation exchange resin regenerant. Cation exchange resins in the NH 4 form simply cannot capture ammonium ions in condensate, and are not harmful in themselves. In addition,
The middle layer accounts for at most 5% of the total, and does not substantially reduce the ion exchange capacity of the desalting tower. The present invention is effective for condensate treatment in the secondary cooling water system of nuclear power plants, particularly pressurized water nuclear power plants. In this system, in addition to the purity of the condensate treated water, the Na + /Cl - (molar ratio) in the treated water is 0.7~
It is required to control to 0.3. This is to prevent concentration of sodium ions in the tubes of the steam generator from causing embrittlement of the tubes due to sodium hydroxide. That is, the purpose is to reduce the sodium ions in the treated water as much as possible, secure chlorine ions as counter ions to the very small amount of sodium ions present, and suppress the production of sodium hydroxide. In the conventional method described above, the sodium ion concentration in the treated water can be lowered, but the chlorine ion concentration is high, and the Na + /Cl - (molar ratio) is 0.3 to 0.1, making it difficult to meet the required values. I couldn't do it, but
According to the present invention, in the case of a normal power plant that always uses a plurality of desalination towers and desalinates condensate in parallel, the necessary number of desalination towers among the plurality of desalination towers can be By adopting the operating method of the present invention for one tower and using the conventional operating method for other towers, the quality of treated water, Na + /
Both Cl - (molar ratio) can be adjusted to requirements. The number of desalination towers to be operated according to the method of the present invention is determined by the quality of condensate water, but usually 5 desalination towers are used.
There are about 2 of the towers. In other words, for a condensate desalination method in which condensate is distributed to several mixed-bed desalination towers and passed in parallel, at least one tower is desalinated by filling it with an ion exchange resin regenerated by a regeneration method. The other desalting tower is filled with ion exchange resin regenerated by the regeneration method and subjected to desalting. The regeneration method is a regeneration method in the present invention, in which the loaded ion exchange resin in the demineralization tower is regenerated outside the tower, the resin is transferred to the separation and regeneration tower, and the upper layer containing only the anion exchange resin is separated by upward flowing water. The mixture is stratified into three layers: a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a lower layer containing only cation exchange resin.The upper layer is transferred to an anion regeneration tower and regenerated with alkali, and the middle layer is transferred to a resin storage tank. Then, the remaining lower layer is regenerated with acid, and the regenerated cation exchange resin and anion exchange resin in the separation and regeneration tower and anion regeneration tower are transferred to a resin storage tank, and the resin in this resin storage tank is further transferred to a demineralization tower. and then subjected to desalination. The regeneration method is a conventional regeneration method, in which the loaded ion exchange resin in the demineralization tower is regenerated outside the tower, the resin is transferred to the separation and regeneration tower, and the upper layer containing only the anion exchange resin is separated by upward flowing water. , the middle layer is a mixture of anion exchange resin and cation exchange resin, and the lower layer is made up of only cation exchange resin.The upper layer is transferred to an anion regeneration tower and regenerated with alkali, and the remaining middle layer and lower layer are A system in which the cation exchange resin and anion exchange resin are regenerated with an acid, and the regenerated cation exchange resin and anion exchange resin in the separation and regeneration tower and anion regeneration tower are transferred to a resin storage tank, and then the resin in this resin storage tank is transferred to a demineralization tower for desalination. It is. This is because according to the operating method of the present invention, the concentrations of both sodium ions and chloride ions in the treated water can be lowered, but the Na + /Cl - (molar ratio) cannot necessarily be kept at 0.7 to 0.3. This is because trace amounts of chlorine ions are secured by operating other towers in a conventional manner, and the requirements can be met by mixing the respective treated waters. The present invention has been described above, and the present invention completely separates each resin separated into three layers, regenerates each resin except for the middle layer, and then mixes all the resins and subjects them to desalination. This eliminates the need for a tank for temporarily storing the intermediate layer, and also eliminates the need for piping, valves, etc. for transferring the intermediate layer to the regeneration tower. Furthermore, since there is no need to provide multiple collectors, etc., the cost is low. Furthermore, even existing equipment can be easily improved by simply changing the piping to transfer the mixed resin to the demineralization tower after regeneration. Both the anionic and cationic resins can be completely separated and regenerated, and all the resins in the middle layer can be mixed and transferred for the next desalination, so the balance of the resin amount can always be kept constant.
Since the middle layer is not brought into contact with the regenerant, there is no risk that the anion exchange resin in the middle layer will be converted into Cl form or SO 4 form by the cation exchange resin regenerant, and conversely, the cation exchange resin in the middle layer will not be in contact with the anion exchange resin. There is no risk of it being turned into Na form by the agent. Therefore, there is no decrease in desalination efficiency, and it can meet the strict requirements seen in PWR. It also eliminates the need for extra resin equivalent to an intermediate layer, and has good operability and can be operated continuously for long periods of time. This can be done efficiently. This excellent effect can be obtained. Example 1 A part of the condensate was desalinated in a desalination tower with an inner diameter of 3000 mm. In the desalination tower, a cation exchange resin Diaion PK228 (manufactured by Mitsubishi Chemical Industries, Ltd., manufactured by Mitsubishi Chemical Corporation,
Trademark) 7000l and anion exchange resin Diaion PA3123300l regenerated into OH form were filled and used for desalination. For regeneration, the loaded resin mixture is first transferred to a separation and regeneration tower with an inner diameter of 2200 mm, and pure water is passed upward from the bottom of the tower at a linear velocity (LV) of 15 m/h to separate into upper, middle, and lower layers. Furthermore, while the water flows upward and develops the resin layer, the upper layer of resin is removed from the outlet provided in the middle of the separation and regeneration tower.
Transfer 3100l to an anion regeneration tower with an inner diameter of 1800mm,
Next, 300 liters of resin in the middle layer was transferred to a resin storage tank with an inner diameter of 2300 mm, and 5% sodium hydroxide was passed through the anion regeneration tower at a regeneration level of 200 g-NaOH/l-R.
The separation and regeneration tower contains 5% hydrochloric acid at a regeneration level of 140g.
The mixture was regenerated by flowing HCl/l-R, and then extruded and washed with water, respectively. Each resin after regeneration was transferred to a resin storage tank, mixed with the resin in the middle layer, and returned to the desalination tower, and condensate was passed through it to obtain treated water. The results are shown in Table 1. For comparison, Table 1 also shows the case of the conventional method in which the middle layer is not transferred to the resin storage tank but left in the separation and regeneration tower and brought into contact with hydrochloric acid together with the lower layer.

【表】 実施例 2 実施例1と同様の脱塩塔を5塔を用い、2塔は
実施例1と同様に運転し、残り3塔を従来法で運
転し処理水を混合したところ、ナトリウムイオン
濃度は0.02mg/m3、塩素イオン濃度は0.084mg/
m3となりNa+/Cl-(モル比)は0.37であつた。
[Table] Example 2 Five desalination towers were used as in Example 1, two towers were operated in the same manner as in Example 1, and the remaining three towers were operated in the conventional manner and treated water was mixed. Ion concentration is 0.02mg/ m3 , chloride ion concentration is 0.084mg/m3.
m 3 and the Na + /Cl - (molar ratio) was 0.37.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニアを含む復水を混床式脱塩塔に通水
して脱塩し、脱塩塔内の負荷したイオン交換樹脂
を塔外再生するにあたり、前記樹脂を分離再生塔
に移送し、上向流通水によりアニオン交換樹脂の
みの上層、アニオン交換樹脂とカチオン交換樹脂
とが混合している中層、カチオン交換樹脂のみの
下層の三層に成層分離し、さらに上向流通水して
樹脂層を展開させながら分離再生塔中部に設けた
樹脂排出口から、上層はアニオン再生塔に、中層
は樹脂貯槽に移送し、下層は残留させて三層を完
全に隔離し、中層は再生せずアニオン交換樹脂は
アルカリ、カチオン交換樹脂は酸で各々再生する
方法において、分離再生塔およびアニオン再生塔
内の再生したカチオン交換樹脂およびアニオン交
換樹脂を樹脂貯槽に移送して中層と混合し、さら
にこの樹脂貯槽内の樹脂を脱塩塔に移送して脱塩
に供することを特徴とするアンモニアを含む復水
の脱塩方法。
1. Condensate containing ammonia is desalinated by passing through a mixed-bed desalination tower, and when the loaded ion exchange resin in the desalination tower is regenerated outside the tower, the resin is transferred to a separation and regeneration tower, Water flows in the opposite direction to separate the layers into three layers: an upper layer containing only anion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a lower layer containing only cation exchange resin, and then water flows upward to separate the resin layer. While expanding, the upper layer is transferred to the anion regeneration tower, the middle layer is transferred to the resin storage tank from the resin outlet provided in the middle of the separation and regeneration tower, the lower layer is left behind to completely isolate the three layers, and the middle layer is not regenerated but anion exchanged. In a method in which the resin is regenerated with an alkali and the cation exchange resin with an acid, the regenerated cation exchange resin and anion exchange resin in the separation regeneration tower and the anion regeneration tower are transferred to a resin storage tank and mixed with the middle layer, and then the regenerated resin is transferred to the resin storage tank. A method for desalinating condensate containing ammonia, characterized in that the resin contained therein is transferred to a desalination tower and subjected to desalination.
JP57086008A 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO Expired - Lifetime JPH0249784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57086008A JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57086008A JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Publications (2)

Publication Number Publication Date
JPS58216743A JPS58216743A (en) 1983-12-16
JPH0249784B2 true JPH0249784B2 (en) 1990-10-31

Family

ID=13874662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57086008A Expired - Lifetime JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Country Status (1)

Country Link
JP (1) JPH0249784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780422A (en) * 2010-03-05 2010-07-21 南京中电联环保股份有限公司 Four-tower mixed ion exchanger resin external separation regeneration method
DE102013012202A1 (en) * 2013-07-23 2015-01-29 Veolia Water Solutions & Technologies Support A method for regenerating a mixed bed filter and apparatus for carrying out such a method

Also Published As

Publication number Publication date
JPS58216743A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
US3385787A (en) Condensate purification process
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
JP2001215294A (en) Condensate demineralizer
US4564455A (en) Three component resin system and method for purifying aqueous solutions
US3414508A (en) Condensate purification process
JPH0249784B2 (en) ANMONIAOFUKUMUFUKUSUINODATSUENHOHO
US3203873A (en) Process for scale prevention in saline water evaporator
US3458440A (en) Demineralization of polar liquids
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JPH09276862A (en) Condensed water desalting apparatus
US3317424A (en) Demineralization of polar liquids, especially water
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP3215471B2 (en) Method and apparatus for regenerating ion exchange resin
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JPS59183398A (en) Maintenance system of condensate desalt tower
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPS5813229B2 (en) Condensate treatment method
JPS5966354A (en) Regeneration of ion-exchange resin
JPH026893A (en) Condensate desalting device
JPS6054102B2 (en) Resin regeneration equipment for condensate desalination equipment
JP3051005B2 (en) Method of adjusting Na / Cl molar ratio of condensate desalination unit