JP4943378B2 - Condensate demineralization method and condensate demineralization apparatus - Google Patents

Condensate demineralization method and condensate demineralization apparatus Download PDF

Info

Publication number
JP4943378B2
JP4943378B2 JP2008134409A JP2008134409A JP4943378B2 JP 4943378 B2 JP4943378 B2 JP 4943378B2 JP 2008134409 A JP2008134409 A JP 2008134409A JP 2008134409 A JP2008134409 A JP 2008134409A JP 4943378 B2 JP4943378 B2 JP 4943378B2
Authority
JP
Japan
Prior art keywords
exchange resin
condensate
cation exchange
bed
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134409A
Other languages
Japanese (ja)
Other versions
JP2009281875A (en
Inventor
丈志 出水
正弘 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008134409A priority Critical patent/JP4943378B2/en
Priority to CN2009101384671A priority patent/CN101585564B/en
Priority to US12/470,053 priority patent/US8861670B2/en
Publication of JP2009281875A publication Critical patent/JP2009281875A/en
Application granted granted Critical
Publication of JP4943378B2 publication Critical patent/JP4943378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/427Treatment of water, waste water, or sewage by ion-exchange using mixed beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、原子力発電プラントの復水脱塩装置による復水処理に関し、カチオン交換樹脂から溶出する有機性不純物由来の硫酸イオン濃度の低い、高純度な処理水質を長期間に渡り安定的に得ることを目的とする復水脱塩方法及び装置に関する。   The present invention relates to condensate treatment by a condensate demineralizer of a nuclear power plant, and stably obtains high-purity treated water quality having a low concentration of sulfate ions derived from organic impurities eluted from a cation exchange resin over a long period of time. The present invention relates to a condensate desalination method and apparatus.

原子力発電プラントでは、原子炉又は蒸気発生器において発生した蒸気で発電した後に、海水で該蒸気を冷却し、その復水を、イオン交換樹脂を用いた復水脱塩装置で処理し、原子炉又は蒸気発生器に給水している。この復水には、復水系統内に流入した海水成分、プラント構成材料より生成した鉄酸化物を主体とした懸濁性腐食生成物(以下、クラッドと称す)やイオン性不純物などが混入する可能性がある。この復水中の不純物を除去し、高純度な処理水質を得るために、原子力発電プラントには、復水をイオン交換樹脂によって脱塩処理する復水脱塩装置が設けられている。復水脱塩装置において使用するイオン交換樹脂としては、陽イオンを吸着するカチオン交換樹脂と陰イオンを吸着するアニオン交換樹脂があり、これらを組み合わせて使用している。   In a nuclear power plant, after generating electricity with steam generated in a nuclear reactor or a steam generator, the steam is cooled with seawater, and the condensate is treated with a condensate demineralizer using an ion exchange resin. Or water is supplied to the steam generator. This condensate contains seawater components that flow into the condensate system, suspended corrosion products (hereinafter referred to as clads) mainly composed of iron oxides generated from plant components, and ionic impurities. there is a possibility. In order to remove impurities in the condensate and obtain a high-purity treated water quality, the nuclear power plant is provided with a condensate demineralizer that demineralizes the condensate with an ion exchange resin. Examples of the ion exchange resin used in the condensate demineralizer include a cation exchange resin that adsorbs cations and an anion exchange resin that adsorbs anions, which are used in combination.

この復水脱塩装置において、カチオン交換樹脂とアニオン交換樹脂とを組み合わせて使用する場合、通常はゲル型カチオン交換樹脂とゲル型アニオン交換樹脂とを組み合わせ、又はポーラス型カチオン交換樹脂とポーラス型アニオン交換樹脂とを組み合わせて使用している。一般にゲル型樹脂は耐浸透圧性が低く、ポーラス型樹脂は耐摩耗性が低いため、これらの欠点を考慮し、頻繁に逆洗再生を実施するプラントの復水脱塩装置ではゲル型樹脂を使用し、頻繁に通薬再生を実施するプラントではポーラス型樹脂を使用している。特に、ポーラス型樹脂は耐摩耗性が低く、復水脱塩装置においてイオン交換樹脂床を収容している脱塩塔とイオン交換樹脂の再生を行う再生塔との間を移送する際に、樹脂粒同士や樹脂粒と金属材料とが接触することで樹脂粒子の表面が破損したり、樹脂粒が破砕するため、BWR原子力発電プラントのように、カチオン交換樹脂表面に付着したクラッドを排除するために逆洗を行うプラントでは、耐摩耗性の良好なゲル型カチオン交換樹脂とゲル型アニオン交換樹脂とを組み合わせて使用している。   In this condensate desalination apparatus, when a cation exchange resin and an anion exchange resin are used in combination, usually a gel cation exchange resin and a gel anion exchange resin are combined, or a porous cation exchange resin and a porous anion. Used in combination with exchange resin. In general, gel type resins have low osmotic pressure resistance, and porous type resins have low wear resistance. Considering these drawbacks, gel type resins are used in condensate demineralizers for plants that frequently perform backwash regeneration. However, a porous resin is used in a plant that frequently performs drug regeneration. In particular, the porous resin has low wear resistance, and the resin is transferred when transferring between the demineralization tower containing the ion exchange resin bed and the regeneration tower for regenerating the ion exchange resin in the condensate demineralizer. In order to eliminate the clad adhering to the surface of the cation exchange resin as in the BWR nuclear power plant because the surface of the resin particle is damaged or the resin particle is crushed due to the contact between the particles or the resin particle and the metal material. In a plant that performs backwashing, a gel-type cation exchange resin and a gel-type anion exchange resin having good wear resistance are used in combination.

加えて、ポーラス型樹脂は、樹脂マトリックス構造がゲル型樹脂に比べ密であるため、吸着したイオンの粒内への拡散速度がゲル型樹脂より小さく、反応速度や再生効率の面で性能が劣る。このため、ポーラス型樹脂を復水脱塩装置で使用する場合には、再生レベル(薬品使用量)を大きくするなど、ポーラス型樹脂の特性を考慮した装置設計を行う必要がある。   In addition, the porous resin has a denser resin matrix structure than the gel resin, so that the diffusion rate of adsorbed ions into the particles is smaller than that of the gel resin, and the performance is poor in terms of reaction rate and regeneration efficiency. . For this reason, when the porous resin is used in a condensate demineralizer, it is necessary to design the apparatus in consideration of the characteristics of the porous resin, such as increasing the regeneration level (chemical use amount).

原子力発電プラントの復水脱塩装置で使用しているイオン交換樹脂は、上流側より流入するNaClに代表される海水成分などのイオン成分の除去能力は高いが、カチオン交換樹脂からポリスチレンスルホン酸を主体とする有機性不純物(以下、TOCと称す)が溶出してしまう問題がある。このTOCは、原子炉又は蒸気発生器内に持ち込まれると硫酸イオンを生成するため、原子炉又は蒸気発生器水質を低下させる原因となる。
従って、原子炉又は蒸気発生器水質を高純度にするためには、イオン交換樹脂が充填されている脱塩塔から溶出するTOCのリーク量を少なくする必要がある。
The ion exchange resin used in the condensate demineralizer of a nuclear power plant has a high ability to remove ion components such as seawater components represented by NaCl flowing from the upstream side, but polystyrene sulfonic acid is removed from the cation exchange resin. There is a problem that organic impurities (hereinafter referred to as TOC) as a main component are eluted. When this TOC is brought into a nuclear reactor or a steam generator, sulfate ions are generated, which causes the water quality of the nuclear reactor or the steam generator to deteriorate.
Therefore, in order to obtain a high-purity reactor or steam generator water quality, it is necessary to reduce the amount of TOC leaked from the desalting tower filled with the ion exchange resin.

