JPS58216743A - Desalting method of condensate - Google Patents

Desalting method of condensate

Info

Publication number
JPS58216743A
JPS58216743A JP57086008A JP8600882A JPS58216743A JP S58216743 A JPS58216743 A JP S58216743A JP 57086008 A JP57086008 A JP 57086008A JP 8600882 A JP8600882 A JP 8600882A JP S58216743 A JPS58216743 A JP S58216743A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
tower
anion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57086008A
Other languages
Japanese (ja)
Other versions
JPH0249784B2 (en
Inventor
Taizo Sugiyama
杉山 太三
Takeshi Tsurumi
鶴見 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP57086008A priority Critical patent/JPH0249784B2/en
Publication of JPS58216743A publication Critical patent/JPS58216743A/en
Publication of JPH0249784B2 publication Critical patent/JPH0249784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To improve the treated water of condensate in passing condensate to a mixed bed type desalting column and desalting the same by transferring an upper layer to an anion regeneration column the transferring a middle layer into a resin layer. CONSTITUTION:A mixture of the anion exhange resin and cation exchange resin used in a mixed bed type desalting column is transferred into a sepn. and regeneration column, where the resin layers are developed by the water passed in upward current from the lower part to separate the resin layers to the three layers; the upper layer contg. only the anion exchange resin and cation exchange resin, the middle layer contg. a mixture of the anion exhange resin and cation exchange resin and the lower layer contg. only the cation exchange resin. After the upper layer is transferred into an anion regeneration tower, the middle layer is stransferred into a resin storage tank, and the lower layer is allowed to remain in the separation and regeneration tower. The transfer is accomplished by flowing the transfer water in upward current from the lowr part of the column and discharging the resin layer while developing the same from the mid-part of the column.

Description

【発明の詳細な説明】 この発明は復水の脱塩方法に関し、畦しくは復水會混床
式脱塩塔會用いて脱塩する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desalinating condensate, and more particularly to a method for desalinating condensate using a mixed-bed desalination tower.

火力発電用や原子力発電所における発電用水は高純厳の
ものが賛求さ扛るため、復水はアニオン交換樹脂および
カチオン交換樹脂からなる混床式脱塩塔で脱塩処理され
ている。この脱塩塔ではアニオン交換樹脂はOR形で使
用され、その再生はアルカリと接触することによシ行わ
れ、またカチオン交換樹脂はH形で使用され、その再生
は酸と接触することにより行われる。
High purity water is required for power generation in thermal power generation and nuclear power plants, so condensate is desalinated in a mixed-bed desalination tower made of anion exchange resin and cation exchange resin. In this demineralization tower, the anion exchange resin is used in the OR form, the regeneration of which takes place by contacting with an alkali, and the cation exchange resin is used in the H form, the regeneration of which takes place by contacting with an acid. be exposed.

混床の再生は、まずアニオン交換樹IJiffとカブオ
ン交換樹脂とを分離することから開始されるか、この分
離が完全に行われないと、■生後に脱塩に供されたとき
、不純物の漏出舊が多くなシ種々の害を及はす。例えは
アニオン交換樹Qif中にカチオン交換樹脂が混入する
と、水酸化ットリウム等のアルカリによる再生で力・4
4)tI換桐脂がNa形となり、この樹脂をfす・  
・り)t^1tを行うとナトリウムイオンが放出され、
ボイラテー−ブやタービンに腐食障害を引き起こす。
Regeneration of the mixed bed must first begin by separating the anion exchange resin IJiff and the cabion exchange resin, or if this separation is not completed, impurities may leak out when subjected to desalination after birth. The large number of stems causes various kinds of harm. For example, if a cation exchange resin is mixed into an anion exchange tree Qif, it can be regenerated with an alkali such as tttrium hydroxide to
4) The tI-converted tung fat becomes Na form, and this resin is
・Ri) When performing t^1t, sodium ions are released,
Causes corrosion damage to boiler tapes and turbines.

また、カチオン交換樹脂中にアニオン交換樹脂が混入す
ると、塩酸や硫酸などの酸による再生でアニオン交換樹
脂がCk形またはSO2形となり、との樹脂を便って脱
塩を行うと塩素イオンまたは硫酸イオンが放出され、腐
食障害やスケール障害を引き起こす。
In addition, if an anion exchange resin is mixed into a cation exchange resin, the anion exchange resin becomes Ck type or SO2 type when regenerated with an acid such as hydrochloric acid or sulfuric acid, and when desalted using the resin, chloride ions or sulfuric acid Ions are released and cause corrosion and scale damage.

