JP2004081927A - Method of filling condensed water desalting apparatus with ion exchange resin - Google Patents

Method of filling condensed water desalting apparatus with ion exchange resin Download PDF

Info

Publication number
JP2004081927A
JP2004081927A JP2002243262A JP2002243262A JP2004081927A JP 2004081927 A JP2004081927 A JP 2004081927A JP 2002243262 A JP2002243262 A JP 2002243262A JP 2002243262 A JP2002243262 A JP 2002243262A JP 2004081927 A JP2004081927 A JP 2004081927A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
water
tower
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243262A
Other languages
Japanese (ja)
Inventor
Shinichi Ohashi
大橋 伸一
Toshio Morita
森田 利夫
Hidenori Takahashi
高橋 英紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002243262A priority Critical patent/JP2004081927A/en
Priority to DE60311615T priority patent/DE60311615T2/en
Priority to AT03255196T priority patent/ATE353249T1/en
Priority to EP03255196A priority patent/EP1393806B1/en
Priority to KR1020030058218A priority patent/KR100947139B1/en
Publication of JP2004081927A publication Critical patent/JP2004081927A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of filling a desalting column of a condensed water desalting apparatus with an ion exchange resin capable of obtaining the effect of reducing a PSS (polystyrene sulphonate) concentration in a desired treated water by certainly forming a target ion exchange resin bed of a two-bed form in the desalting column by suppressing the whirling-up of an anion exchange resin from the resin bed formed in the lower part in the desalting column. <P>SOLUTION: In the method of filling a condensed water desalting apparatus with the ion exchange resin, mutually different two upper and lower layers of ion exchange resin beds, which comprise an upper ion exchange resin bed comprising a mixed resin of a cation exchange resin and an anion exchange resin and a lower ion exchange resin bed comprising an anion exchange resin, are formed in the desalting column. In this case, the desalting column is filled with the anion exchange resin along with transfer water to form the lower ion exchange resin bed and, afte water in the desalting column is drained, the desalting column is filled with the mixed resin along with transfer water to form the upper ion exchange resin bed on the lower ion exchange resin bed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原子力あるいは火力発電プラントの復水配管系統に設けられる復水脱塩装置へのイオン交換樹脂充填方法に関するものである。
【0002】
【従来の技術】
復水脱塩装置の処理水には数種の有機性不純物が含まれていることが知られている。これらは主として脱塩塔に充填されているイオン交換樹脂から溶出した不純物であり、イオン交換樹脂が溶存酸素や酸化剤による酸化分解を受けることにより発生する。このうちカチオン交換樹脂から溶出する有機性不純物は、主としてポリスチレンスルホン酸(以下、PSSと略称することもある。)であり、原子炉や蒸気発生器で分解されて硫酸イオンを生じるため近年問題となっている。すなわち、硫酸は構造材の腐食やスケール発生の原因となるため、極力低減することが望ましく、硫酸イオンの発生を低減する方法がいくつか提案されている。
【0003】
低減方法の一つとして、脱塩塔内に形成されるイオン交換樹脂層を上下に分け、上層をカチオン交換樹脂とアニオン交換樹脂を混合した混合イオン交換樹脂、またはカチオン交換樹脂単独の層とし、下層をアニオン交換樹脂単独の層とする方法が提案されている(特開平9−276862号公報)。この方法では、脱塩塔内下部のアニオン交換樹脂が上層から溶出してきたPSSを吸着するため、処理水中のPSS濃度を低減することができる。
【0004】
【発明が解決しようとする課題】
ところが、上記のように脱塩塔内に所望の上下二層のイオン交換樹脂層を形成しようとする場合、以下のような問題がある。すなわち、アニオン交換樹脂の比重は一般にカチオン交換樹脂よりも小さいので、脱塩塔内にイオン交換樹脂を充填するに際し、先にアニオン交換樹脂を受け入れて脱塩塔内下部にアニオン交換樹脂層を形成しても、その上に混合イオン交換樹脂を受け入れる際に、脱塩塔内の樹脂層が流動状態になり、アニオン交換樹脂が舞い上がって混合イオン交換樹脂層上部にまで移動してしまい、脱塩塔内下部のアニオン交換樹脂量が減少するという問題が生じる。脱塩塔内下部のアニオン交換樹脂量が減少すると、PSSが捕捉されにくくなり、処理水中のPSS濃度が増加し、二層に分けたことによる目標とする処理水中のPSS濃度低減効果が得られない。