これらを解決する方法としては、特許文献1(特開平11−352283号公報)に開示されているように、架橋度が通常使用されている8%〜10%の範囲のものよりも高い12〜16%の強酸性ゲル型カチオン交換樹脂を適用する方法、特許文献2(特開2001−314855号公報)に開示されているように、アニオン交換樹脂をイオン交換樹脂床下層部に配してカチオン交換樹脂から溶出するTOCを吸着する方法、特許文献3(特開平8−224579号公報)に開示されているように、強酸性ゲル型カチオン交換樹脂と粒径分布がガウス分布のポーラス型アニオン交換樹脂との混床を形成する方法、などが提案されている。
特開平11−352283号公報 特開2001−314855号公報 特開平8−224579号公報
As a method for solving these problems, as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 11-352283), the degree of cross-linking is usually 12 to 12%, which is higher than the range of 8% to 10%. A method of applying a 16% strongly acidic gel-type cation exchange resin, as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2001-314855), an anion exchange resin is arranged on the lower layer of the ion exchange resin bed to form a cation A method for adsorbing TOC eluted from an exchange resin, as disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 8-224579), a porous anion exchange having a strongly acidic gel type cation exchange resin and a Gaussian particle size distribution A method of forming a mixed bed with resin has been proposed.
Japanese Patent Laid-Open No. 11-352283 JP 2001-314855 A JP-A-8-224579

しかしながら、架橋度の高い強酸性ゲル型カチオン交換樹脂を使用しても、長期間の使用により酸化劣化が進行してTOCの溶出は徐々に増加するため、使用開始初期に比べて水質の低下は避けられない。
また、アニオン交換樹脂をイオン交換樹脂床下層部に配する方法では、カチオン交換樹脂から溶出する低分子量のTOCは低減できるが、高分子量のTOCの除去能力は充分ではない。
また、ポーラス型アニオン交換樹脂はマクロポアを有するため、TOCの吸着能力はある程度あるが、原子力発電プラントの復水脱塩装置で通常使用されているロームアンドハース日本株式会社のIRA900や三菱化学株式会社のPA312などのポーラス型アニオン交換樹脂は、ポーラス型イオン交換樹脂がマクロポアを有するため、樹脂マトリックスの部分は非常に緻密な構造を有しており、樹脂粒内への吸蔵能力は決して高くない。
However, even if a strongly acidic gel type cation exchange resin having a high degree of crosslinking is used, oxidative degradation progresses over a long period of use and TOC elution gradually increases. Inevitable.
Further, in the method of disposing the anion exchange resin in the lower layer portion of the ion exchange resin bed, the low molecular weight TOC eluted from the cation exchange resin can be reduced, but the removal ability of the high molecular weight TOC is not sufficient.
Also, porous anion exchange resins have macropores, so they have some TOC adsorption capacity, but they are commonly used in condensate demineralizers in nuclear power plants. In the porous anion exchange resin such as PA312, the porous ion exchange resin has macropores, and therefore the resin matrix portion has a very dense structure, and the occlusion ability into the resin grains is never high.

本発明は、前記事情に鑑みてなされ、原子力発電プラントの復水脱塩装置による復水処理において、カチオン交換樹脂から溶出するTOC由来の硫酸イオン濃度の低い、高純度な処理水質を得ることができる復水脱塩方法及び装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and in condensate treatment by a condensate demineralizer of a nuclear power plant, it is possible to obtain a high-purity treated water quality having a low TOC-derived sulfate ion concentration eluted from a cation exchange resin. An object of the present invention is to provide a condensate demineralization method and apparatus.

前記目的を達成するため、本発明は、原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法を提供する。
In order to achieve the above object, the present invention provides a condensate desalination method for desalinating condensate of a nuclear power plant with an ion exchange resin.
It consists of a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, and the mixed bed comprises the anion resin. The organic matter eluted from the cation exchange resin by bringing condensate into contact with an ion exchange resin bed having a mixed bed uniformly mixed so that the abundance ratio is within the design standard value ± 5% over the entire mixed bed. Provided is a condensate desalting method characterized by performing desalting while removing .

また本発明は、原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる上層部と、
(b)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法を提供する。
Further, the present invention is a condensate desalination method for desalinating condensate of a nuclear power plant with an ion exchange resin.
(A) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, An upper layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anionic resin is within a design standard value ± 5% over the entire mixed bed;
(B) a condensate dewatering process wherein decondensation is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer made of an anion exchange resin. A salt method is provided.

また本発明は、原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ復水の脱塩処理を行うことを特徴とする復水脱塩方法を提供する。
Further, the present invention is a condensate desalination method for desalinating condensate of a nuclear power plant with an ion exchange resin.
(A) an upper layer made of a cation exchange resin;
(B) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, A condensate is brought into contact with an ion exchange resin bed having a lower layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anion resin is within a design standard value ± 5% over the entire mixed bed. A condensate demineralization method is provided, wherein a demineralization treatment is performed while removing organic substances eluted from the cation exchange resin .

また本発明は、原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる中層部と、
(c)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ復水の脱塩処理を行うことを特徴とする復水脱塩方法を提供する。
Further, the present invention is a condensate desalination method for desalinating condensate of a nuclear power plant with an ion exchange resin.
(A) an upper layer made of a cation exchange resin;
(B) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, A middle layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anionic resin is within a design standard value ± 5% over the entire mixed bed;
(C) A demineralization treatment of the condensate is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer portion made of an anion exchange resin. A condensate desalination method is provided.

本発明の復水脱塩方法において、前記有機物がポリスチレンスルホン酸を含むものであることが好ましい。
本発明の復水脱塩方法において、カチオン交換樹脂として、架橋度が12%〜16%の
範囲の強酸性ゲル型カチオン交換樹脂を用いることが好ましい。
In the condensate desalting method of the present invention, the organic substance preferably contains polystyrene sulfonic acid.
In the condensate desalting method of the present invention, it is preferable to use a strongly acidic gel type cation exchange resin having a crosslinking degree in the range of 12% to 16% as the cation exchange resin.

本発明の復水脱塩方法において、カチオン交換樹脂として、架橋度が4〜7%の範囲の強酸性ゲル型カチオン交換樹脂を用いることが好ましい。   In the condensate desalting method of the present invention, it is preferable to use a strongly acidic gel type cation exchange resin having a degree of crosslinking in the range of 4 to 7% as the cation exchange resin.

また本発明は、復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置を提供する。
The present invention also relates to a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin.
Condensate is brought into contact with an ion exchange resin bed having a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. A condensate demineralization apparatus is provided that performs a desalting treatment while removing organic substances eluted from the cation exchange resin .

また本発明は、復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる上層部と、
(b)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置を提供する。
The present invention also provides a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin.
(A) an upper layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(B) a condensate dewatering process wherein decondensation is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer made of an anion exchange resin. A salt device is provided.

また本発明は、復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置を提供する。
The present invention also relates to a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin.
(A) an upper layer made of a cation exchange resin;
(B) having a lower layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. Provided is a condensate demineralization apparatus which performs a desalting treatment while bringing condensed water into contact with an ion exchange resin bed and removing organic substances eluted from the cation exchange resin .

また本発明は、復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる中層部と、
(c)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置を提供する。
The present invention also relates to a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin.
(A) an upper layer made of a cation exchange resin;
(B) a middle layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(C) Condensate dewatering, wherein decondensation treatment is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer portion made of an anion exchange resin. A salt device is provided.

本発明の復水脱塩装置において、前記有機物がポリスチレンスルホン酸を含むものであることが好ましい。
本発明の復水脱塩装置において、カチオン交換樹脂として、架橋度が12%〜16%の範囲の強酸性ゲル型カチオン交換樹脂を用いることが好ましい。
In the condensate demineralization apparatus of the present invention, it is preferable that the organic substance contains polystyrene sulfonic acid.
In the condensate demineralization apparatus of the present invention, it is preferable to use a strongly acidic gel type cation exchange resin having a crosslinking degree in the range of 12% to 16% as the cation exchange resin.

本発明の復水脱塩装置において、カチオン交換樹脂として、架橋度が4〜7%の範囲の強酸性ゲル型カチオン交換樹脂を用いることが好ましい。   In the condensate demineralization apparatus of the present invention, it is preferable to use a strongly acidic gel type cation exchange resin having a degree of crosslinking in the range of 4 to 7% as the cation exchange resin.

本発明によれば、強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床を有するイオン交換樹脂床に復水を接触させて復水の脱塩処理を行う構成としたことで、復水中のクラッドをカチオン交換樹脂によって除去することができ、またカチオン交換樹脂から溶出するTOCをアニオン交換樹脂によって除去することができる。特に、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂を用いたことによって、TOCの除去能力を高めることができ、TOC由来の硫酸イオン濃度の低い、高純度な処理水質を得ることができる。   According to the present invention, an ion exchange resin having a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. Condensate is desalted by bringing the condensate into contact with the floor, so that the clad in the condensate can be removed by the cation exchange resin, and the TOC eluted from the cation exchange resin can be removed by the anion exchange resin. Can be removed. In particular, by using a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4%, it is possible to increase the TOC removal capability, and to reduce the TOC-derived sulfate ion concentration and high purity. Can be obtained.