従来、この混床を塔外再生するにあたり、被分離再生樹
脂を分離再生塔に移送し、塔1部から上向流通水して樹
脂層を展開することにより、アニオン交換樹脂とカチオ
ン交換樹脂との比重の差を利用して分離していた。しか
し両樹脂の境界付近では分離が不完全であったため、カ
チオン交換樹脂中へのアニオン交換樹脂の混入による弊
害とアニオン交換樹脂甲へのカチオン交換樹脂の混入に
よる弊害とを、はかりにかけて弊害の少ない前者を選ひ
、分pt&S生塔にはカチオン交換樹脂j−上部に若干
のアニオン交換樹脂を残留芒せ、カチオン交換樹脂のr
hとんど混入していないアニオン交換樹脂をアニオン再
生塔に移送し、分離再生塔およびアニオン再生塔に、そ
れぞれ酸νよびアルカリを通液して再生したのち、再生
した樹脂は樹脂貯槽に移送12、脱塩に供するまで待機
していた。
Conventionally, when regenerating this mixed bed outside the tower, the resin to be separated and regenerated is transferred to the separation and regeneration tower, and the resin layer is developed by flowing water upward from the first part of the tower, thereby separating the anion exchange resin and cation exchange resin. They were separated using the difference in specific gravity. However, because separation was incomplete near the boundary between the two resins, we weighed the harm caused by the mixing of the anion exchange resin into the cation exchange resin and the harm caused by the mixing of the cation exchange resin into the anion exchange resin A. Choosing the former, in the PT&S raw tower, some anion exchange resin remained on the top of the cation exchange resin j, and the cation exchange resin r
h Transfer the anion exchange resin with almost no contamination to the anion regeneration tower, and regenerate it by passing acid v and alkali through the separation regeneration tower and anion regeneration tower, respectively, and then transfer the regenerated resin to the resin storage tank. 12. Waited until desalting.

この方法では、前述のように、分離再生塔にはカチオン
交換樹脂層上部にアニオン交換樹脂を残留させるため、
そのアニオン交換樹脂は再生時に塩形たとえはC!形と
なり、脱塩に供すると塩素イオンの漏出が多かった。こ
のため、分離再生塔において、上向流通水によシ両樹脂
を成層分離し、境界付近の分離の不完全な中間層は、樹
脂受槽に一時移送し、再生したカチオン交換樹脂の樹脂
貯槽への移送か終了した分離再生塔に戻し、次回の被分
離再生樹脂と一緒にして分離再生を行う方法が提案され
ているが、中間層の一時仮置のため樹脂受槽が必要であ
り、また樹脂iのバラン7を保つため中間層に相当する
余分の樹脂が必要となり、さらに操作が煩雑であった。
In this method, as mentioned above, since the anion exchange resin remains in the separation and regeneration tower above the cation exchange resin layer,
When the anion exchange resin is regenerated, the salt form is C! When subjected to desalination, a large amount of chlorine ions leaked out. For this reason, in the separation and regeneration tower, both resins are stratified and separated by upward flowing water, and the incompletely separated intermediate layer near the boundary is temporarily transferred to a resin receiving tank, and then transferred to the resin storage tank for the regenerated cation exchange resin. A method has been proposed in which the resin is returned to the separation and regeneration tower after completion of the transfer, and the resin is separated and regenerated together with the resin to be separated and regenerated next time.However, a resin receiving tank is required for temporary storage of the intermediate layer, and the resin In order to maintain the balance 7 of i, an extra resin corresponding to the intermediate layer was required, and the operation was further complicated.

本発明は、上向流通水による成層分離の際に、境界付近
の分離の不完全な中間層音再生することか樹脂を汚染す
ることであることに着目し、簡単な操作で付帯設備を設
けることなく再生を行い、もって復水の処理水を向上さ
せる方法を提案することを目的とするものである。
The present invention focuses on the fact that during stratification separation using upward flowing water, the incomplete separation near the boundary reproduces the sound of the middle layer, which contaminates the resin, and provides ancillary equipment with simple operations. The purpose of this study is to propose a method for improving treated condensate water by regenerating it without any waste water.