【0005】
このような現象は、たとえば図5に示すように発生する。図5に示すように、脱塩塔101内にイオン交換樹脂を充填する際には、先ず、アニオン交換樹脂と水とのスラリーを樹脂移送管102から脱塩塔101内に供給し、塔内底部にアニオン交換樹脂層103を形成する。このとき、アニオン交換樹脂とともに移送された移送水も塔内に溜まるから、アニオン交換樹脂移送終了後の樹脂層103の上部には、図示の如く水の層104が形成される。次に、樹脂移送管102から脱塩塔101内にカチオン、アニオン交換樹脂の混合樹脂と水とのスラリーを供給してアニオン交換樹脂層103の上部に混合樹脂層を形成させるが、このとき、塔上部から導入されるスラリーの水流が上記水の層104に当たるため、アニオン交換樹脂層103が流動化してしまい、アニオン交換樹脂の一部が舞い上がって、形成されつつある混合樹脂層中あるいは混合樹脂層の上部にまで移動してしまう。その結果、塔内下部のアニオン交換樹脂量が減少し、たとえば後述の図4に示すような状態となる。塔内下部のアニオン交換樹脂量が減少すると、上述の如く目標とする処理水中のPSS濃度低減効果が得られない。
【0006】
上記のようなアニオン交換樹脂の移動を抑制するために、樹脂の粒径調整、すなわち粒径の大きいアニオン交換樹脂や粒径の小さいカチオン交換樹脂を用いる方法も考えられるが、そうすると、樹脂再生の際に、比重の大きいカチオン交換樹脂を下側へ比重の小さいアニオン交換樹脂を上側へと分離する、再生設備における分離操作が困難になる。樹脂が分離できないと、薬品再生が行えなくなる他、定検時に脱塩塔から樹脂を抜き出した後の再充填も困難になる等の問題が生じる。したがって、このような樹脂の粒径調整は、現実的には採用し得ない。
【0007】
本発明の課題は、脱塩塔内下部に形成した樹脂層からのアニオン交換樹脂の舞い上がりを抑え、塔内に確実に目標とする二層形態のイオン交換樹脂層を形成して、所望の処理水中のPSS濃度低減効果を得ることが可能な、復水脱塩装置の脱塩塔へのイオン交換樹脂充填方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る復水脱塩装置へのイオン交換樹脂充填方法は、脱塩塔内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または前記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層を形成するに際し、脱塩塔内に、アニオン交換樹脂または混合樹脂Bを移送水とともに充填して下側イオン交換樹脂層を形成した後、脱塩塔内の水を抜き、次いで混合樹脂Aを移送水とともに充填して前記下側イオン交換樹脂層上に上側イオン交換樹脂層を形成することを特徴とする方法からなる。
【0009】
この方法においては、さらに、上側イオン交換樹脂層を形成した後、脱塩塔内を満水にし、脱塩塔内を加圧することができる。加圧は満水にする際に加圧水を供給し、満水後もそのまま加圧水の供給弁を開状態に保つ方法、塔内を満水にしてから加圧水を供給して加圧する方法のいずれによってもよい。加圧圧力としては発電所の補給水や復水の圧力程度であればよく、例えば0.3〜0.8MPaが適当である。脱塩塔内を一定時間加圧状態に保持することにより、塔内に形成させたイオン交換樹脂層内に気泡が存在している場合にもその気泡を水中に溶解させることが可能となる。また、一定時間加圧後に塔内の水を新たな水と置換し、再度加圧することにより、塔内の気泡を効果的に除去することができる。なお、このとき、脱塩塔内にイオン交換樹脂を移送するための水や移送後に脱塩塔内を満水にするための水としては、気体を溶解する力が強いという点で後述のような脱気水を用いることが望ましく、例えば脱気純水や復水を用いることができる。
【0010】
また、上記方法においては、上側イオン交換樹脂層を形成した後、脱塩塔内に予め溶存酸素や溶存窒素などの溶存ガスが除去された脱気水を連続的に供給して、換言すれば脱塩塔内に脱気水を通水して、脱塩塔内の気泡を除去することもできる。脱気水は加圧水、非加圧水のいずれであってもよい。脱気水への置換により、イオン交換樹脂層内に気泡が存在している場合にもその気泡を水中に溶解させることが可能になり、脱塩処理開始に備えることができる。
【0011】
下側イオン交換樹脂層を形成した後脱塩塔内の水を抜く(ドレンする)には、単に高低差を利用してドレンする方法でもよいが、脱塩塔上部から空気あるいは窒素ガス等を導入して強制的にドレンを行ってもよい。強制ドレンでは、塔内の水をより速く抜くことができる。
【0012】
上記のような本発明に係る復水脱塩装置へのイオン交換樹脂充填方法においては、先ず、アニオン交換樹脂またはアニオン交換樹脂リッチの混合樹脂Bが移送水とともに脱塩塔内に供給、充填され、脱塩塔内の下部に下側イオン交換樹脂層が形成される。従来方法では、続いて混合樹脂Aが移送水とともに脱塩塔内に供給、充填されていたが、本発明方法では、次いで、脱塩塔内の水が抜かれる(ドレンされる)。この脱塩塔内の水をドレンした状態では、脱塩塔内に形成された下側イオン交換樹脂層のアニオン交換樹脂は、実質的に流動不可の状態となる。この状態にて、脱塩塔内の上記下側イオン交換樹脂層の上部に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aが移送水とともに供給、充填される。したがって、この充填時には、下側イオン交換樹脂層が流動状態になることが防止され、アニオン交換樹脂が舞い上がることが防止され、アニオン交換樹脂は塔内下部にとどまる。混合樹脂Aが塔内に供給される際に移送水も同時に塔内に流入するため脱塩塔内の水位は徐々に上昇することになるが、水位が下側イオン交換樹脂層の表層まで上昇した時点では既に下側イオン交換樹脂層の上部に所定の混合樹脂層が形成された状態とできるので、下側イオン交換樹脂層のアニオン交換樹脂が舞い上がって上側に移動することが適切に防止される。その結果、アニオン交換樹脂または混合樹脂Bからなる下側イオン交換樹脂層、混合樹脂Aからなる上側イオン交換樹脂層がともに所定形態の層に形成され、目標とする二層形態が確実に形成されて、狙いとする処理水中のPSS濃度低減効果を確実に得ることが可能になる。
【0013】
【発明の実施の形態】
以下に、本発明について、その効果確認のための試験として行った実施例とともに、図面を参照しながら詳細に説明する。
本発明は、復水脱塩装置における脱塩塔へのイオン交換樹脂充填方法に関するものであるが、本発明を適用できる脱塩塔の形態は特に限定されず、たとえば、図1、図2に示すいずれの形態の脱塩塔に対しても適用できる。図1に示す脱塩塔1では、その上側部にイオン交換樹脂を供給する樹脂入口管7が設けられている。また、脱塩塔1の上部には、水入口管2が設けられ、その先端にディストリビュータ3が設けられている。脱塩塔1内下部には、集水コレクター4が設けられ、集水コレクター4は水出口管5へと接続されている。脱塩塔1内には、樹脂入口管7からイオン交換樹脂が移送水とともに供給され、塔内にイオン交換樹脂が設計樹脂面6まで充填される。本発明においては、脱塩塔1内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または上記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層が形成される。なお、図1において、符号8は、脱塩塔1内のイオン交換樹脂を図示しない再生設備へ移送する際等に使用する、樹脂出口管を示している。