以下、図面を参照して本発明の実施形態を説明するが、本発明はこれに限定されない。
図1は、BWR原子力発電プラントの一例を示す概略フロー構成図である。図1中、符号1は原子炉、2及び3はタービン、4は湿分分離器、5は復水器、6は復水ろ過装置、7は復水脱塩装置、8は原子炉浄化系を表している。
Hereinafter, although an embodiment of the present invention is described with reference to drawings, the present invention is not limited to this.
FIG. 1 is a schematic flow configuration diagram illustrating an example of a BWR nuclear power plant. In FIG. 1, 1 is a nuclear reactor, 2 and 3 are turbines, 4 is a moisture separator, 5 is a condenser, 6 is a condensate filtration device, 7 is a condensate demineralizer, and 8 is a reactor purification system. Represents.

このBWR原子力発電プラントでは、原子炉1で蒸気を発生させ、その蒸気でタービン2,3を回転させて発電する。タービン3から出た蒸気は、復水器5で冷却して水に戻し、浄化設備である復水ろ過器6及び復水脱塩装置7で浄化し、原子炉1に給水している。なお、加圧水型(PWR)原子力発電プラントの蒸気発生器側は、BWR原子力発電プラントと同様に、蒸気発生器で蒸気を発生させ、タービンで発電し、復水器で蒸気を水に戻し、浄化して蒸気発生器に給水している。   In this BWR nuclear power plant, steam is generated in the nuclear reactor 1, and the turbines 2 and 3 are rotated by the steam to generate power. The steam emitted from the turbine 3 is cooled by the condenser 5 and returned to water, purified by the condensate filter 6 and the condensate demineralizer 7 as purification equipment, and supplied to the nuclear reactor 1. As with the BWR nuclear power plant, the steam generator side of the pressurized water (PWR) nuclear power plant generates steam with the steam generator, generates power with the turbine, returns the steam to water with the condenser, and purifies it. The water is then supplied to the steam generator.

図2は、本発明の復水脱塩装置の一実施形態を示す概略フロー構成図である。図2中、符号7は復水脱塩装置、10は脱塩塔、11はイオン交換樹脂床、12は樹脂ストレーナ、13は再循環ポンプを表している。この復水脱塩装置7は、2000〜7000m/hの流量の復水を3〜10塔の脱塩塔10で処理している。1つの脱塩塔10には、処理流量により2000〜15000Lのイオン交換樹脂が充填されてイオン交換樹脂床11が形成されている。イオン交換樹脂床11の床高は、90〜200cmの範囲とされ、通常は100cm程度である。また、通水線流速は50〜200m/hの範囲とされ、通常は100m/h程度である。 FIG. 2 is a schematic flow configuration diagram showing an embodiment of the condensate demineralization apparatus of the present invention. In FIG. 2, 7 is a condensate demineralizer, 10 is a desalting tower, 11 is an ion exchange resin bed, 12 is a resin strainer, and 13 is a recirculation pump. This condensate demineralizer 7 treats condensate at a flow rate of 2000 to 7000 m 3 / h in 3 to 10 demineralizers 10. One desalting tower 10 is filled with 2000 to 15000 L of ion exchange resin at a treatment flow rate to form an ion exchange resin bed 11. The floor height of the ion exchange resin bed 11 is in the range of 90 to 200 cm, and is usually about 100 cm. The water line flow velocity is in the range of 50 to 200 m / h, and is usually about 100 m / h.

図3(A)〜(D)は、本発明の復水脱塩装置におけるイオン交換樹脂床11の構造を例示する概略構成図である。
図3(A)に示す第1の例では、強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床14によってイオン交換樹脂床11が形成されている。
3A to 3D are schematic configuration diagrams illustrating the structure of the ion exchange resin bed 11 in the condensate demineralizer of the present invention.
In the first example shown in FIG. 3 (A), a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous type anion exchange resin having a crosslinking degree in the range of 1% to 4% were uniformly mixed. An ion exchange resin bed 11 is formed by the mixed bed 14.

図3(B)に示す第2の例では、
(a)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる上層部15aと、
(b)アニオン交換樹脂からなる下層部15bとからイオン交換樹脂床11が形成されている。
In the second example shown in FIG.
(A) an upper layer portion 15a composed of a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(B) The ion exchange resin bed 11 is formed from the lower layer part 15b which consists of an anion exchange resin.

図3(C)に示す第3の例では、
(a)カチオン交換樹脂からなる上層部16aと、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる下層部16bととからイオン交換樹脂床11が形成されている。
In the third example shown in FIG.
(A) an upper layer portion 16a made of a cation exchange resin;
(B) From a strongly acidic gel type cation exchange resin and a lower layer portion 16b comprising a mixed bed in which a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% is uniformly mixed. An ion exchange resin bed 11 is formed.

図3(D)に示す第4の例では、
(a)カチオン交換樹脂からなる上層部17aと、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる中層部17bと、
(c)アニオン交換樹脂からなる下層部17cとを順に配置して3層構造のイオン交換樹脂床11を形成している。
In the fourth example shown in FIG.
(A) an upper layer portion 17a made of a cation exchange resin;
(B) a middle layer portion 17b comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(C) The lower layer part 17c which consists of anion exchange resin is arrange | positioned in order, and the ion exchange resin bed 11 of a 3 layer structure is formed.

なお、本発明において「架橋度」とは、スチレンと架橋剤であるジビニルベンゼン(DVB)とを原料として樹脂コポリマーを製造する際、架橋剤であるDVBが全原料中に占める質量比率のことを指す。
イオン交換樹脂の特性のほとんどはジビニルベンゼンの添加比率である架橋度により決定される。特に、水分含有率やイオン交換容量は架橋度と明確な相関がある。架橋度と諸特性の関係は、一般に次の関係がある。低架橋度の樹脂は高架橋度の樹脂に比べ、湿潤状態での単位体積当たりの交換容量が小さく、水分含有率が高い。ミクロポア径が大きく反応速度に優れ再生特性に優れる。一方、物理的強度が低く、耐酸化性に劣る。これらの特性を把握した上で、要求される性能に応じて最適な架橋度を有するイオン交換樹脂を選択し、種々の水処理設備に供している。
In the present invention, the “degree of crosslinking” refers to the mass ratio of DVB as the crosslinking agent in the total raw material when a resin copolymer is produced from styrene and divinylbenzene (DVB) as the crosslinking agent. Point to.
Most of the characteristics of the ion exchange resin are determined by the degree of crosslinking, which is the addition ratio of divinylbenzene. In particular, the moisture content and ion exchange capacity have a clear correlation with the degree of crosslinking. The relationship between the degree of crosslinking and various properties is generally as follows. A resin with a low degree of cross-linking has a smaller exchange capacity per unit volume in a wet state and a higher water content than a resin with a high degree of cross-linking. Large micropore diameter, excellent reaction rate, and excellent regeneration characteristics. On the other hand, physical strength is low and oxidation resistance is poor. After grasping these characteristics, an ion exchange resin having an optimum degree of crosslinking is selected according to the required performance and used for various water treatment facilities.

原子力発電プラントの復水脱塩装置で通常使用されているロームアンドハース日本株式会社のIRA900や三菱化学株式会社のPA312などのポーラス型アニオン交換樹脂は、架橋度が6から8%であり、ポーラス型イオン交換樹脂がマクロポアを有するため、樹脂マトリックスの部分は非常に緻密な構造を有しており、樹脂マトリックスが緻密であると粒内への拡散しにくいため、有機物の除去能力が充分ではない。   Porous anion exchange resins such as IRA900 of Rohm and Haas Japan Co., Ltd. and PA312 of Mitsubishi Chemical Corporation, which are normally used in condensate demineralizers of nuclear power plants, have a degree of cross-linking of 6 to 8% and are porous. Since the type ion exchange resin has macropores, the resin matrix part has a very dense structure, and if the resin matrix is dense, it is difficult to diffuse into the grains, so the organic matter removal ability is not sufficient. .