復水を混床式脱塩塔に通水して脱塩し、脱塩塔内の負荷
したイオン交換樹脂を塔外再生するにあたシ、前記樹脂
を分離再生塔に移送し、上向流通水によシアニオン交換
樹脂のみの上層、アニオン交換樹脂とカチオン交換樹脂
とが混合している中層、カチオン交換樹脂の与の下層の
三層に成層分離し、上層はアニオン再生塔に移送してア
ルカリで再生し、中層#′i樹脂貯檜に移送し、残留し
た下層は酸で再生し、分離再生塔およびアニオン再生塔
内の再生したカチオン交換樹脂h・よびアニオン交換樹
脂を樹脂貯槽に移送し、さらにこの樹脂貯槽内の樹脂を
脱塩塔に移送して脱塩に供することを特徴とする復水の
脱塩方法である@ 本発明法では、まず常法に従い混床式脱塩塔で使用した
アニオン交換樹脂およびカチオン交換樹脂の混合物を分
離再生塔に移送し、塔下部から上向流通水して樹脂層を
展開させ、7ニオン交換樹脂とカチオン交換樹脂との比
重差を利用して、アニオン交換樹脂のみの上層、アニオ
ン交換樹脂とカチオン交換樹脂とが混合している中層お
よびカチオン交換樹脂のみの)層の三層に成層分離する
。次に従来法では、上層をアニオン再生塔に移送し、分
M拘生塔には、中層および下層を残留させていたが、本
発明では、上層をアニオン再生塔に移送したのち、中層
を樹脂貯槽に移送し、分離再生塔には下層を残留させる
。移送は塔下部から移送水を上向流通水して樹脂層を展
開しながら、塔中部から排出することによシ行う。
The condensate is desalinated by passing through a mixed-bed desalination tower, and the loaded ion exchange resin in the demineralization tower is regenerated outside the tower.The resin is transferred to a separation and regeneration tower and then The flowing water separates into three layers: an upper layer containing only cyanion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a lower layer containing cation exchange resin, and the upper layer is transferred to an anion regeneration tower. Regenerate with alkali and transfer to the middle layer #'i resin storage barrel, regenerate the remaining lower layer with acid, and transfer the regenerated cation exchange resin h and anion exchange resin in the separation regeneration tower and anion regeneration tower to the resin storage tank. This condensate desalination method is characterized by further transferring the resin in this resin storage tank to a demineralization tower for desalination. The mixture of anion exchange resin and cation exchange resin used in 7 is transferred to a separation and regeneration tower, and water is passed upward from the bottom of the tower to develop a resin layer, making use of the difference in specific gravity between the 7 anion exchange resin and the cation exchange resin. Then, the mixture is separated into three layers: an upper layer containing only anion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and a layer containing only cation exchange resin. Next, in the conventional method, the upper layer was transferred to the anion regeneration tower, and the middle and lower layers were left in the separation tower. However, in the present invention, after the upper layer is transferred to the anion regeneration tower, the middle layer is It is transferred to a storage tank, and the lower layer remains in the separation and regeneration tower. The transfer is carried out by flowing the transferred water upward from the lower part of the tower to develop the resin layer and discharging it from the middle part of the tower.

このようにして各層を他の層から隔離し、アニオン再生
塔h・よび分離p)住塔にそれぞれ□の再主剤を通液す
る。再生は常法に従って行い、上層であるアニオン交換
樹脂を収容しているアニオン再生塔には2〜10%程度
の水酸化ナトリウム溶液等のアルカリを通液し、下層で
あるカチオン交換樹脂を収容している分離再生塔には2
〜10%程度の塩酸または硫酸等の酸を通液して行い、
その後押出し、水洗を行う、再生を終った上層νよび下
層はそれぞれ樹脂貯槽へ移送する。樹脂貯槽には、既に
中層が収容されているか、この中層と再生された上層お
よび下層とを混合して、脱塩に供するために待機する。
In this way, each layer is isolated from other layers, and □ of the main reagent is passed through the anion regeneration tower (h) and the separation tower (p), respectively. Regeneration is carried out according to a conventional method, and an alkali such as a 2 to 10% sodium hydroxide solution is passed through the anion regeneration tower containing the anion exchange resin in the upper layer, and the cation exchange resin in the lower layer is passed through the anion regeneration tower. The separation and regeneration tower has two
This is done by passing an acid such as ~10% hydrochloric acid or sulfuric acid,
Thereafter, extrusion and water washing are performed, and the regenerated upper layer ν and lower layer are each transferred to a resin storage tank. The resin reservoir already contains the middle layer, or the middle layer is mixed with the regenerated upper and lower layers and is ready for desalination.