【0014】
図2に示す脱塩塔11においては、その上部にイオン交換樹脂を供給する樹脂入口管18が設けられている。樹脂入口管18は、後述の整流板14を貫通して整流板14の下方の位置まで延設されており、該樹脂入口管18の先端部下方にバッフルプレート19が設けられている。また、脱塩塔11の上部には、水入口管12が接続され、塔内の水入口管12の下方にバッフルプレート13が、その下方に塔内を横断するように整流板14が設けられている。脱塩塔11内下部には、スクリーン15が設けられ、脱塩塔11の底部に水出口管16が接続されている。脱塩塔11内には、樹脂入口管18からイオン交換樹脂が移送水とともに供給され、塔内のスクリーン15上にイオン交換樹脂が設計樹脂面17まで充填される。本発明においては、脱塩塔11内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または上記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層が形成される。なお、図2において、符号20は樹脂出口管を示している。
【0015】
そして、上記下側イオン交換樹脂層と上側イオン交換樹脂層は、次のように形成される。先ず、樹脂入口管7、18を介して脱塩塔1、11内に、アニオン交換樹脂または混合樹脂Bが移送水とともに供給され、樹脂が塔内下部に充填されて下側イオン交換樹脂層が形成される。下側イオン交換樹脂層の形成後、脱塩塔1、11内から、塔内に溜まっていた水が水出口管5、16を介して抜かれる(ドレンされる)。このドレンにより、下側イオン交換樹脂層は実質的に流動不可の状態とされる。次いで、この状態にて、混合樹脂Aが移送水とともに樹脂入口管7、18を介して脱塩塔1、11内に供給され、塔内に充填されて上記下側イオン交換樹脂層上に上側イオン交換樹脂層が形成される。この上側イオン交換樹脂層形成時には、脱塩塔1、11内には、混合樹脂Aの移送に使用された水が徐々に溜まり、その水位が徐々に上昇することになるが、水位が下側イオン交換樹脂層の表層に達した時点では、既に下側イオン交換樹脂層の上に混合樹脂Aの層が形成されているため、下側イオン交換樹脂層の流動化、それに伴う下側イオン交換樹脂層中のアニオン交換樹脂の舞い上がり、上方への移動が防止される。したがって、アニオン交換樹脂または混合樹脂Bからなる下側イオン交換樹脂層は実質的にそのままの層形態のまま残り、下側イオン交換樹脂層中のアニオン交換樹脂の、上方への移動、とくに、上側イオン交換樹脂層の上部への移動が防止される。たとえ下側イオン交換樹脂層に層形態の乱れが生じるとしても、高々、下側イオン交換樹脂層の表層形態(上側イオン交換樹脂層との境界形態)が乱れる程度に抑えられる。
【0016】
その結果、所望高さの下側イオン交換樹脂層、所望高さの上側イオン交換樹脂層がそれぞれ確実に形成され、目標とする塔内二層形態が構成される。この二層形態により、脱塩処理時には、上側イオン交換樹脂層中のカチオン交換樹脂から溶出したPSSが、下側イオン交換樹脂層中のアニオン交換樹脂によって適切に捕捉され、所望の処理水中のPSS濃度低減効果を得ることが可能となる。
【0017】
実際の脱塩処理の開始に際しては、前述したように、上側イオン交換樹脂層を形成した後、脱塩塔内を満水にし、脱塩塔内を一定時間加圧するか、上側イオン交換樹脂層を形成した後、脱塩塔内に脱気水を連続的に供給して脱塩塔内を脱気水で連続的に置換して、イオン交換樹脂層内に気泡が存在している場合にもその気泡を水中に溶解させた後、脱塩処理を開始することが好ましい。
【0018】
本発明による下側イオン交換樹脂層中のアニオン交換樹脂の上方への移動防止効果を確認するために、以下のような試験を実施例として実施した。
試験装置として、脱塩塔を透明材料で構成し、塔内に形成されたイオン交換樹脂層の状態を目視で観測できるようにして、イオン交換樹脂の移送、塔内充填状況を確認した。
【0019】
試験装置の概要を以下に示す。
・脱塩塔内径:500mm
・樹脂移送管内径:10mm
・移送流量:40L/h
・下側イオン交換樹脂層:強塩基性アニオン交換樹脂
「アンバーライト」(登録商標)IRA400T 9L
・上側イオン交換樹脂層:カチオン交換樹脂とアニオン交換樹脂の混合樹脂
強酸性カチオン交換樹脂;「アンバーライト」200C  7.5L
強塩基性アニオン交換樹脂;「アンバーライト」IRA400T 7.5L
【0020】
本発明に基づく実施例の移送、充填状況を図3に示す。透明脱塩塔21内に、樹脂移送管22、バッフルプレート23を介して、アニオン交換樹脂を移送水とともに供給し、塔内下部に設けた目板24の上に下側イオン交換樹脂層としてのアニオン交換樹脂層25を形成した後、塔内の水を出口管26を通して抜き、しかる後に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂を移送水とともに供給し、アニオン交換樹脂層25上に上側イオン交換樹脂層としての混合イオン交換樹脂層27を形成した。このとき、図3に示すように、移送水による塔内水位28は混合イオン交換樹脂層27の上部まで達したが、塔内下部のアニオン交換樹脂層25は、境界面は若干変動したものの塔内下部に実質的に所定高さのまま保持された。
【0021】
比較例として、図4に従来の方法による移送状況を示す。すなわち、アニオン交換樹脂層25を形成した後、塔内の水を抜き出すことなく、続いて混合樹脂を移送水とともに供給し、アニオン交換樹脂層25上に上側イオン交換樹脂層としての混合イオン交換樹脂層27を形成しようとした。結果、図4に示すように、塔内下部に形成されていたアニオン交換樹脂層25中のアニオン交換樹脂は、その大半が上方に移動してしまい、その一部は混合イオン交換樹脂層27の上部にまで移動して上部アニオン交換樹脂層25aを形成してしまった。
【0022】
図3、図4に示した比較試験から、本発明による、下側イオン交換樹脂層形成後の水抜きによる、顕著な効果が確認された。
【0023】
【発明の効果】
以上説明したように、本発明に係る復水脱塩装置へのイオン交換樹脂充填方法によれば、脱塩塔内下部に形成した樹脂層からのアニオン交換樹脂の望ましくない上方への流動を抑えることができ、脱塩塔内に、確実に、目標とする高さの上下二層形態のイオン交換樹脂層を形成することができる。その結果、脱塩処理時に、上側イオン交換樹脂層のカチオン交換樹脂から溶出したPSSをより確実に下側イオン交換樹脂層のアニオン交換樹脂に吸着させることができるようになり、目標とする処理水中のPSS濃度低減効果を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明方法が適用可能な脱塩塔の一例を示す概略構成図である。
【図2】本発明方法が適用可能な脱塩塔の別の例を示す概略構成図である。
【図3】本発明による効果を確認するために行った試験(実施例)の結果を示す、試験装置の概略構成図である。
【図4】従来方法との比較のために行った試験(比較例)の結果を示す、試験装置の概略構成図である。