本発明では、架橋度が1%〜4%の強塩基性1型ポーラス型アニオン交換樹脂をカチオン交換樹脂と組み合わせ、イオン交換樹脂床11として用いている。この低架橋度のポーラス型アニオン交換樹脂は、樹脂マトリックスが粗な構造となるため、有機物、特にその分子量が1000以上のポリスチレンスルホン酸を主体とするカチオン交換樹脂溶出物(TOC)の除去能力が高くなるため、高純度の水質が得られることとなる。   In the present invention, a strongly basic type 1 porous anion exchange resin having a crosslinking degree of 1% to 4% is combined with a cation exchange resin and used as the ion exchange resin bed 11. Since this low-crosslinking porous anion exchange resin has a rough resin matrix, it has an ability to remove organic substances, particularly cation exchange resin eluate (TOC) mainly composed of polystyrenesulfonic acid having a molecular weight of 1000 or more. Since it becomes high, the water quality of high purity will be obtained.

ここで、ポーラス型アニオン交換樹脂とゲル型アニオン交換樹脂の特徴について説明する。粒状イオン交換樹脂には、製造方法に由来して、大別して2種類のイオン交換樹脂がある。スチレンとジビニルベンゼンを懸濁重合させてコポリマーを作り、これに官能基を導入した透明なゲル型イオン交換樹脂と、懸濁重合の際に水に不溶でスチレンなどを良く溶解する有機溶媒を加えて重合後に除去することで製造されるマクロポアを有するポーラス型イオン交換樹脂とである。それらの判別方法は非常に容易であり、透明球はゲル型樹脂、不透明球はポーラス型樹脂として判別できる。目視以外にも、実体顕微鏡を利用し、透過光にて観察したとき光が透過して樹脂粒全体が観察可能なのがゲル型樹脂、透過光をあてたとき乱反射して黒色状に見えるのがポーラス型樹脂である。   Here, characteristics of the porous anion exchange resin and the gel anion exchange resin will be described. The granular ion exchange resins are roughly classified into two types of ion exchange resins derived from the production method. A copolymer is prepared by suspension polymerization of styrene and divinylbenzene, and a transparent gel-type ion exchange resin into which functional groups have been introduced, and an organic solvent that is insoluble in water and dissolves styrene well during suspension polymerization are added. And a porous ion exchange resin having macropores produced by removal after polymerization. The discrimination method is very easy, and the transparent sphere can be discriminated as a gel type resin and the opaque sphere can be discriminated as a porous type resin. In addition to visual observation, when using a stereomicroscope and observing with transmitted light, light is transmitted and the entire resin particle can be observed. Gel resin, when reflected light is diffusely reflected and appears black. It is a porous resin.

ゲル型イオン交換樹脂の平均孔径は数Å、比表面積が1m/g未満であるのに対して、ポーラス型樹脂の平均孔径は数十〜数百Å、比表面積も数十〜数百m/g程度と大きく異なっている。 The average pore diameter of the gel-type ion exchange resin is several liters and the specific surface area is less than 1 m 2 / g, whereas the average pore diameter of the porous resin is several tens to several hundreds liters and the specific surface area is also several tens to several hundreds m. It is very different from about 2 / g.

ナトリウムイオンや塩素イオンなど、通常のイオンを吸着するにはゲル型樹脂の構造でも何ら問題はないが、有機物などイオンと比較して高分子量の物質に対してはゲル型樹脂とポーラス型樹脂で構造に起因する除去特性の違いがある。   There is no problem with the structure of gel type resin to adsorb normal ions such as sodium ion and chlorine ion, but gel type resin and porous type resin can be used for high molecular weight substances compared to ions such as organic matter. There are differences in removal characteristics due to the structure.

アニオン交換樹脂は第四級アンモニウム基を有しているため樹脂母体は正に帯電している。そのため、負に帯電している有機物に対する吸着が期待されている。特に、カチオン交換樹脂からは母体構造の酸化劣化により分子量が数百から数万のポリスチレンスルホン酸が溶出する。これはマイナスの電荷を有しているためアニオン交換樹脂での吸着が期待されるが、ゲル型樹脂の場合、平均孔径が数Åと小さいため、樹脂粒表面での吸着能力しかなく、表面積も1m/g未満と小さいため、除去能力は低い。 Since the anion exchange resin has a quaternary ammonium group, the resin matrix is positively charged. Therefore, adsorption to negatively charged organic substances is expected. In particular, polystyrene sulfonic acid having a molecular weight of several hundred to several tens of thousands elutes from the cation exchange resin due to oxidative degradation of the base structure. Since it has a negative charge, adsorption with an anion exchange resin is expected, but in the case of gel type resin, the average pore diameter is as small as several kilometers, so it has only adsorption capacity on the surface of the resin particles, and the surface area is also large. Since it is as small as less than 1 m 2 / g, the removal capability is low.

一方、ポーラス型樹脂の平均孔径は数十〜数百Å、比表面積も数十〜数百m/g程度とゲル型樹脂に対して二桁以上大きいため、樹脂粒表面で吸着し、樹脂粒内部への取り込みも容易であるといえる。 On the other hand, the porous resin has an average pore diameter of several tens to several hundreds of liters and a specific surface area of several tens to several hundreds m 2 / g, which is two or more orders of magnitude larger than the gel type resin. It can be said that the incorporation into the inside of the grain is easy.

また、特に低架橋度のポーラス型アニオン交換樹脂は耐摩耗性に劣るため、頻繁に逆洗を実施する必要のあるゲル型カチオン交換樹脂と組み合わせるために、運用方法を工夫することで解決できた。イオン交換樹脂の摩耗は、樹脂粒の移送時や空気によるスクラビング実施時に主として発生する。そこで樹脂粒の移送に際し、樹脂粒移送において樹脂粒を受け入れる側のタンクに予め水を張っておき、樹脂粒が金属材料に直接衝突することを回避したり、樹脂移送時のスラリー濃度を低くすることで樹脂同士の接触による摩耗を減らしたり、樹脂混合状態で実施している空気によるスクラビングをカチオン交換樹脂とアニオン交換樹脂を分離した上で、表面にクラッドが多く付着しているカチオン交換樹脂のみ実施するなどの対応を取ることで、架橋度が1%〜4%のポーラス型アニオン交換樹脂の物理的特性の欠点を回避することができる。   In particular, porous type anion exchange resins with a low degree of crosslinking are inferior in wear resistance, so they could be solved by devising operational methods to combine with gel type cation exchange resins that need to be backwashed frequently. . The wear of the ion exchange resin mainly occurs when the resin particles are transferred or when scrubbing with air is performed. Therefore, when the resin particles are transferred, water is preliminarily applied to the tank on the resin particle receiving side in the resin particle transfer so that the resin particles do not directly collide with the metal material, or the slurry concentration during the resin transfer is lowered. Only the cation exchange resin with a large amount of clad on the surface after the cation exchange resin and the anion exchange resin are separated by air scrubbing performed in a resin mixed state. By taking measures such as implementing it, it is possible to avoid the disadvantages of the physical characteristics of the porous anion exchange resin having a crosslinking degree of 1% to 4%.

一方、低架橋度樹脂は前述の強度面での欠点に加え、交換容量が少ないという欠点がある。標準的に使用されている架橋度が8%のポーラス型アニオン交換樹脂の交換容量が約1.0eq/Lであるのに対して1.5%のポーラス型アニオン交換樹脂の交換容量は約0.5eq/L程度である。しかし、原子力発電プラントでは復水器をチタン製にしたり、補給する純水の純度を高純度に維持・管理したり、注入するアンモニアなどの薬品の純度を高くすることで復水中の不純物濃度は非常に低く押さえられており、1年間の通水によるイオン負荷量は多くても0.05eq/L程度である。従って、0.5eq/L程度あれば有効利用率を低く見て50%と仮定しても5年間以上の使用は可能であり、問題はないものと評価できる。   On the other hand, the low-crosslinking degree resin has the drawback that the exchange capacity is small in addition to the above-mentioned strength. The exchange capacity of a porous anion exchange resin with a degree of cross-linking of 8% that is typically used is about 1.0 eq / L, whereas the exchange capacity of a 1.5% porous anion exchange resin is about 0 About 5 eq / L. However, in nuclear power plants, the concentration of impurities in the condensate can be reduced by making the condenser made of titanium, maintaining and managing the purity of the pure water to be replenished, and increasing the purity of chemicals such as ammonia to be injected. It is kept very low, and the ion load amount due to water flow for one year is about 0.05 eq / L at most. Therefore, if it is about 0.5 eq / L, even if it assumes that an effective utilization rate is low and 50%, it can be used for 5 years or more, and it can be evaluated that there is no problem.