本発明では、中層は再生されないけれど、復水は通常ア
ンモニアを生たる含有成分とするものであるから、中層
中のアニオン交換樹脂は#IとんどOH形であり、カチ
オン交換樹脂ははとんどNH3形になっているので、従
来法のように中層中のアニオン交換樹脂をカチオン交換
樹脂再生剤によシC8形lたは804形にしてし逢うお
それが全くない。NkLa形になっているカチオン交換
樹脂は後水中のアンモニウムイオンを捕捉できないだけ
でsb、それ自体害はない。加えて、中層は全体のせい
ぜい5層程度でl)、脱塩塔のイオン交換容量をほとん
ど低下させることがない。
In the present invention, although the middle layer is not regenerated, since the condensate usually contains ammonia as a component, the anion exchange resin in the middle layer is mostly #I OH type, and the cation exchange resin is extremely Since it is in the NH3 form, there is no risk that the anion exchange resin in the middle layer will be converted to the C8 type or 804 type by the cation exchange resin regenerant as in the conventional method. The cation exchange resin in the NkLa form is not harmful in itself, just because it cannot capture ammonium ions in the afterwater. In addition, since the middle layer consists of at most five layers in total, the ion exchange capacity of the desalting tower is hardly reduced.

不発明は、原子力発電所、特に加圧水型原子力発電所の
二次冷却水系に2ける復水処理に有効である。この糸で
は、復水の処理水純度もさることながら、処理水中のN
a /C13(モル比)が0.7〜03に制御すること
が敦求される。これは蒸気発生器の細管において、ナト
リウムイオンの濃縮が起シ、水酸化すi IJウムによ
る細管の脆化を引き起すことを防止するためである。
The invention is effective for condensate treatment in secondary cooling water systems of nuclear power plants, particularly pressurized water nuclear power plants. This thread not only improves the purity of the condensate treated water, but also reduces the amount of N in the treated water.
It is required to control a/C13 (molar ratio) to 0.7-03. This is to prevent concentration of sodium ions in the thin tubes of the steam generator from causing embrittlement of the thin tubes due to sodium hydroxide.

すなわち、処理水中のナトリウムイオンを極力、低くす
るとともに極微量存在するナトリウムイオンに対して、
対イオンとして塩素イオンを確保し、水酸化ナトリウム
の生成を抑制するためである。
In other words, while reducing the sodium ions in the treated water as much as possible,
This is to secure chlorine ions as counter ions and suppress the production of sodium hydroxide.

前述の従来法では、処理水中のナトリウムイオン濃度は
低くすることができるが、塩素イオン線度は高く、また
Na″−/CI3  (モル比)も03〜01でめシ、
賛求値を満足することができなかったが、本発明によれ
ば、常時複数の脱塩塔を用い、これに復水を分配して並
列に脱塩している通常の発電所の場合、複数の脱塩塔の
うち必要数の脱塩塔に本発明の運転方法を採用し、他塔
を従来法の運転方法を採用することによし、処理水水質
、Na /C13(モル比)の両方を要求に合わせるこ
とができる。複数の脱塩塔のうち、側塔を本発明法で運
転するかは復水の水質によシ決定するが、通常は5塔の
うち2基稈度である。
In the conventional method described above, the sodium ion concentration in the treated water can be lowered, but the chlorine ion linearity is high, and the Na''-/CI3 (molar ratio) is between 03 and 01.
Although it was not possible to satisfy the approval value, according to the present invention, in the case of a normal power plant that always uses multiple desalination towers and desalinates condensate in parallel, By adopting the operating method of the present invention for the required number of desalting towers out of a plurality of desalting towers and using the conventional operating method for the other towers, the quality of treated water and Na/C13 (molar ratio) can be improved. Both can be tailored to your needs. Of the plurality of desalination towers, whether or not the side towers are operated according to the method of the present invention depends on the water quality of the condensate, but usually two of the five towers are fertile.