【図5】従来方法における問題点を説明するための脱塩塔の概略構成図である。
【符号の説明】
1、11 脱塩塔
2、12 水入口管
3 ディストリビュータ
4 集水コレクター
5、16 水出口管
6、17 設計樹脂面
7、18 樹脂入口管
8、20 樹脂出口管
13 バッフルプレート
14 整流板
15 スクリーン
19 バッフルプレート
21 脱塩塔
22 樹脂移送管
23 バッフルプレート
24 目板
25 下側イオン交換樹脂層としてのアニオン交換樹脂層
25a 上部アニオン交換樹脂層
26 出口管
27 上側イオン交換樹脂層としての混合イオン交換樹脂層
28 塔内水位
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for filling an ion exchange resin into a condensate desalination apparatus provided in a condensate piping system of a nuclear or thermal power plant.
[0002]
[Prior art]
It is known that the treated water of the condensate desalination apparatus contains several kinds of organic impurities. These are mainly impurities eluted from the ion exchange resin packed in the desalting tower, and are generated when the ion exchange resin undergoes oxidative decomposition by dissolved oxygen or an oxidizing agent. Among these, the organic impurities eluted from the cation exchange resin are mainly polystyrene sulfonic acid (hereinafter sometimes abbreviated as PSS), which is decomposed in a nuclear reactor or a steam generator to generate sulfate ions, which has been a problem in recent years. Has become. That is, since sulfuric acid causes corrosion of the structural material and generation of scale, it is desirable to reduce as much as possible, and several methods for reducing the generation of sulfate ions have been proposed.
[0003]
As one of the reduction methods, the ion exchange resin layer formed in the desalting tower is divided into upper and lower layers, and the upper layer is a mixed ion exchange resin obtained by mixing a cation exchange resin and an anion exchange resin, or a layer of the cation exchange resin alone, There has been proposed a method in which the lower layer is formed of a single layer of an anion exchange resin (Japanese Patent Application Laid-Open No. 9-276682). In this method, since the anion exchange resin in the lower part of the desalting tower adsorbs PSS eluted from the upper layer, the PSS concentration in the treated water can be reduced.
[0004]
[Problems to be solved by the invention]
However, when trying to form desired two upper and lower ion exchange resin layers in the desalination tower as described above, there are the following problems. That is, since the specific gravity of the anion exchange resin is generally smaller than that of the cation exchange resin, when filling the ion exchange resin in the desalination tower, the anion exchange resin is first received and the anion exchange resin layer is formed in the lower part of the desalination tower. However, when the mixed ion exchange resin is received thereon, the resin layer in the desalting tower becomes in a fluid state, and the anion exchange resin soars and moves to the upper part of the mixed ion exchange resin layer, thereby desalinating. There is a problem that the amount of anion exchange resin in the lower part of the column is reduced. When the amount of the anion exchange resin in the lower part of the desalination tower decreases, it becomes difficult to capture PSS, the PSS concentration in the treated water increases, and the target PSS concentration reduction effect in the treated water can be obtained by dividing into two layers. Absent.