以上の理由により、架橋度が1%〜4%のポーラス型1型アニオン交換樹脂を使用することにより、TOCの吸着能力の高さを発揮することが可能となった。   For the above reasons, the use of a porous type 1 anion exchange resin having a cross-linking degree of 1% to 4% makes it possible to exhibit a high TOC adsorption capacity.

本発明において使用する強塩基性1型ポーラス型アニオン交換樹脂としては、三菱化学株式会社より販売されているPA306(架橋度3%相当)やPA308(架橋度4%相当)、ダウケミカル日本株式会社のTAN1(架橋度1.5%相当)などがあり、これを適用してもよい。   Examples of strongly basic type 1 porous anion exchange resins used in the present invention include PA306 (corresponding to a crosslinking degree of 3%) and PA308 (corresponding to a crosslinking degree of 4%) and Dow Chemical Japan Co., Ltd. sold by Mitsubishi Chemical Corporation. TAN1 (corresponding to a crosslinking degree of 1.5%), etc., may be applied.

更に、脱塩塔内でのイオン交換樹脂床11の形成方法を工夫することで、より高純度な処理水質が得られる。
復水脱塩装置は通常、カチオン交換樹脂とアニオン交換樹脂を混合した混床状態で使用している(図3(A)参照)。これはH型カチオン交換樹脂とOH型アニオン交換樹脂がイオン交換反応した際、放出されるHイオンとOHイオンが水となる反応を効率よく起こさせることを目的としている。しかし、流入する不純物濃度が著しく低く維持されている現在、カチオン交換樹脂より溶出するポリスチレンスルホン酸などのTOCに由来する硫酸イオンが、原子炉や蒸気発生器の不純物のほとんどを占めている現状では、このカチオン交換樹脂からのTOC濃度を低くすることがより求められている。そこで、脱塩塔内でのイオン交換樹脂の配置を工夫する事が望ましい。その方法としては次の3つがある。
Furthermore, the quality of treated water with higher purity can be obtained by devising the method of forming the ion exchange resin bed 11 in the desalting tower.
The condensate demineralizer is usually used in a mixed bed state in which a cation exchange resin and an anion exchange resin are mixed (see FIG. 3A). This is intended to efficiently cause a reaction in which H ions and OH ions released become water when the H type cation exchange resin and the OH type anion exchange resin undergo an ion exchange reaction. However, at present, the concentration of impurities flowing in is kept extremely low, and at present, sulfate ions derived from TOC such as polystyrene sulfonic acid eluted from cation exchange resins occupy most of impurities in nuclear reactors and steam generators. Therefore, it is more demanded to lower the TOC concentration from the cation exchange resin. Therefore, it is desirable to devise the arrangement of the ion exchange resin in the desalting tower. There are the following three methods.

(1)脱塩塔内の上層部にカチオン交換樹脂とアニオン交換樹脂との混床を配し、下層部にアニオン交換樹脂を配してイオン交換樹脂床を形成して復水を処理する復水脱塩方法(図3(B)参照)。
(2)脱塩塔内での樹脂分布を上層部にカチオン交換樹脂を配し、下層部にカチオン交換樹脂とアニオン交換樹脂との混床を配してイオン交換樹脂床を形成して復水を処理する復水脱塩方法(図3(C)参照)。
(3)脱塩塔内での樹脂分布を上層部にカチオン交換樹脂、中間層にカチオン交換樹脂とアニオン交換樹脂との混床を配し、下層部にアニオン交換樹脂を配した3層構造のイオン交換樹脂床を形成して復水を処理する復水脱塩方法(図3(D)参照)。
(1) A condensate treatment is performed by arranging a mixed bed of cation exchange resin and anion exchange resin in the upper layer of the desalting tower and forming an ion exchange resin bed in the lower layer to form an ion exchange resin bed. Water desalination method (see FIG. 3B).
(2) The resin distribution in the desalting tower is formed by arranging a cation exchange resin in the upper layer part and a mixed bed of cation exchange resin and anion exchange resin in the lower layer part to form an ion exchange resin bed and condensing water. A condensate desalting method for treating (see FIG. 3C).
(3) The resin distribution in the desalting tower is a three-layer structure in which a cation exchange resin is arranged in the upper layer, a mixed bed of cation exchange resin and anion exchange resin is arranged in the intermediate layer, and an anion exchange resin is arranged in the lower layer. A condensate demineralization method for forming condensate by forming an ion exchange resin bed (see FIG. 3D).

これらのようなイオン交換樹脂床形成方法を架橋度が1〜4%のポーラス型1型アニオン交換樹脂と組み合わせて行うことで、より高純度な水質が得られることとなる。尚、これらのイオン交換樹脂床配置法は、復水脱塩装置に付設の、カチオン交換樹脂再生塔、アニオン交換樹脂再生塔、樹脂貯層などの再生設備を用いることで容易に形成することができる。
更に、使用するカチオン交換樹脂についても、標準的に用いられている8から10%の架橋度の強酸性ゲル型カチオン交換樹脂に加え、次の2つが考えられる。
By performing the ion exchange resin bed forming method as described above in combination with a porous type 1 anion exchange resin having a crosslinking degree of 1 to 4%, a higher-purity water quality can be obtained. These ion exchange resin bed arrangement methods can be easily formed by using a regeneration facility such as a cation exchange resin regeneration tower, an anion exchange resin regeneration tower, or a resin reservoir attached to a condensate demineralizer. it can.
In addition to the cation exchange resin to be used, the following two are considered in addition to the strongly acidic gel cation exchange resin having a crosslinking degree of 8 to 10% which is used as a standard.

(1)組み合わせるカチオン交換樹脂として、架橋度12〜16%の強酸性ゲル型カチオン交換樹脂を用いてイオン交換樹脂床を形成して復水を処理する復水脱塩方法。
(2)組み合わせるカチオン交換樹脂として、架橋度4〜7%の強酸性ゲル型カチオン交換樹脂を用いてイオン交換樹脂床を形成して復水を処理する復水脱塩方法。
(1) A condensate desalination method in which a condensate is treated by forming an ion exchange resin bed using a strongly acidic gel-type cation exchange resin having a crosslinking degree of 12 to 16% as a cation exchange resin to be combined.
(2) A condensate desalination method in which a condensate is treated by forming an ion exchange resin bed using a strongly acidic gel type cation exchange resin having a cross-linking degree of 4 to 7% as a cation exchange resin to be combined.

本発明によれば、強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床を有するイオン交換樹脂床に復水を接触させて復水の脱塩処理を行う構成としたことで、復水中のクラッドをカチオン交換樹脂によって除去することができ、またカチオン交換樹脂から溶出するTOCをアニオン交換樹脂によって除去することができる。特に、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂を用いたことによって、TOCの除去能力を高めることができ、TOC由来の硫酸イオン濃度の低い、高純度な処理水質を得ることができる。   According to the present invention, an ion exchange resin having a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. Condensate is desalted by bringing the condensate into contact with the floor, so that the clad in the condensate can be removed by the cation exchange resin, and the TOC eluted from the cation exchange resin can be removed by the anion exchange resin. Can be removed. In particular, by using a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4%, it is possible to increase the TOC removal capability, and to reduce the TOC-derived sulfate ion concentration and high purity. Can be obtained.

BWR原子力発電プラントにおいては、原子炉構成材料の腐食を抑制し健全性を維持するために原子炉水質を高純度に維持することが求められている。原子炉水中の主たる不純物は硫酸イオンであり、この発生源は復水脱塩装置で使用されているカチオン交換樹脂からのTOCである。特に、復水脱塩装置出口水は原子炉に供給されると原子炉内での蒸発により不純物濃度が50〜100倍に濃縮されることから、復水装置出口水中のTOCを極僅かでも低減することに大きなメリットがある。   In the BWR nuclear power plant, it is required to maintain the reactor water quality with high purity in order to suppress corrosion of the reactor constituent materials and maintain soundness. The main impurity in the reactor water is sulfate ions, and this source is TOC from the cation exchange resin used in the condensate demineralizer. In particular, when the condensate demineralizer outlet water is supplied to the reactor, the impurity concentration is concentrated 50 to 100 times by evaporation in the reactor, so the TOC in the condensate outlet water is reduced even slightly. There are great benefits to doing.