すなわち、数個の混床式脱塩塔に復水を分配して並列に
通流゛法について、少なくとも1塔の脱塩には再生法I
によシ再生したイオン交換樹脂を充横して脱塩に供し、
他の脱塩塔には再生法■によシ再生したイオン交換樹脂
を充填して脱塩に供する。
That is, regarding the method of distributing condensate to several mixed-bed desalination towers and flowing them in parallel, regeneration method I is used for desalination of at least one tower.
The regenerated ion-exchange resin is poured and subjected to desalination.
The other desalting tower is filled with the ion exchange resin regenerated by the regeneration method ① and used for desalting.

再生法Iは、本発明にあ・ける再生法であり、脱塩塔内
の只荷したイオン交換樹脂を塔外再生するにあたり、前
記樹脂を分*再生塔に移送し、上向流通水によシアニオ
ン交換樹脂のみの上層、アニオン交換樹脂とカチオン交
換側脂とが混合している中層、カナオン9.挾樹脂のみ
のf油の三層に成層分離し、上層はアニオン再生塔に移
送してアルカリで再生し、中層は樹脂貯槽IC移送し、
IA留した1層は酸で再生し、分離再生塔2よびアニオ
ン再生塔内の再生したカチオン交換樹脂およびアニオン
交換樹脂を樹脂貯槽に移送し、さらにこの樹脂貯槽内の
樹脂を脱塩塔に移送して脱塩に供するものである。
Regeneration method I is a regeneration method according to the present invention, in which the ion exchange resin loaded in the desalination tower is regenerated outside the tower, the resin is transferred to the regeneration tower, and the resin is transferred to the upward flowing water. An upper layer containing only a cyanion exchange resin, a middle layer containing a mixture of an anion exchange resin and a cation exchange resin, and a Kanaon 9. Separate into three layers of f oil containing only resin, the upper layer is transferred to an anion regeneration tower and regenerated with alkali, the middle layer is transferred to a resin storage tank IC,
The first layer subjected to IA distillation is regenerated with acid, and the regenerated cation exchange resin and anion exchange resin in the separation and regeneration tower 2 and anion regeneration tower are transferred to a resin storage tank, and the resin in this resin storage tank is further transferred to a demineralization tower. and then subjected to desalination.

再生法■は、従来法におりる再生法であり、脱塩塔内の
負衝したイオン交換樹脂を塔外再生するにあたり、前記
樹脂を分N1再生塔に移送し、上向流通水によりアニオ
ン交換樹脂のみの土層、アニオン交換樹脂とカチオン交
換樹脂とが混合している中層、カチオン交換樹脂のり、
の1屑の三層に成層分離し、土層はアニオン再生塔に移
送してアルカリで再生し、残照した中層↓・よひ1層は
敵で再生し、分離り生塔場−よびアニオン再生塔内の再
生したカチオン交換伺脂およびアニオン交換樹脂を樹脂
貯槽に移送し、さらにこの樹脂貯槽内の樹脂を脱塩塔に
移送して脱塩に供するものである。これは本発明の運転
方法によれは、処理水中のナトリウムイオン2よび塩素
イオンの濃度を共に低くすることができるが、Na”/
C#  (モル比)を必ずしも9.7〜0.3にするこ
とかできないので、微量の塩素イオンの確保を他塔を従
来法で運転することによシ行うためで17、それぞれの
処理水を混合することによって要求を満足することがで
きる。
Regeneration method (■) is a regeneration method that falls under the conventional method. When regenerating the negatively charged ion exchange resin in the demineralization tower outside the tower, the resin is transferred to the N1 regeneration tower, and the anions are removed by upward flowing water. Soil layer containing only exchange resin, middle layer containing a mixture of anion exchange resin and cation exchange resin, cation exchange resin glue,
The soil layer is transferred to the anion regeneration tower and regenerated with alkali, and the afterglow middle layer ↓ and 1st layer are regenerated by the enemy, and separated into the raw tower and anion regeneration tower. The regenerated cation exchange fat and anion exchange resin in the tower are transferred to a resin storage tank, and the resin in this resin storage tank is further transferred to a demineralization tower for desalination. This is because the concentration of both sodium ions and chloride ions in the treated water can be lowered by the operating method of the present invention, but Na''/
Since C# (molar ratio) cannot necessarily be kept within the range of 9.7 to 0.3, trace amounts of chlorine ions can be secured by operating other towers in the conventional manner17. The requirements can be met by mixing.

以上本発明を説明したが、本発明によれは、中層を再生
剤と接触させるととがないから、再生時の樹脂の汚染が
なく、簡単な操作で付帯設備を設けることなく再生が行
え、処理水の水質を向上させることがてき、PWRにみ
られるような厳しい賛求にも対応することができる。
The present invention has been described above, and according to the present invention, since the middle layer is brought into contact with a regenerating agent, there is no contamination of the resin during regeneration, and regeneration can be performed with simple operations without the need for additional equipment. It is possible to improve the quality of treated water and meet the strict demands seen in PWR.

実施例1 復水の一部を内径3000mの脱塩塔で脱塩処理した。Example 1 A portion of the condensate was desalinated in a desalination tower with an inner diameter of 3000 m.

脱塩塔にはH形に再生したカチオン交換樹脂タイヤイメ
ンPK22B(三菱化成工業株式会社製、商登商裸)7
00(lおよびOH形に再生したアニオン交換樹脂ダイ
ヤイオンPA3123300Jを充填して脱塩に使用し
た。再生にあたシ、まず負荷した樹脂混合物を内径22
00簡の分離再生塔に移送し、塔″F部から線速度(L
V)15m/hで純水を上向流通水して上層、中層ネ・
よび下層に成層分離し、さらに上向流通水して樹脂層を
展開させながら分離再生塔中部に設けられた排出口から
上層の樹脂3100i  を内径1800■のアニオン
再生塔に移送し、次に中層の樹脂3001を内径230
0mmの樹脂貯槽に移送し、アニオン再生塔には5%水
酸化ナトリウムを再生レベル200 t−NaOH/l
3−Rで通液し、分離再生塔には5%塩酸を再生レベル
140f−HCI3/13−Rで通液して再生し、次い
でそれぞれ押出、水洗を行なった。再生後の各樹脂を樹
脂貯槽に移送し、中層の樹脂と混合して脱塩塔に戻し、
復水を通水して処理水會得た。結呆を第1表に示す。ま
た、比較のため中層を樹脂貯槽へ移送せずに分離再生塔
に残留させ1層とともに塩酸と接触させる従来法の場合
も併せて第1表に示した。
In the desalination tower, cation exchange resin Tiymen PK22B (manufactured by Mitsubishi Chemical Industries, Ltd., commercially available) 7
The anion exchange resin Diaion PA3123300J, which had been regenerated into 00 (L and OH form), was filled and used for desalination.
The linear velocity (L
V) Flow pure water upward at 15m/h to drain the upper and middle layers.
The resin layer is stratified and separated into the upper layer and the lower layer, and the upper layer resin 3100i is transferred from the discharge port provided in the middle of the separation and regeneration tower to the anion regeneration tower with an inner diameter of 1800 mm, while the resin layer is expanded by flowing water upward. of resin 3001 with an inner diameter of 230
Transferred to a 0 mm resin storage tank, and added 5% sodium hydroxide to the anion regeneration tower at a regeneration level of 200 t-NaOH/l.
3-R, and 5% hydrochloric acid was passed through the separation and regeneration tower at a regeneration level of 140f-HCI3/13-R for regeneration, followed by extrusion and water washing, respectively. Each resin after regeneration is transferred to a resin storage tank, mixed with the resin in the middle layer, and returned to the desalination tower.
The condensate was passed through to obtain treated water. The results are shown in Table 1. For comparison, Table 1 also shows the case of the conventional method in which the middle layer is not transferred to the resin storage tank but left in the separation and regeneration tower and brought into contact with hydrochloric acid together with the first layer.

第1表 実施例2 実施例1と同様の脱塩塔を5塔を用い、2塔は実施例1
と同様に運転し、1Aシ3塔を従来法で運転し処理水を
混合したところ、ナトリウムイオン濃度は0.02 q
/g/、塩素イオン一度は(1,01141q/ /−
となk) Na”/C/3  (モル比)は037であ
った。
Table 1 Example 2 Five demineralization towers were used as in Example 1, and two towers were used in Example 1.
When operated in the same manner as above, the 1A 3 tower was operated in the conventional manner, and the treated water was mixed, the sodium ion concentration was 0.02 q.
/g/, chlorine ion once (1,01141q/ /-
Tonak) Na''/C/3 (molar ratio) was 037.