[0005]
Such a phenomenon occurs, for example, as shown in FIG. As shown in FIG. 5, when filling the desalination tower 101 with the ion exchange resin, first, a slurry of the anion exchange resin and water is supplied from the resin transfer pipe 102 into the desalination tower 101, An anion exchange resin layer 103 is formed on the bottom. At this time, since the transported water transported together with the anion exchange resin also accumulates in the tower, a water layer 104 is formed on the upper portion of the resin layer 103 after the completion of the transport of the anion exchange resin as illustrated. Next, a slurry of a mixed resin of cation and anion exchange resin and water is supplied into the desalting tower 101 from the resin transfer pipe 102 to form a mixed resin layer on the anion exchange resin layer 103. Since the water flow of the slurry introduced from the top of the tower hits the water layer 104, the anion exchange resin layer 103 is fluidized, and a part of the anion exchange resin soars up, in the mixed resin layer being formed or in the mixed resin layer. It moves to the top of the layer. As a result, the amount of the anion exchange resin in the lower part of the column is reduced, for example, as shown in FIG. When the amount of the anion exchange resin in the lower part of the column is reduced, the target PSS concentration reduction effect in the treated water cannot be obtained as described above.
[0006]
In order to suppress the movement of the anion exchange resin as described above, a method of adjusting the particle size of the resin, that is, a method of using a large particle size anion exchange resin or a small particle size cation exchange resin can be considered. At this time, it becomes difficult to perform a separation operation in a regeneration facility for separating a cation exchange resin having a large specific gravity downward and an anion exchange resin having a small specific gravity upward. If the resin cannot be separated, it will be impossible to regenerate the chemicals, and it will be difficult to refill the resin after extracting it from the desalting tower during regular inspection. Therefore, such adjustment of the particle size of the resin cannot be practically adopted.
[0007]
An object of the present invention is to suppress the rising of the anion exchange resin from the resin layer formed in the lower part of the desalination tower, and to form the target two-layer ion exchange resin layer in the tower without fail, thereby achieving the desired treatment. It is an object of the present invention to provide a method of filling an ion exchange resin into a desalination tower of a condensate desalination apparatus, which is capable of obtaining a PSS concentration reduction effect in water.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a method for filling an ion exchange resin in a condensate deionization apparatus according to the present invention comprises: an upper ion exchange resin layer comprising a mixed resin A of a cation exchange resin and an anion exchange resin in a desalination tower. When forming two different upper and lower ion exchange resin layers of the anion exchange resin alone or the lower ion exchange resin layer composed of the mixed resin B having a higher proportion of the anion exchange resin than the mixed resin A, In the salt tower, after filling the anion exchange resin or the mixed resin B with the transfer water to form the lower ion exchange resin layer, drain the water in the desalting tower, and then fill the mixed resin A with the transfer water. Forming an upper ion-exchange resin layer on the lower ion-exchange resin layer.
[0009]
In this method, after the upper ion exchange resin layer is further formed, the inside of the desalting tower can be filled with water, and the inside of the desalting tower can be pressurized. Pressurization may be performed by supplying pressurized water at the time of filling with water and keeping the supply valve of the pressurized water open even after filling, or by pressurizing water by supplying pressurized water after filling the inside of the tower. The pressurizing pressure may be about the pressure of make-up water or condensate of the power plant, and for example, 0.3 to 0.8 MPa is appropriate. By maintaining the pressurized state in the desalting tower for a certain period of time, even when bubbles exist in the ion exchange resin layer formed in the tower, the bubbles can be dissolved in water. Further, by replacing the water in the tower with new water after pressurizing for a certain time and pressurizing again, bubbles in the tower can be effectively removed. Incidentally, at this time, as water for transferring the ion exchange resin into the desalination tower and water for filling the desalination tower after the transfer, the gas dissolving power is strong, as described below. It is desirable to use degassed water, for example, degassed pure water or condensed water can be used.
[0010]
Further, in the above method, after forming the upper ion-exchange resin layer, continuously supply degassed water from which dissolved gases such as dissolved oxygen and dissolved nitrogen have been removed in advance in the desalting tower, in other words, Deaerated water may be passed through the desalination tower to remove bubbles in the desalination tower. The degassed water may be either pressurized water or non-pressurized water. By replacement with degassed water, even when bubbles exist in the ion exchange resin layer, the bubbles can be dissolved in water, and preparation for the start of the desalting process can be made.
[0011]
In order to drain (drain) water in the desalination tower after forming the lower ion exchange resin layer, a method of simply draining using a height difference may be used. It may be introduced and forcedly drained. With forced drain, the water in the tower can be drained faster.
[0012]
In the method for charging the ion exchange resin into the condensate desalination apparatus according to the present invention as described above, first, the anion exchange resin or the mixed resin B rich in the anion exchange resin is supplied and charged into the desalination tower together with the transfer water. Then, a lower ion exchange resin layer is formed at a lower portion in the desalination tower. In the conventional method, the mixed resin A was subsequently supplied and filled into the desalination tower together with the transfer water. However, in the method of the present invention, the water in the desalination tower is then drained (drained). In a state where the water in the desalting tower is drained, the anion exchange resin of the lower ion exchange resin layer formed in the desalting tower is in a substantially non-flowable state. In this state, the mixed resin A of the cation exchange resin and the anion exchange resin is supplied and filled together with the transfer water onto the upper part of the lower ion exchange resin layer in the desalination tower. Therefore, at the time of this packing, the lower ion exchange resin layer is prevented from being in a fluidized state, the anion exchange resin is prevented from rising, and the anion exchange resin stays in the lower portion in the column. When the mixed resin A is supplied into the tower, the transport water also flows into the tower at the same time, so that the water level in the desalination tower gradually rises, but the water level rises to the surface of the lower ion exchange resin layer. At this point, since a predetermined mixed resin layer can be already formed on the upper part of the lower ion exchange resin layer, the anion exchange resin of the lower ion exchange resin layer is appropriately prevented from rising and moving upward. You. As a result, both the lower ion-exchange resin layer made of the anion exchange resin or the mixed resin B and the upper ion-exchange resin layer made of the mixed resin A are formed in layers of a predetermined form, so that a target two-layer form is reliably formed. As a result, the intended effect of reducing the PSS concentration in the treated water can be reliably obtained.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings, together with examples performed as tests for confirming the effects.
The present invention relates to a method for filling an ion exchange resin into a desalination tower in a condensate desalination apparatus. However, the form of the desalination tower to which the present invention can be applied is not particularly limited. The present invention can be applied to any type of desalination tower shown. In the desalination tower 1 shown in FIG. 1, a resin inlet pipe 7 for supplying an ion exchange resin is provided on an upper portion thereof. A water inlet pipe 2 is provided above the desalination tower 1, and a distributor 3 is provided at the tip thereof. A water collector 4 is provided in the lower part of the desalination tower 1, and the water collector 4 is connected to a water outlet pipe 5. In the desalination tower 1, an ion exchange resin is supplied together with transfer water from a resin inlet pipe 7, and the ion exchange resin is filled up to the design resin surface 6 in the tower. In the present invention, in the desalting tower 1, the ratio of the upper ion exchange resin layer composed of the mixed resin A of the cation exchange resin and the anion exchange resin and the ratio of the anion exchange resin alone or the anion exchange resin is higher than that of the mixed resin A. Two upper and lower ion exchange resin layers different from the lower ion exchange resin layer made of the mixed resin B are formed. In FIG. 1, reference numeral 8 denotes a resin outlet pipe used for transferring the ion exchange resin in the desalination tower 1 to a regeneration facility (not shown).
[0014]
In the desalination tower 11 shown in FIG. 2, a resin inlet pipe 18 for supplying an ion exchange resin is provided at an upper portion thereof. The resin inlet pipe 18 extends to a position below the current plate 14 through a current plate 14 to be described later, and a baffle plate 19 is provided below a distal end portion of the resin inlet pipe 18. A water inlet pipe 12 is connected to the upper part of the desalination tower 11, a baffle plate 13 is provided below the water inlet pipe 12 in the tower, and a baffle plate 14 is provided below the water inlet pipe 12 so as to cross the inside of the tower. ing. A screen 15 is provided in the lower part of the desalination tower 11, and a water outlet pipe 16 is connected to the bottom of the desalination tower 11. In the desalination tower 11, the ion exchange resin is supplied together with the transfer water from the resin inlet pipe 18, and the ion exchange resin fills up to the design resin surface 17 on the screen 15 in the tower. In the present invention, in the desalting tower 11, the ratio of the upper ion exchange resin layer composed of the mixed resin A of the cation exchange resin and the anion exchange resin and the ratio of the anion exchange resin alone or the anion exchange resin is higher than that of the mixed resin A. Two upper and lower ion exchange resin layers different from the lower ion exchange resin layer made of the mixed resin B are formed. In FIG. 2, reference numeral 20 denotes a resin outlet tube.
[0015]
The lower ion exchange resin layer and the upper ion exchange resin layer are formed as follows. First, the anion exchange resin or the mixed resin B is supplied together with the transfer water into the desalination towers 1 and 11 via the resin inlet pipes 7 and 18, and the resin is filled in the lower part of the tower to form the lower ion exchange resin layer. It is formed. After the formation of the lower ion-exchange resin layer, water accumulated in the desalting towers 1 and 11 is drained through the water outlet pipes 5 and 16 (drained). Due to this drain, the lower ion exchange resin layer is brought into a substantially non-flowable state. Next, in this state, the mixed resin A is supplied to the desalination towers 1 and 11 via the resin inlet pipes 7 and 18 together with the transfer water, and is charged into the towers and is placed on the lower ion exchange resin layer. An ion exchange resin layer is formed. During the formation of the upper ion-exchange resin layer, the water used for transporting the mixed resin A gradually accumulates in the desalination towers 1 and 11, and the water level gradually rises. When the surface of the ion-exchange resin layer is reached, the layer of the mixed resin A has already been formed on the lower ion-exchange resin layer. The rising of the anion exchange resin in the resin layer and the upward movement are prevented. Therefore, the lower ion-exchange resin layer composed of the anion exchange resin or the mixed resin B remains substantially in the same layer form, and the anion-exchange resin in the lower ion-exchange resin layer moves upward, in particular, moves upward. Movement of the ion exchange resin layer to the upper part is prevented. Even if the lower ion-exchange resin layer is disordered in the layer form, the surface form of the lower ion-exchange resin layer (boundary form with the upper ion-exchange resin layer) is suppressed to a degree at most.
[0016]
As a result, the lower ion-exchange resin layer having the desired height and the upper ion-exchange resin layer having the desired height are each reliably formed, and the target two-layer structure in the tower is formed. Due to this two-layer configuration, at the time of desalination treatment, PSS eluted from the cation exchange resin in the upper ion exchange resin layer is appropriately captured by the anion exchange resin in the lower ion exchange resin layer, and PSS in the desired treated water is obtained. It is possible to obtain a concentration reduction effect.