原子炉水中の硫酸イオン濃度は、復水脱塩装置で使用しているイオン交換樹脂が新品の場合、概ね1μg/L程度であり、経年使用と共にカチオン交換樹脂の酸化劣化が進行しカチオン交換樹脂から溶出する有機性不純物が増加し、イオン交換樹脂寿命末期には5μg/L程度にまで上昇するため、イオン交換樹脂の交換を行っている。   When the ion exchange resin used in the condensate demineralizer is new, the sulfuric acid ion concentration in the reactor water is approximately 1 μg / L, and the oxidative deterioration of the cation exchange resin progresses over time and the cation exchange resin. The organic impurities that are eluted from the water increase and increase to about 5 μg / L at the end of the ion exchange resin life, so the ion exchange resin is replaced.

従って、復水脱塩装置からのTOCのリーク量を低減できれば、原子炉水中の硫酸イオン濃度を低減することが可能であり原子炉構成材料の径全盛を維持できると共に、イオン交換樹脂の寿命を長くすることが出来、経済的に有利であることに加え、発生する放射性廃棄物量を低減できることから、非常にメリットがある。
更に、原子炉構成材料健全性維持のために、原子炉水質を更に高純度にすることが近年求められている。そのために種々の対策が検討されているが、本発明はこの観点で非常に有効な方法である。
Therefore, if the amount of TOC leakage from the condensate demineralizer can be reduced, the concentration of sulfate ions in the reactor water can be reduced, the diameter of the reactor constituent material can be maintained, and the life of the ion exchange resin can be increased. In addition to being economical and advantageous, the amount of radioactive waste generated can be reduced, which is very advantageous.
Furthermore, in order to maintain the integrity of the reactor constituent materials, it has recently been demanded that the reactor water quality be further purified. Various countermeasures have been studied for this purpose, but the present invention is a very effective method from this viewpoint.

以下、実施例により本発明を具体的に説明する。但し、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to this example.

[実施例1]
原子力発電プラントの復水脱塩装置で広く使用されているイオン交換樹脂(ダウケミカル日本株式会社製)である架橋度8%の強酸性ゲル型カチオン交換樹脂HCR−W2−Hに酸化処理を施し、種々のアニオン交換樹脂と組み合わせ、溶出するTOC濃度を測定した。酸化処理法は、まずカチオン樹脂を硫酸第二鉄水溶液中に浸漬し、鉄イオンを15g/L程度負荷し、これを0.5%過酸化水素水溶液中にて40℃で6時間浸漬し、その後充分に水洗した。
[Example 1]
Oxidizing the strongly acidic gel-type cation exchange resin HCR-W2-H with a crosslinking degree of 8%, which is an ion exchange resin (manufactured by Dow Chemical Japan Co., Ltd.) widely used in condensate demineralizers of nuclear power plants. In combination with various anion exchange resins, the eluted TOC concentration was measured. In the oxidation treatment method, first, a cationic resin is immersed in an aqueous ferric sulfate solution, iron ions are loaded at about 15 g / L, and this is immersed in an aqueous 0.5% hydrogen peroxide solution at 40 ° C. for 6 hours. Thereafter, it was thoroughly washed with water.

<ケース1>
前記カチオン交換樹脂+アニオン交換樹脂ダウケミカル製SBR−PC−OHの混床。
<Case 1>
A mixed bed of the cation exchange resin + anion exchange resin SBR-PC-OH manufactured by Dow Chemical.

<ケース2>
前記カチオン交換樹脂+架橋度6%ポーラス型アニオン交換樹脂三菱化学製PA312の混床。
<Case 2>
Mixed bed of the cation exchange resin + 6% porous type anion exchange resin PA312 manufactured by Mitsubishi Chemical.

<ケース3>
前記カチオン交換樹脂+架橋度4%ポーラス型アニオン交換樹脂三菱化学製PA308の混床。
<Case 3>
Mixed bed of the cation exchange resin + 4% cross-linked porous anion exchange resin PA308 manufactured by Mitsubishi Chemical.

<ケース4>
前記カチオン交換樹脂+架橋度1.5%ポーラス型アニオン交換樹脂ダウケミカル製TAN1の混床。
<Case 4>
A mixed bed of the cation exchange resin + TAN1 made by Dow Chemical, a porous anion exchange resin having a crosslinking degree of 1.5%.

用いた試験装置は図4に示す通りである。内径25mmのカラムに、カチオン交換樹脂とアニオン交換樹脂を体積比で2/1にて混合して充填し、純水を40℃に調整し、循環運転を行う。定期的にカラム出口水を採取し、島津製作所製のTOC計であるTOC−5000でTOC濃度を測定し、TOC溶出速度を算出した。その結果を表1に示す。   The test apparatus used is as shown in FIG. A column having an inner diameter of 25 mm is filled with cation exchange resin and anion exchange resin mixed at a volume ratio of 2/1, pure water is adjusted to 40 ° C., and circulation operation is performed. Column outlet water was collected periodically, and the TOC concentration was measured with TOC-5000, which is a TOC meter manufactured by Shimadzu Corporation, to calculate the TOC elution rate. The results are shown in Table 1.

Figure 0004943378
Figure 0004943378

表1からわかるように、本発明に係るイオン交換樹脂の組み合わせであるケース3及びケース4は、従来技術であるケース1及びケース2に比べ、水中の硫酸濃度が低くなり、優れたTOC除去性能が得られることが確認された。   As can be seen from Table 1, Case 3 and Case 4, which are combinations of ion exchange resins according to the present invention, have a lower sulfuric acid concentration in water than Case 1 and Case 2 of the prior art, and excellent TOC removal performance. It was confirmed that

[実施例2]
原子力発電プラントの復水脱塩装置で広く使用されているイオン交換樹脂(ダウケミカル日本(株)製)である架橋度8%の強酸性ゲル型カチオン交換樹脂HCR−W2−Hに酸化処理を施し、本発明に係る架橋度1.5%ポーラス型アニオン交換樹脂ダウケミカル製TAN1アニオン交換樹脂及び従来より使用されているダウケミカル製SBR−PC−OHとを組み合わせて、次に示すケース5〜ケース8の各イオン交換樹脂床を形成し、溶出するTOC濃度を測定した。酸化処理法は、まずカチオン樹脂を硫酸第二鉄水溶液中に浸漬し、鉄イオンを15g/L程度負荷し、これを0.5%過酸化水素水溶液中にて40℃で6時間浸漬し、その後充分に水洗した。
[Example 2]
Oxidation treatment of strongly acidic gel-type cation exchange resin HCR-W2-H with a crosslinking degree of 8%, which is an ion exchange resin (manufactured by Dow Chemical Japan Co., Ltd.) widely used in condensate demineralizers of nuclear power plants In combination with the TAN1 anion exchange resin made by Dow Chemical, which has a degree of cross-linking of 1.5% according to the present invention, and SBR-PC-OH made by Dow Chemical, which is conventionally used, Each ion exchange resin bed of case 8 was formed, and the eluted TOC concentration was measured. In the oxidation treatment method, first, a cationic resin is immersed in an aqueous ferric sulfate solution, iron ions are loaded at about 15 g / L, and this is immersed in an aqueous 0.5% hydrogen peroxide solution at 40 ° C. for 6 hours. Thereafter, it was thoroughly washed with water.

<ケース5>
カチオン交換樹脂HCR−W2とアニオン交換樹脂SPR−PC−OHとの混床からなるイオン交換樹脂床。
<Case 5>
An ion exchange resin bed comprising a mixed bed of cation exchange resin HCR-W2 and anion exchange resin SPR-PC-OH.

<ケース6>
カチオン交換樹脂HCR−W2とアニオン交換樹脂TAN1との混床からなるイオン交換樹脂床。
<Case 6>
An ion exchange resin bed comprising a mixed bed of cation exchange resin HCR-W2 and anion exchange resin TAN1.

<ケース7>
上層部にカチオン交換樹脂HCR−W2を配し、下層部にカチオン交換樹脂HCR−W2とアニオン交換樹脂TAN1との混床を配したイオン交換樹脂樹脂床。
<Case 7>
An ion exchange resin resin bed in which the cation exchange resin HCR-W2 is arranged in the upper layer portion and a mixed bed of the cation exchange resin HCR-W2 and the anion exchange resin TAN1 is arranged in the lower layer portion.