出願人   栗田工業株式会社Applicant: Kurita Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 復水を混床式脱塩塔で脱塩する方法において、復水を混
床式脱塩塔に通水して脱塩し、脱塩塔内の負荷したイオ
ン交換樹脂を塔外再生するにあたり、前記樹脂を分離再
生塔に移送し、上向流通水によシアニオン交換樹脂のみ
の上層、アニオン交換樹脂とカチオン交換樹脂とが混合
17ている中層、カチオン交換樹脂のみの1層の三層に
成層分離し、上層はアニオン再生塔に移送してアルカリ
で再生し、中層は樹脂貯槽に移送し、残留した下層は飯
で再生し、分離再生塔によびアニオン再生塔内の再生し
たカチオン交換樹脂シーよびアニオン交換樹脂を樹脂貯
槽に移送し、さらにこの樹脂貯槽内の樹脂を脱塩塔に移
送して脱塩に供することf:特徴とする復水の脱塩方法
In the method of desalinating condensate in a mixed-bed desalination tower, the condensate is desalted by passing through the mixed-bed desalination tower, and the ion exchange resin loaded in the desalination tower is regenerated outside the tower. The resin is transferred to a separation and regeneration tower, and the upper layer is made up of three layers: an upper layer containing only cyanion exchange resin, a middle layer containing a mixture of anion exchange resin and cation exchange resin, and one layer containing only cation exchange resin. The layers are separated, the upper layer is transferred to an anion regeneration tower and regenerated with alkali, the middle layer is transferred to a resin storage tank, the remaining lower layer is regenerated with rice, and the regenerated cation exchange resin in the anion regeneration tower is transferred to the separation and regeneration tower. Transferring the resin and anion exchange resin to a resin storage tank, and further transferring the resin in the resin storage tank to a demineralization tower for desalination.
JP57086008A 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO Expired - Lifetime JPH0249784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57086008A JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57086008A JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Publications (2)

Publication Number Publication Date
JPS58216743A true JPS58216743A (en) 1983-12-16
JPH0249784B2 JPH0249784B2 (en) 1990-10-31

Family

ID=13874662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57086008A Expired - Lifetime JPH0249784B2 (en) 1982-05-21 1982-05-21 ANMONIAOFUKUMUFUKUSUINODATSUENHOHO

Country Status (1)

Country Link
JP (1) JPH0249784B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780422A (en) * 2010-03-05 2010-07-21 南京中电联环保股份有限公司 Four-tower mixed ion exchanger resin external separation regeneration method
DE102013012202A1 (en) * 2013-07-23 2015-01-29 Veolia Water Solutions & Technologies Support A method for regenerating a mixed bed filter and apparatus for carrying out such a method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780422A (en) * 2010-03-05 2010-07-21 南京中电联环保股份有限公司 Four-tower mixed ion exchanger resin external separation regeneration method
DE102013012202A1 (en) * 2013-07-23 2015-01-29 Veolia Water Solutions & Technologies Support A method for regenerating a mixed bed filter and apparatus for carrying out such a method

Also Published As

Publication number Publication date
JPH0249784B2 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
US4564455A (en) Three component resin system and method for purifying aqueous solutions
JP2001215294A (en) Condensate demineralizer
US3711401A (en) Regeneration method for dual beds of ion exchange resins
JPS58216743A (en) Desalting method of condensate
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
US4472282A (en) Mixed bed polishing process
Tiger et al. Demineralizing solutions by a two-step ion exchange process
US2422821A (en) Liquid purifier having cation exchangers communicating selectively with anion exchangers
US4163717A (en) Removal of silica from mixed bed demineralizer
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3215471B2 (en) Method and apparatus for regenerating ion exchange resin
US3585127A (en) Method for treating water by ion exchange
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
GB2085749A (en) Process for the treatment of aqueous media
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JPH0363439B2 (en)
JPH0380543B2 (en)
JP2543767B2 (en) Condensate desalination method
JPS5841913B2 (en) Condensate treatment method
JPH0563240B2 (en)
JPH01155984A (en) Apparatus for producing pure water
JPS5813229B2 (en) Condensate treatment method
JPH026893A (en) Condensate desalting device