[0017]
At the start of the actual desalination treatment, as described above, after the upper ion exchange resin layer is formed, the inside of the desalination tower is filled with water, and the inside of the desalination tower is pressurized for a certain time, or the upper ion exchange resin layer is removed. After the formation, degassing water is continuously supplied into the desalting tower to continuously replace the inside of the desalting tower with degassed water, even when bubbles are present in the ion exchange resin layer. After dissolving the bubbles in water, desalting treatment is preferably started.
[0018]
In order to confirm the effect of preventing the upward movement of the anion exchange resin in the lower ion exchange resin layer according to the present invention, the following test was performed as an example.
As a test apparatus, a desalination tower was made of a transparent material, and the state of the ion-exchange resin layer formed in the tower was visually observed, and the transfer of the ion-exchange resin and the filling state in the tower were confirmed.
[0019]
The outline of the test equipment is shown below.
・ Inner diameter of desalting tower: 500mm
-Resin transfer tube inner diameter: 10 mm
・ Transfer flow rate: 40 L / h
-Lower ion exchange resin layer: Strongly basic anion exchange resin "Amberlite" (registered trademark) IRA400T 9L
-Upper ion exchange resin layer: Mixed resin of cation exchange resin and anion exchange resin Strongly acidic cation exchange resin; "Amberlite" 200C 7.5L
Strongly basic anion exchange resin; "Amberlite" IRA400T 7.5L
[0020]
FIG. 3 shows a transfer and filling state of the embodiment according to the present invention. An anion exchange resin is supplied into the transparent desalination tower 21 via a resin transfer pipe 22 and a baffle plate 23 together with the transfer water, and is placed on a plate 24 provided at a lower part in the tower as a lower ion exchange resin layer. After the formation of the anion exchange resin layer 25, water in the tower is drained through the outlet pipe 26, and thereafter, a mixed resin of the cation exchange resin and the anion exchange resin is supplied together with the transfer water, and the upper ion A mixed ion exchange resin layer 27 as an exchange resin layer was formed. At this time, as shown in FIG. 3, the water level 28 in the tower due to the transfer water reached the upper part of the mixed ion-exchange resin layer 27, but the anion exchange resin layer 25 in the lower part of the tower showed a slight change in the boundary surface, It was held at a substantially predetermined height in the lower part of the inner part.
[0021]
As a comparative example, FIG. 4 shows a transfer situation by a conventional method. That is, after forming the anion exchange resin layer 25, the mixed resin is supplied together with the transfer water without extracting the water in the tower, and the mixed ion exchange resin as the upper ion exchange resin layer is formed on the anion exchange resin layer 25. An attempt was made to form layer 27. As a result, as shown in FIG. 4, most of the anion exchange resin in the anion exchange resin layer 25 formed in the lower part of the column has moved upward, and part of the anion exchange resin has moved to the mixed ion exchange resin layer 27. It moved to the upper part to form the upper anion exchange resin layer 25a.
[0022]
From the comparative tests shown in FIGS. 3 and 4, a remarkable effect of draining water after the formation of the lower ion exchange resin layer according to the present invention was confirmed.
[0023]
【The invention's effect】
As described above, according to the method of filling the condensate deionization apparatus with the ion exchange resin according to the present invention, the undesired upward flow of the anion exchange resin from the resin layer formed in the lower part of the desalination tower is suppressed. Thus, the ion exchange resin layer in the upper and lower two-layer form having the target height can be reliably formed in the desalination tower. As a result, the PSS eluted from the cation exchange resin in the upper ion exchange resin layer can be more reliably adsorbed to the anion exchange resin in the lower ion exchange resin layer during the desalination treatment, and the target treated water The effect of reducing the PSS concentration can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a desalination tower to which the method of the present invention can be applied.
FIG. 2 is a schematic configuration diagram showing another example of a desalination tower to which the method of the present invention can be applied.
FIG. 3 is a schematic configuration diagram of a test apparatus showing results of a test (example) performed to confirm an effect of the present invention.
FIG. 4 is a schematic configuration diagram of a test apparatus showing results of a test (comparative example) performed for comparison with a conventional method.
FIG. 5 is a schematic configuration diagram of a desalination tower for explaining a problem in a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 11 Demineralization tower 2, 12 Water inlet pipe 3 Distributor 4 Water collecting collector 5, 16 Water outlet pipe 6, 17 Design resin surface 7, 18 Resin inlet pipe 8, 20 Resin outlet pipe 13 Baffle plate 14, Rectifying plate 15 Screen 19 Baffle plate 21 Desalination tower 22 Resin transfer tube 23 Baffle plate 24 Eye plate 25 Anion exchange resin layer 25a as lower ion exchange resin layer Upper anion exchange resin layer 26 Outlet tube 27 Mixed ion exchange as upper ion exchange resin layer Resin layer 28 Water level in tower

Claims (3)

脱塩塔内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または前記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層を形成するに際し、脱塩塔内に、アニオン交換樹脂または混合樹脂Bを移送水とともに充填して下側イオン交換樹脂層を形成した後、脱塩塔内の水を抜き、次いで混合樹脂Aを移送水とともに充填して前記下側イオン交換樹脂層上に上側イオン交換樹脂層を形成することを特徴とする、復水脱塩装置へのイオン交換樹脂充填方法。In the desalting tower, an upper ion-exchange resin layer composed of a mixed resin A of a cation exchange resin and an anion exchange resin, and a lower layer composed of an anion exchange resin alone or a mixed resin B having a higher anion exchange resin ratio than the mixed resin A. In forming the upper and lower two-layer ion exchange resin layers different from each other with the side ion exchange resin layer, the anion exchange resin or the mixed resin B is filled together with the transfer water into the desalination tower to form the lower ion exchange resin layer. After the formation, the water in the desalting tower is drained, and then the mixed resin A is filled together with the transfer water to form an upper ion exchange resin layer on the lower ion exchange resin layer. A method for filling an ion exchange resin into a salt device. 前記上側イオン交換樹脂層を形成した後、脱塩塔内を満水にし、脱塩塔内を加圧することを特徴とする、請求項1の復水脱塩装置へのイオン交換樹脂充填方法。2. The method according to claim 1, wherein after forming the upper ion exchange resin layer, the inside of the desalination tower is filled with water and the inside of the desalination tower is pressurized. 前記上側イオン交換樹脂層を形成した後、脱塩塔内の水を脱気水に置換することを特徴とする、請求項1の復水脱塩装置へのイオン交換樹脂充填方法。2. The method according to claim 1, wherein the water in the desalting tower is replaced with degassed water after forming the upper ion exchange resin layer.
JP2002243262A 2002-08-23 2002-08-23 Method of filling condensed water desalting apparatus with ion exchange resin Pending JP2004081927A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002243262A JP2004081927A (en) 2002-08-23 2002-08-23 Method of filling condensed water desalting apparatus with ion exchange resin
DE60311615T DE60311615T2 (en) 2002-08-23 2003-08-21 Process for packing condensate desalination apparatus with ion exchange resins
AT03255196T ATE353249T1 (en) 2002-08-23 2003-08-21 METHOD FOR PACKING CONDENSATE DESALTING DEVICES WITH ION EXCHANGE RESINS
EP03255196A EP1393806B1 (en) 2002-08-23 2003-08-21 Method for charging ion exchange resins into condensate demineralizer
KR1020030058218A KR100947139B1 (en) 2002-08-23 2003-08-22 Process for Charging Ion Exchange Resin into a Condensed Water-Demineralization Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243262A JP2004081927A (en) 2002-08-23 2002-08-23 Method of filling condensed water desalting apparatus with ion exchange resin

Publications (1)

Publication Number Publication Date
JP2004081927A true JP2004081927A (en) 2004-03-18

Family

ID=32052063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243262A Pending JP2004081927A (en) 2002-08-23 2002-08-23 Method of filling condensed water desalting apparatus with ion exchange resin

Country Status (1)

Country Link
JP (1) JP2004081927A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255292A (en) * 2003-02-26 2004-09-16 Japan Organo Co Ltd Method for filling condensed water desalting apparatus with ion exchange resin
JP2008525988A (en) * 2004-12-28 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell demineralizer integrated with coolant accumulator
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2011161336A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2013119058A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Method of draining packed column and packed column system
CN105948172A (en) * 2016-06-07 2016-09-21 神华集团有限责任公司 Ion exchange device and condensed water fine processing equipment
EP3294676A4 (en) * 2015-05-08 2018-12-19 Dow Global Technologies LLC Process of use of adsorbent resin particles
CN109603688A (en) * 2018-12-15 2019-04-12 安徽昊源化工集团有限公司 A kind of device improving Dehydrogenation Reactor in Styrene Plant conversion ratio

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255292A (en) * 2003-02-26 2004-09-16 Japan Organo Co Ltd Method for filling condensed water desalting apparatus with ion exchange resin
JP2008525988A (en) * 2004-12-28 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell demineralizer integrated with coolant accumulator
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
US8861670B2 (en) 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization
JP2011161336A (en) * 2010-02-05 2011-08-25 Japan Organo Co Ltd Filtration desalting device
JP2013119058A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Method of draining packed column and packed column system
EP3294676A4 (en) * 2015-05-08 2018-12-19 Dow Global Technologies LLC Process of use of adsorbent resin particles
CN105948172A (en) * 2016-06-07 2016-09-21 神华集团有限责任公司 Ion exchange device and condensed water fine processing equipment
CN109603688A (en) * 2018-12-15 2019-04-12 安徽昊源化工集团有限公司 A kind of device improving Dehydrogenation Reactor in Styrene Plant conversion ratio

Similar Documents

Publication Publication Date Title
JP2004081927A (en) Method of filling condensed water desalting apparatus with ion exchange resin
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JP5564967B2 (en) Regeneration method of ion exchange resin used for regeneration of amine liquid
KR100947139B1 (en) Process for Charging Ion Exchange Resin into a Condensed Water-Demineralization Apparatus
KR101339515B1 (en) Method and Apparatus for recycling ion-exchange resin of condensate polishing plants
JP2007105558A (en) Method and apparatus for demineralizing recovered water
TW201402471A (en) Condensate demineralizer and condensate demineralization method
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP3880231B2 (en) Condensate desalination apparatus and method
JP4383091B2 (en) Condensate desalination method and apparatus
JP2009166045A (en) Separation tower of mixed ion-exchange resin
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JP4797304B2 (en) Pure water production equipment
JPH09262486A (en) Regenerating method of ion exchange resin in desalting device for condensate
JP2006326588A (en) Method for condensate demineralization
JP3892124B2 (en) Condensate desalination method
JP2654053B2 (en) Condensate desalination equipment
JP3960930B2 (en) Ion exchange resin filling method for condensate demineralizer
JP2004279227A (en) Method and device for condensate demineralization
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JP2003080086A (en) Counter flow regeneration type ion exchanger
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
KR890004710B1 (en) Method and apparatus for regeneration of ion-exchange resin in mixed-bed ion-exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070803