<ケース8>
上層部にカチオン交換樹脂HCR−W2とアニオン交換樹脂TAN1の混床を配し、下層部にアニオン交換樹脂TAN1を配したイオン交換樹脂床。
<Case 8>
An ion exchange resin bed in which a mixed bed of cation exchange resin HCR-W2 and anion exchange resin TAN1 is arranged in the upper layer part, and an anion exchange resin TAN1 is arranged in the lower layer part.

試験は、被処理水の水質、温度、イオン交換樹脂床高、通水線流速が実プラントと同等として、実際のプラントと同条件を模擬して実施した。
内径25mmのカラムに、カチオン交換樹脂とアニオン交換樹脂を体積比で2/1にて混合した混床と、カチオン交換樹脂の半量を上層部に配し残りのカチオン交換樹脂とアニオン交換樹脂の混床を下層部に配した実施例4のイオン交換樹脂床、及びアニオン交換樹脂の半量を下層部に配し残りのアニオン交換樹脂とカチオン交換樹脂全量を混床として上層部に配した実施例5のイオン交換樹脂床に、導電率0.006mS/mで45℃の純水を通水し、処理水中のイオン濃度は、処理水を紫外線照射して含まれるTOCを分解し、生成する硫酸イオン濃度をイオンクロマト法にて分析した。その結果を表2に示す。
The test was carried out by simulating the same conditions as the actual plant, assuming that the quality of the treated water, temperature, ion exchange resin bed height, and water flow velocity were the same as the actual plant.
A mixed bed in which a cation exchange resin and an anion exchange resin are mixed at a volume ratio of 2/1 in a column having an inner diameter of 25 mm, and half of the cation exchange resin is disposed in the upper layer portion, and the remaining cation exchange resin and anion exchange resin are mixed. The ion exchange resin bed of Example 4 in which the floor was arranged in the lower layer part, and Example 5 in which half of the anion exchange resin was arranged in the lower layer part and the remaining anion exchange resin and the entire amount of the cation exchange resin were arranged in the upper layer part as a mixed bed The pure water of 45 ° C. with a conductivity of 0.006 mS / m is passed through the ion-exchange resin bed, and the ion concentration in the treated water is the sulfate ion produced by irradiating the treated water with ultraviolet rays to decompose the contained TOC. The concentration was analyzed by ion chromatography. The results are shown in Table 2.

Figure 0004943378
Figure 0004943378

表2からわかるように、本発明に係るケース6〜8は、従来技術であるケース5に比べ、硫酸濃度が低くなり、優れたTOC除去性能が得られることが確認された。   As can be seen from Table 2, it was confirmed that Cases 6 to 8 according to the present invention have a lower sulfuric acid concentration and superior TOC removal performance as compared to Case 5 which is the prior art.

BWR原子力発電プラントの一例を示す概略フロー構成図である。It is a schematic flow block diagram which shows an example of a BWR nuclear power plant. 本発明の復水脱塩装置の一実施形態を示す概略フロー構成図である。It is a schematic flow block diagram which shows one Embodiment of the condensate demineralization apparatus of this invention. 脱塩塔内のイオン交換樹脂床の構造を例示する概略構成図である。It is a schematic block diagram which illustrates the structure of the ion exchange resin bed in a desalting tower. 実施例で使用した試験装置のフロー構成図である。It is a flow block diagram of the test apparatus used in the Example.

符号の説明Explanation of symbols

1…原子炉、2,3…タービン、4…湿分分離器、5…復水器、6…復水ろ過装置、7…復水脱塩装置、8…原子炉浄化系、10…脱塩塔、11…イオン交換樹脂床、12…樹脂ストレーナ、13…再循環ポンプ、14…混床、15a…上層部、15b…下層部、16a…上層部、16b…下層部、17a…上層部、17b…中層部、17c…下層部。   DESCRIPTION OF SYMBOLS 1 ... Reactor, 2, 3 ... Turbine, 4 ... Moisture separator, 5 ... Condenser, 6 ... Condensate filtration device, 7 ... Condensate demineralizer, 8 ... Reactor purification system, 10 ... Desalination Tower, 11 ... ion exchange resin bed, 12 ... resin strainer, 13 ... recirculation pump, 14 ... mixed bed, 15a ... upper layer part, 15b ... lower layer part, 16a ... upper layer part, 16b ... lower layer part, 17a ... upper layer part, 17b: middle layer portion, 17c: lower layer portion.

Claims (14)

原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法。
In a condensate demineralization method for demineralizing condensate from a nuclear power plant with an ion exchange resin,
It consists of a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, and the mixed bed comprises the anion resin. The organic matter eluted from the cation exchange resin by bringing condensate into contact with an ion exchange resin bed having a mixed bed uniformly mixed so that the abundance ratio is within the design standard value ± 5% over the entire mixed bed. A condensate desalination method, wherein the desalination treatment is carried out while removing .
原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる上層部と、
(b)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法。
In a condensate demineralization method for demineralizing condensate from a nuclear power plant with an ion exchange resin,
(A) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, An upper layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anionic resin is within a design standard value ± 5% over the entire mixed bed;
(B) a condensate dewatering process wherein decondensation is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer made of an anion exchange resin. Salt method.
原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法。
In a condensate demineralization method for demineralizing condensate from a nuclear power plant with an ion exchange resin,
(A) an upper layer made of a cation exchange resin;
(B) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, A condensate is brought into contact with an ion exchange resin bed having a lower layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anion resin is within a design standard value ± 5% over the entire mixed bed. A condensate desalting method comprising performing desalting while removing organic substances eluted from the cation exchange resin .
原子力発電プラントの復水をイオン交換樹脂で脱塩処理する復水脱塩方法において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなり、前記混床は、前記アニオン樹脂の存在比が混床全域に渡って設計基準値±5%以内となるように均一に混合された混床からなる中層部と、
(c)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩方法。
In a condensate demineralization method for demineralizing condensate from a nuclear power plant with an ion exchange resin,
(A) an upper layer made of a cation exchange resin;
(B) a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed, A middle layer portion composed of a mixed bed uniformly mixed so that the abundance ratio of the anionic resin is within a design standard value ± 5% over the entire mixed bed;
(C) Condensate dewatering, wherein decondensation treatment is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer portion made of an anion exchange resin. Salt method.
前記有機物がポリスチレンスルホン酸を含むことを特徴とする請求項1〜4のいずれか1項に記載の復水脱塩方法。The condensate desalting method according to any one of claims 1 to 4, wherein the organic substance contains polystyrene sulfonic acid. カチオン交換樹脂として、架橋度が12%〜16%の範囲の強酸性ゲル型カチオン交換樹脂を用いることを特徴とする請求項1〜のいずれか1項に記載の復水脱塩方法。 As a cation exchange resin, condensate demineralizer method according to any one of claims 1 to 5, the degree of crosslinking is characterized by using a 12% to 16% of the strongly acidic gel-type cation exchange resin. カチオン交換樹脂として、架橋度が4〜7%の範囲の強酸性ゲル型カチオン交換樹脂を用いることを特徴とする請求項1〜のいずれか1項に記載の復水脱塩方法。 As a cation exchange resin, condensate demineralizer method according to any one of claims 1 to 5, the degree of crosslinking is characterized by using 4-7% of the strongly acidic gel-type cation exchange resin. 復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置。
In a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin,
Condensate is brought into contact with an ion exchange resin bed having a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. And performing a desalting treatment while removing organic substances eluted from the cation exchange resin .
復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる上層部と、
(b)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置。
In a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin,
(A) an upper layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(B) a condensate dewatering process wherein decondensation is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer made of an anion exchange resin. Salt equipment.
復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置。
In a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin,
(A) an upper layer made of a cation exchange resin;
(B) having a lower layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed. A demineralization apparatus for demineralization, wherein a demineralization treatment is performed while contacting condensed water with an ion exchange resin bed to remove organic substances eluted from the cation exchange resin .
復水をイオン交換樹脂で脱塩処理する原子力発電プラントの復水脱塩装置において、
(a)カチオン交換樹脂からなる上層部と、
(b)強酸性ゲル型カチオン交換樹脂と、架橋度が1%〜4%の範囲の強塩基性1型ポーラス型アニオン交換樹脂とが均一に混合された混床からなる中層部と、
(c)アニオン交換樹脂からなる下層部と、を有するイオン交換樹脂床に復水を接触させて前記カチオン交換樹脂から溶出する有機物を除去しつつ脱塩処理を行うことを特徴とする復水脱塩装置。
In a condensate demineralizer for a nuclear power plant that demineralizes condensate with an ion exchange resin,
(A) an upper layer made of a cation exchange resin;
(B) a middle layer portion comprising a mixed bed in which a strongly acidic gel type cation exchange resin and a strongly basic type 1 porous anion exchange resin having a crosslinking degree in the range of 1% to 4% are uniformly mixed;
(C) Condensate dewatering, wherein decondensation treatment is performed while removing the organic substances eluted from the cation exchange resin by bringing the condensate into contact with an ion exchange resin bed having a lower layer portion made of an anion exchange resin. Salt equipment.
前記有機物がポリスチレンスルホン酸を含むことを特徴とする請求項8〜11のいずれか1項に記載の復水脱塩装置。The condensate demineralizer according to any one of claims 8 to 11, wherein the organic substance contains polystyrene sulfonic acid. カチオン交換樹脂として、架橋度が12%〜16%の範囲の強酸性ゲル型カチオン交換樹脂を用いることを特徴とする請求項8〜12のいずれか1項に記載の復水脱塩装置。 As a cation exchange resin, the degree of crosslinking condensate demineralizer according to any one of claims 8 to 12 which comprises using a 12% to 16% of the strongly acidic gel-type cation exchange resin. カチオン交換樹脂として、架橋度が4〜7%の範囲の強酸性ゲル型カチオン交換樹脂を用いることを特徴とする請求項8〜12のいずれか1項に記載の復水脱塩装置。 The condensate demineralizer according to any one of claims 8 to 12 , wherein a strongly acidic gel-type cation exchange resin having a crosslinking degree in the range of 4 to 7% is used as the cation exchange resin.
JP2008134409A 2008-05-22 2008-05-22 Condensate demineralization method and condensate demineralization apparatus Expired - Fee Related JP4943378B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008134409A JP4943378B2 (en) 2008-05-22 2008-05-22 Condensate demineralization method and condensate demineralization apparatus
CN2009101384671A CN101585564B (en) 2008-05-22 2009-05-18 Method and apparatus for condensate demineralization
US12/470,053 US8861670B2 (en) 2008-05-22 2009-05-21 Method and apparatus for condensate demineralization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134409A JP4943378B2 (en) 2008-05-22 2008-05-22 Condensate demineralization method and condensate demineralization apparatus

Publications (2)

Publication Number Publication Date
JP2009281875A JP2009281875A (en) 2009-12-03
JP4943378B2 true JP4943378B2 (en) 2012-05-30

Family

ID=41370022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134409A Expired - Fee Related JP4943378B2 (en) 2008-05-22 2008-05-22 Condensate demineralization method and condensate demineralization apparatus

Country Status (3)

Country Link
US (1) US8861670B2 (en)
JP (1) JP4943378B2 (en)
CN (1) CN101585564B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038232B2 (en) * 2008-05-22 2012-10-03 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus
JP5380215B2 (en) * 2009-09-07 2014-01-08 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
CN102452702B (en) * 2010-10-15 2013-04-10 安徽中粮生化燃料酒精有限公司 Recycling method of condensed water
JP6103802B2 (en) * 2011-09-22 2017-03-29 三菱化学株式会社 Strongly basic anion exchange resin and desalting method and desalting apparatus using the same
CN103177781B (en) * 2011-12-23 2015-08-26 江苏核电有限公司 A kind of pressurized-water reactor nuclear power plant unit primary Ioops sulfate concentration control method
CN103771665B (en) * 2014-02-14 2016-08-17 刘奕彤 A kind of method of haline water combined treatment
US9731249B2 (en) * 2014-04-15 2017-08-15 Ut-Battelle, Llc Polymeric molecular sieve membranes for gas separation
JP2016191619A (en) * 2015-03-31 2016-11-10 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
FR3075450B1 (en) * 2017-12-15 2019-12-27 Electricite De France METHOD FOR IDENTIFYING THE UNIT ORIGIN OF A CRUDE WATER LEAKAGE IN A CONDENSER OF A THERMAL POWER PLANT
CN110634585B (en) * 2018-11-09 2022-05-10 上海核工程研究设计院有限公司 Device and method for removing sulfate radicals in spent fuel pool water

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134689A (en) * 1979-04-05 1980-10-20 Ebara Infilco Co Ltd Return water treatment
JPS6068092A (en) * 1983-09-22 1985-04-18 Hitachi Ltd Desalter
JPS61138589A (en) * 1984-12-12 1986-06-26 Toshiba Corp Method for packing ion-exchange resin into condensate desalting tower
JPH01174998A (en) * 1987-12-29 1989-07-11 Toshiba Corp Removal of suspended impurities with mixing floor type filter/desalter
JPH02131187A (en) * 1988-11-09 1990-05-18 Ebara Corp Removal process for suspended impurities by mixed bed type filter desalting device
JPH02131188A (en) * 1988-11-09 1990-05-18 Ebara Corp Removal process for suspended impurities by mixed bed type filter desalting device
JPH04108588A (en) * 1990-08-29 1992-04-09 Nippon Rensui Kk Production of ultrapure water
JPH05131189A (en) * 1991-07-09 1993-05-28 Ebara Corp Removal of suspended impurities using hybrid bed-type filtration desalting technique
JP3599777B2 (en) * 1994-05-31 2004-12-08 株式会社東芝 Ion exchange resin and desalination device filled with the resin
JP3330483B2 (en) * 1994-11-30 2002-09-30 オルガノ株式会社 Condensate desalination equipment
JP3610388B2 (en) * 1996-04-11 2005-01-12 オルガノ株式会社 Condensate demineralizer
JP3614995B2 (en) * 1996-09-19 2005-01-26 株式会社東芝 Condensate demineralizer
JPH11197661A (en) * 1998-01-07 1999-07-27 Toshiba Corp Condensed water desalting apparatus
JP3687829B2 (en) 1998-06-04 2005-08-24 株式会社荏原製作所 Condensate treatment method and condensate demineralizer
JP2001215294A (en) * 1999-11-22 2001-08-10 Japan Organo Co Ltd Condensate demineralizer
JP2001314855A (en) * 2000-05-12 2001-11-13 Japan Organo Co Ltd Condensed water desalting apparatus
JP2002001328A (en) * 2000-06-15 2002-01-08 Japan Organo Co Ltd Method for charging resin in mixed bed ion exchanger resin tower and device therefor
JP3960930B2 (en) * 2003-02-26 2007-08-15 オルガノ株式会社 Ion exchange resin filling method for condensate demineralizer
JP2004081927A (en) * 2002-08-23 2004-03-18 Japan Organo Co Ltd Method of filling condensed water desalting apparatus with ion exchange resin
JP2004279227A (en) * 2003-03-17 2004-10-07 Ebara Corp Method and device for condensate demineralization
JP4356987B2 (en) * 2004-04-08 2009-11-04 株式会社荏原製作所 Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP4467488B2 (en) * 2005-08-29 2010-05-26 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus

Also Published As

Publication number Publication date
JP2009281875A (en) 2009-12-03
CN101585564A (en) 2009-11-25
US20090296873A1 (en) 2009-12-03
CN101585564B (en) 2012-03-28
US8861670B2 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2001215294A (en) Condensate demineralizer
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP6077250B2 (en) Water treatment method and apparatus in nuclear power plant
JP5380215B2 (en) Condensate demineralization apparatus and condensate demineralization method
JP5044178B2 (en) Radionuclide-containing waste liquid treatment method and apparatus
JP2013017935A (en) Mixed ion exchange resin, desalination method, and desalting device
JP2007064646A (en) Method and device for desalting condensate
WO2007040266A1 (en) Process and equipment for demineralizing condensate
JP4943376B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP3610388B2 (en) Condensate demineralizer
JP4383091B2 (en) Condensate desalination method and apparatus
JP4292366B2 (en) Anion exchanger regeneration method and anion exchanger regeneration agent
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP3900399B2 (en) Condensate demineralizer
WO2018051664A1 (en) Water quality management system and method for operating water quality management system
JP2008064482A (en) Radioactive effluent treatment method and treatment apparatus
JP2019132774A (en) Method for desalting condensed water or waste water in nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4943378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees