JP2004279227A - Method and device for condensate demineralization - Google Patents

Method and device for condensate demineralization Download PDF

Info

Publication number
JP2004279227A
JP2004279227A JP2003071507A JP2003071507A JP2004279227A JP 2004279227 A JP2004279227 A JP 2004279227A JP 2003071507 A JP2003071507 A JP 2003071507A JP 2003071507 A JP2003071507 A JP 2003071507A JP 2004279227 A JP2004279227 A JP 2004279227A
Authority
JP
Japan
Prior art keywords
resin
layer
cation
anion
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003071507A
Other languages
Japanese (ja)
Inventor
Takeshi Izumi
丈志 出水
Takao Ino
隆夫 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003071507A priority Critical patent/JP2004279227A/en
Publication of JP2004279227A publication Critical patent/JP2004279227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for condensate demineralization by which high-purity treated water with low concentrations of suspended corrosion products and a sulfate ion. <P>SOLUTION: The method for condensate demineralization to process condensed water from a BWR nuclear power generation plant using an ion-exchange resin layer in which the ion-exchange resin layer processing the condensed water comprises a cation resin layer as the outer-most part, a layer mixed with a cation and anion resins as the intermediate part and an anion layer as in which the cation resin, or a layer mixed with a cation and anion resins as the outer-most part in which a ratio of the cation resin to the anion resin is not less than 2, a layer mixed with a cation and anion resins as the intermediate part in which a ratio of the cation resin to the anion resin is between 0.5 to 2, and a layer mixed with a cation and anion resins as the bottom part in which a ratio of the cation resin to the anion resin is not greater than 0.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、BWR原子力発電プラントの復水処理に係り、特に、懸濁性腐食生成物濃度が低く且つ硫酸イオン濃度の低い、高純度な処理水質を得ることができる復水脱塩方法及び装置に関するものである。
【0002】
【従来の技術】
【特許文献1】特開昭55−59881号公報
【特許文献2】特許第3087905号公報
BWR原子力発電プラントでは、原子炉にて発生した蒸気で発電した後に海水にて蒸気を冷却し、その復水を、復水脱塩装置にて処理し原子炉に給水している。BWR原子力発電プラントの概略フロー構成図を図3に示す。復水脱塩装置ではイオン交換樹脂が使用され、系統内に流入した海水成分や、プラント構成材料より生成した鉄酸化物を主体とした懸濁性腐食生成物(以下、クラッドと称す)やイオン性不純物を除去している。
BWR原子力発電プラントの復水脱塩装置で使用しているイオン交換樹脂は、上流側より流入するNaClに代表される海水成分などのイオン成分の除去能力は高いが、クラッドの除去能力については、入口濃度に対する除去率が50〜80程度と低い。このため、そのままではクラッドが原子炉に給水されることとなり、放射能レベル上昇の一つの原因となる。
【0003】
更に、カチオン樹脂から溶出する有機性不純物(以下、TOCと称す〉は、原子炉内に持ち込まれると硫酸を生成するため、原子炉水質を低下させる原因となる。
従って、原子炉水質を高純度にするためには、復水脱塩装置によるクラッド除去能力を高め、且つカチオン樹脂から溶出するTOCのリーク量を少なくする必要がある。
これらを解決する方法としては、特許第3087905号公報にあるような、架橋度が6%程度で且つ表面構造が特殊なカチオン樹脂を使用してクラッドを効率的に除去する方法や、特開昭55−59881号公報にあるような、カチオン樹脂を樹脂層表層部に配してクラッドを除去する方法、などが提案されているが、クラッドの除去とカチオン樹脂溶出TOCの低減の双方を満足する復水脱塩装置は提案されていない。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、BWR原子力発電プラントの復水脱塩装置による復水処理において、懸濁性腐食生成物濃度が低く且つ硫酸イオン濃度の低い、高純度の処理水質を得ることができる復水脱塩方法及び装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明では、BWR原子力発電プラントの復水をイオン交換樹脂層で処理する復水脱塩方法において、該復水を処理するイオン交換樹脂層を、表層部がカチオン樹脂、中間部がカチオン樹脂とアニオン樹脂の混床、及び、下層部がアニオン樹脂とすることを特徴とする復水脱塩方法、及び、BWR原子力発電プラントの復水をイオン交換樹脂層で処理する復水脱塩方法において、該復水を処理するイオン交換樹脂層を、表層部がアニオン樹脂に対してカチオン樹脂の存在比率を1:2より多くした混床、中間部がアニオン樹脂とカチオン樹脂の比率が2:1から1:2の混床、及び、下層部がアニオン樹脂に対してカチオン樹脂の存在比率を2:1より少なくした混床とすることを特徴とする復水脱塩方法としたものである。
この復水脱塩方法によれば、処理水中のクラッドの低減とTOCリーク量の低減の双方を満足し、高純度の処理水質を得ることができる。
【0006】
また、本発明では、BWR原子力発電プラントの復水を処理するイオン交換樹脂層を有する復水脱塩装置において、該イオン交換樹脂層は、表層部がカチオン樹脂、中間部がカチオン樹脂とアニオン樹脂の混床、及び、下層部がアニオン樹脂で形成されていることを特徴とする復水脱塩装置、及び、BWR原子力発電プラントの復水を処理するイオン交換樹脂層を有する復水脱塩装置において、該イオン交換樹脂層は、表層部がアニオン樹脂に対してカチオン樹脂の存在比率を1:2より多くした混床、中間部がアニオン樹脂とカチオン樹脂の比率が2:1から1:2の混床、及び、下層部がアニオン樹脂に対してカチオン樹脂の存在比率を2:1より少なくした混床で形成されていることを特徴とする復水脱塩装置としたものである。
このように構成した復水脱塩装置によれば、処理水中のクラッドの低減とTOCリーク量の低減の双方を満足し、高純度の処理水質を得ることができる。
【0007】
【発明の実施の形態】
次に、本発明を図面を参照にして、詳細に説明する。
図1に、本発明で用いる復水脱塩装置のフロー構成図を示す。通水が完了したイオン交換樹脂は、脱塩塔1よりカチオン樹脂再生塔2に移送される。ここで逆洗分離を行いカチオン樹脂とアニオン樹脂を比重差により分離する。続いてアニオン樹脂をアニオン樹脂移送ライン5よりアニオン樹脂再生塔6に移送する。その後、分離状態となったカチオン樹脂とアニオン樹脂は単独で逆洗分離を行う。次にアニオン樹脂の一部を樹脂貯槽4に移送し、引き続き樹脂返送ライン7にて脱塩塔1に返送し、脱塩塔1の下部にアニオン樹脂層を形成する。その後、アニオン樹脂再生塔6に残留しているアニオン樹脂全量とカチオン樹脂再生塔2にあるカチオン樹脂の一部を樹脂貯槽4に移相する。ここで、空気を用いてアニオン樹脂とカチオン樹脂を混合して混床を形成し、樹脂返送ライン7にて脱塩塔1に移送してアニオン樹脂層の上に混床を形成する。引き続き、カチオン樹脂再生塔2に残留しているカチオン樹脂を樹脂貯層4に移相し、続いて樹脂返送ライン7にて脱塩塔1に移送して樹脂層表層部にカチオン樹脂を形成する。これにより、脱塩塔1内でカチオン樹脂とアニオン樹脂の混合比率の異なる3層を有する樹脂層が形成されることとなる。
【0008】
また、上記操作において、アニオン樹脂再生塔6から樹脂貯槽4を通り、アニオン樹脂を脱塩塔1に移送する際に、アニオン樹脂の体積に対して半量以下の量のカチオン樹脂を樹脂貯層4に移送して空気を用いて混合した上で脱塩塔1へ移送して、塔内にアニオン樹脂リッチの下層を形成し、次に、アニオン樹脂とカチオン樹脂とを体積比で1対2から2対1の比率で空気を用いて混合して脱塩塔1に移送して、塔内に通常比率の混床を中間部に形成し、最後にカチオン樹脂を脱塩塔1に移送する際に、カチオン樹脂の体積に対して半量以下の量のアニオン樹脂を、樹脂貯層4に移送して空気を用いて混合した上で脱塩塔1へ移送して、塔内にカチオン樹脂リッチの上層を形成することで、脱塩塔内でカチオン樹脂とアニオン樹脂の混合比率の異なる3層を有する樹脂層を形成してもよい。
【0009】
なお、形成する樹脂層の層高については、中間層1に対して、上下層はそれぞれ0.1〜1、特に、0.4〜1の割合で用いることができる。例えば、上下層をそれぞれ20〜30cmとすることが望ましい。この理由は次の通りである。BWR原子力発電プラントの復水脱塩装置の樹脂層高は、通常90cm程度である。イオン交換樹脂に被処理水を通水して不純物を除去する場合、被処理水が樹脂層を通過するにつれて不純物イオンが除去されるため、超純水を得るには、ある程度の樹脂層高が必要である。通常の復水脱塩装置は通水線流速が120m/h程度であり、設計基準で想定されている入口負荷は、海水の主成分である食塩濃度として2mg/L若しくは20mg/L程度である。これを処理するためには、2mg/Lの場合で樹脂層高として30cm以上、20mg/Lの場合で50cm以上の樹脂層高が必要である。従って、この30若しくは50cmの混床を樹脂層の中間部に形成し、残りの樹脂層高分を上下層に等分に配すると、20〜30cmの上・下層を形成することが可能である。
【0010】
【実施例】
以下、実施例により、本発明を具体的に説明する。
実施例1
BWR原子力発電プラントの復水脱塩装置で広く使用されているイオン交換樹脂(三菱化学社製)であるカチオン樹脂SK1BNと、アニオン樹脂SA10BNを用い、図2に示すケース1〜6の樹脂層を形成し、通水試験を行い、クラッド除去性能と樹脂からリークするイオン濃度の測定を行った。試験は、被処理水の水質、温度、溶存酸素濃度、樹脂層条件が実プラントと同等であり、実際のプラントと同条件を模擬したものである。
なお、図2において、bは混床、(カチオン樹脂:アニオン樹脂比=1:1)、aはアニオン樹脂層、cはカチオン樹脂層、b<aはアニオン樹脂リッチ層(カチオン樹脂:アニオン樹脂比=1:2)、b<cはカチオン樹脂リッチ層(カチオン樹脂:アニオン樹脂比=2:1)であり、( )内は層高である。
【0011】
内径25mmのガラスカラムに、カチオン樹脂とアニオン樹脂を充填し、十分に脱気された比抵抗値18MΩ・cmで45℃、クラッド濃度20μg/Lを含む純水を1L/minの流量で通水し、処理水中のクラッド濃度とイオン濃度を測定した。クラッド濃度は、処理水の一部を分岐し、100mL/分で孔径0.45μmのメンブレンフィルタに約50L通水し、フィルタ上に捕集したクラッド鉄の絶対量を原子吸光法若しくは蛍光X線分光光度法にて定量し、メンブレンフィルタへの通水量で除すことで濃度を算出した。また、イオン濃度は、処理水を紫外線照射して処理水中に含まれるTOCを分解し、生成する硫酸イオン濃度をイオンクロマト法にて分析した。1日1回分析を行い、1ヶ月の通水期間の平均値の結果を、表1に示す。なお、表1によれば、ケース6より、ケース5、ケース4よりケース5の方が効果は上がっているが、上・下層の単独の層が厚い方が効果が高まることによる。表1からわかるように、従来技術(ケース1)や表層のみにカチオン樹脂層を形成したケース(ケース2)、下層のみにアニオン樹脂を形成したケース(ケース3)に比べ、本発明はクラッド除去率と硫酸濃度の両方で優れた結果であることが確認された。
【0012】
【表1】

Figure 2004279227
【0013】
【発明の効果】
本発明によれば、前記した本発明のBWR原子力発電プラントの復水脱塩処理により、復水中に存在するクラッドを効果的に除去し、装置からのTOCリーク量を低減でき、懸濁性腐食生成物濃度が低く且つ硫酸イオン濃度の低い、高純度な処理水質を得ることが可能となる復水脱塩方法及び装置を提供することができた。
【図面の簡単な説明】
【図1】本発明で用いる復水脱塩装置の一例を示すフロー構成図。
【図2】実施例1で用いる樹脂層の構成図。
【図3】公知のBWR原子力発電プラントの概略フロー構成図。
【符号の説明】
1:脱塩塔、2:カチオン樹脂再生塔、3:カチオン樹脂移送ライン、4:樹脂貯槽、5:アニオン樹脂移送ライン、6:アニオン樹脂再生塔、7:樹脂返送ライン、a:アニオン樹脂層、b:混床、c:カチオン樹脂層、b<a:アニオン樹脂リッチ層、b<c:カチオン樹脂リッチ層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a condensate treatment for a BWR nuclear power plant, and more particularly to a condensate desalination method and apparatus capable of obtaining high-purity treated water having a low suspended corrosion product concentration and a low sulfate ion concentration. It is about.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 55-59881 [Patent Document 2] Japanese Patent No. 3087905 In a BWR nuclear power plant, after steam is generated in a nuclear reactor, the steam is cooled with seawater and then recovered. Water is treated by a condensate desalination unit and supplied to the reactor. FIG. 3 shows a schematic flow configuration diagram of the BWR nuclear power plant. The condensate desalination system uses an ion exchange resin, which contains seawater components that flow into the system, suspended corrosion products mainly composed of iron oxides generated from plant constituent materials (hereinafter referred to as cladding), and ions. Sexual impurities are removed.
The ion exchange resin used in the condensate desalination unit of the BWR nuclear power plant has a high ability to remove ionic components such as seawater components typified by NaCl flowing from the upstream side, but the ability to remove the cladding is as follows: The removal rate with respect to the inlet concentration is as low as about 50 to 80. For this reason, the cladding is supplied to the reactor as it is, which is one of the causes of an increase in the radioactivity level.
[0003]
Further, organic impurities (hereinafter, referred to as TOC) eluted from the cationic resin generate sulfuric acid when introduced into the reactor, which causes a reduction in the water quality of the reactor.
Therefore, in order to increase the water quality of the reactor, it is necessary to enhance the ability to remove the clad by the condensate desalination apparatus and to reduce the amount of TOC eluted from the cationic resin.
As a method for solving these problems, a method of efficiently removing the clad using a cationic resin having a degree of crosslinking of about 6% and a special surface structure as disclosed in Japanese Patent No. Japanese Patent Application Laid-Open No. 55-59881 proposes a method of disposing a cationic resin on the surface layer of a resin layer to remove the clad, and the like, but it satisfies both the removal of the clad and the reduction of the TOC eluted by the cationic resin. A condensate desalination unit has not been proposed.
[0004]
[Problems to be solved by the invention]
In view of the above prior art, the present invention provides a high-purity treated water having a low suspended corrosion product concentration and a low sulfate ion concentration in condensate treatment by a condensate desalination apparatus of a BWR nuclear power plant. It is an object of the present invention to provide a condensed water desalination method and apparatus that can perform the method.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a condensate desalination method in which condensate of a BWR nuclear power plant is treated with an ion exchange resin layer. Resin, a condensed water desalination method characterized in that the middle part is a mixed bed of a cationic resin and an anionic resin, and the lower part is an anionic resin, and the condensate of a BWR nuclear power plant is treated with an ion exchange resin layer. In the condensate desalination method, the ion-exchange resin layer for treating the condensate is mixed with an anion resin in which the ratio of the cationic resin to the anionic resin is more than 1: 2. Condensed water desalination characterized in that the mixed bed has a resin ratio of 2: 1 to 1: 2 and the mixed bed has a lower layer in which the ratio of the cationic resin to the anionic resin is less than 2: 1. Method Than it is.
According to the condensate desalination method, it is possible to satisfy both the reduction of the clad in the treated water and the reduction of the TOC leak amount, and to obtain a high-purity treated water quality.
[0006]
Further, according to the present invention, in a condensate desalination apparatus having an ion exchange resin layer for treating condensate of a BWR nuclear power plant, the ion exchange resin layer has a surface layer portion of a cationic resin, and an intermediate portion has a cationic resin and an anionic resin. And a condensate desalination apparatus characterized in that the lower layer portion is formed of an anionic resin, and a condensate desalination apparatus having an ion exchange resin layer for treating condensate of a BWR nuclear power plant In the ion-exchange resin layer, the surface layer portion has a mixed bed in which the ratio of the cationic resin to the anionic resin is more than 1: 2, and the middle portion has a ratio of the anionic resin to the cationic resin of 2: 1 to 1: 2. And a mixed bed in which the lower layer has an abundance ratio of a cationic resin to an anionic resin of less than 2: 1.
According to the condensate desalination apparatus configured as described above, both the reduction of the clad in the treated water and the reduction of the TOC leak amount can be satisfied, and the treated water with high purity can be obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow configuration diagram of a condensate desalination apparatus used in the present invention. The ion-exchange resin that has passed through the water is transferred from the desalination tower 1 to the cation resin regeneration tower 2. Here, backwashing separation is performed to separate the cation resin and the anion resin by a difference in specific gravity. Subsequently, the anion resin is transferred from the anion resin transfer line 5 to the anion resin regeneration tower 6. Thereafter, the separated cationic resin and anionic resin are subjected to backwashing and separation alone. Next, a part of the anion resin is transferred to the resin storage tank 4 and then returned to the desalination tower 1 through the resin return line 7 to form an anion resin layer below the desalination tower 1. Thereafter, the entire amount of the anion resin remaining in the anion resin regeneration tower 6 and a part of the cation resin in the cation resin regeneration tower 2 are phase-shifted to the resin storage tank 4. Here, the mixed bed is formed by mixing the anionic resin and the cationic resin using air, and the mixed bed is formed on the anion resin layer by transferring to the desalting tower 1 through the resin return line 7. Subsequently, the cation resin remaining in the cation resin regeneration tower 2 is phase-shifted to the resin storage layer 4 and then transferred to the desalination tower 1 via the resin return line 7 to form the cation resin on the surface layer of the resin layer. . As a result, a resin layer having three layers having different mixing ratios of the cationic resin and the anionic resin is formed in the desalting tower 1.
[0008]
In the above operation, when transferring the anion resin from the anion resin regeneration tower 6 through the resin storage tank 4 to the desalination tower 1, the amount of the cation resin which is less than half the volume of the anion resin is reduced to the resin storage layer 4. And mixed with air, and then transferred to the desalination tower 1 to form an anion resin-rich lower layer in the tower. Then, the anion resin and the cation resin are mixed at a volume ratio of 1: 2 to 1: 2. When mixed with air at a ratio of 2: 1 and transferred to the desalination tower 1, a mixed bed of a normal ratio is formed in the middle part in the tower, and finally when the cationic resin is transferred to the desalination tower 1. Next, an anion resin in an amount equal to or less than half the volume of the cation resin is transferred to the resin reservoir 4, mixed with air, and then transferred to the desalting tower 1, where the cation resin-rich resin is introduced into the tower. By forming the upper layer, the mixing ratio of the cationic resin and the anionic resin in the desalting tower A resin layer may be formed with different three layers.
[0009]
Regarding the layer height of the resin layer to be formed, the upper and lower layers can be used at a ratio of 0.1 to 1, particularly 0.4 to 1, with respect to the intermediate layer 1. For example, each of the upper and lower layers is desirably 20 to 30 cm. The reason is as follows. The height of the resin layer of the condensate desalination unit of the BWR nuclear power plant is usually about 90 cm. When impurities are removed by passing the water to be treated through the ion exchange resin, impurity ions are removed as the water to be treated passes through the resin layer. Therefore, to obtain ultrapure water, a certain height of the resin layer is required. is necessary. A normal condensate desalination apparatus has a water flow velocity of about 120 m / h, and the inlet load assumed in the design standards is about 2 mg / L or 20 mg / L as a salt concentration as a main component of seawater. . In order to treat this, the resin layer height needs to be 30 cm or more for 2 mg / L and 50 cm or more for 20 mg / L. Therefore, if this mixed bed of 30 or 50 cm is formed in the middle of the resin layer, and the height of the remaining resin layer is equally distributed between the upper and lower layers, it is possible to form the upper and lower layers of 20 to 30 cm. .
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Using a cationic resin SK1BN and an anionic resin SA10BN, which are ion exchange resins (manufactured by Mitsubishi Chemical Corporation) widely used in condensate desalination equipment of a BWR nuclear power plant, the resin layers of cases 1 to 6 shown in FIG. It was formed and subjected to a water flow test to measure the clad removal performance and the ion concentration leaked from the resin. In the test, the quality of the water to be treated, the temperature, the dissolved oxygen concentration, and the resin layer conditions were equivalent to those of an actual plant, and simulated the same conditions as those of an actual plant.
In FIG. 2, b is a mixed bed, (cation resin: anion resin ratio = 1: 1), a is an anion resin layer, c is a cation resin layer, and b <a is an anion resin rich layer (cation resin: anion resin). Ratio = 1: 2), b <c is a cationic resin rich layer (cation resin: anion resin ratio = 2: 1), and the height in parentheses is the layer height.
[0011]
A glass column having an inner diameter of 25 mm is filled with a cation resin and an anion resin, and fully deaerated at a specific resistance of 18 MΩ · cm at 45 ° C. and pure water containing a clad concentration of 20 μg / L is passed at a flow rate of 1 L / min. Then, the clad concentration and the ion concentration in the treated water were measured. The clad concentration was determined by branching a part of the treated water, passing about 50 L of water through a membrane filter having a pore size of 0.45 μm at 100 mL / min, and measuring the absolute amount of clad iron collected on the filter by atomic absorption spectrometry or fluorescent X-ray. Quantification was performed by a spectrophotometric method, and the concentration was calculated by dividing by the amount of water passing through the membrane filter. The ion concentration was determined by irradiating the treated water with ultraviolet light to decompose the TOC contained in the treated water, and analyzing the concentration of the produced sulfate ion by an ion chromatography method. The analysis was performed once a day, and the results of the average value during the one-month water passage period are shown in Table 1. According to Table 1, the effect is higher in case 5 than in case 6 and in case 5 than in case 4, but the effect is higher when the single upper and lower layers are thicker. As can be seen from Table 1, the present invention removes the cladding as compared with the prior art (Case 1), the case where the cationic resin layer is formed only on the surface layer (Case 2), and the case where the anionic resin is formed only on the lower layer (Case 3). It was confirmed that both the rate and the sulfuric acid concentration were excellent.
[0012]
[Table 1]
Figure 2004279227
[0013]
【The invention's effect】
According to the present invention, the condensate desalination treatment of the BWR nuclear power plant of the present invention described above can effectively remove the clad existing in the condensate water, reduce the amount of TOC leak from the apparatus, and improve the suspension corrosion. A condensate desalination method and apparatus capable of obtaining a high-purity treated water having a low product concentration and a low sulfate ion concentration can be provided.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of a condensate desalination apparatus used in the present invention.
FIG. 2 is a configuration diagram of a resin layer used in Example 1.
FIG. 3 is a schematic flow configuration diagram of a known BWR nuclear power plant.
[Explanation of symbols]
1: desalination tower, 2: cation resin regeneration tower, 3: cation resin transfer line, 4: resin storage tank, 5: anion resin transfer line, 6: anion resin regeneration tower, 7: resin return line, a: anion resin layer , B: mixed bed, c: cationic resin layer, b <a: anion resin rich layer, b <c: cationic resin rich layer

Claims (4)

BWR原子力発電プラントの復水をイオン交換樹脂層で処理する復水脱塩方法において、該復水を処理するイオン交換樹脂層を、表層部がカチオン樹脂、中間部がカチオン樹脂とアニオン樹脂の混床、及び、下層部がアニオン樹脂とすることを特徴とする復水脱塩方法。In a condensate desalination method in which condensate of a BWR nuclear power plant is treated with an ion-exchange resin layer, the ion-exchange resin layer for treating the condensate is formed by mixing a surface layer with a cationic resin and an intermediate part with a mixture of a cationic resin and an anionic resin. A condensate desalination method, wherein the floor and the lower layer are made of an anionic resin. BWR原子力発電プラントの復水をイオン交換樹脂層で処理する復水脱塩方法において、該復水を処理するイオン交換樹脂層を、表層部がアニオン樹脂に対してカチオン樹脂の存在比率を1:2より多くした混床、中間部がアニオン樹脂とカチオン樹脂の比率が2:1から1:2の混床、及び、下層部がアニオン樹脂に対してカチオン樹脂の存在比率を2:1より少なくした混床とすることを特徴とする復水脱塩方法。In the condensate desalination method of treating condensate of a BWR nuclear power plant with an ion-exchange resin layer, the ion-exchange resin layer for treating the condensate has a surface layer having a ratio of a cationic resin to an anionic resin of 1: A mixed bed in which the ratio of the anion resin to the cation resin is 2: 1 to 1: 2 in the middle portion, and a lower portion in which the ratio of the cation resin to the anion resin is less than 2: 1. A condensate desalination method characterized by using a mixed bed. BWR原子力発電プラントの復水を処理するイオン交換樹脂層を有する復水脱塩装置において、該イオン交換樹脂層は、表層部がカチオン樹脂、中間部がカチオン樹脂とアニオン樹脂の混床、及び、下層部がアニオン樹脂で形成されていることを特徴とする復水脱塩装置。In a condensate desalination apparatus having an ion exchange resin layer for treating condensate of a BWR nuclear power plant, the ion exchange resin layer has a surface layer portion of a cationic resin, an intermediate portion of a mixed bed of a cationic resin and an anionic resin, and A condensate desalination apparatus wherein the lower layer is formed of an anionic resin. BWR原子力発電プラントの復水を処理するイオン交換樹脂層を有する復水脱塩装置において、該イオン交換樹脂層は、表層部がアニオン樹脂に対してカチオン樹脂の存在比率を1:2より多くした混床、中間部がアニオン樹脂とカチオン樹脂の比率が2:1から1:2の混床、及び、下層部がアニオン樹脂に対してカチオン樹脂の存在比率を2:1より少なくした混床で形成されていることを特徴とする復水脱塩装置。In a condensate desalination apparatus having an ion-exchange resin layer for treating condensate of a BWR nuclear power plant, the ion-exchange resin layer has a surface layer in which the ratio of the cationic resin to the anionic resin is more than 1: 2. The mixed bed, the middle part is a mixed bed in which the ratio of the anion resin to the cation resin is 2: 1 to 1: 2, and the lower part is the mixed bed in which the ratio of the cation resin to the anion resin is less than 2: 1. A condensate desalination device characterized by being formed.
JP2003071507A 2003-03-17 2003-03-17 Method and device for condensate demineralization Pending JP2004279227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071507A JP2004279227A (en) 2003-03-17 2003-03-17 Method and device for condensate demineralization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071507A JP2004279227A (en) 2003-03-17 2003-03-17 Method and device for condensate demineralization

Publications (1)

Publication Number Publication Date
JP2004279227A true JP2004279227A (en) 2004-10-07

Family

ID=33287932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071507A Pending JP2004279227A (en) 2003-03-17 2003-03-17 Method and device for condensate demineralization

Country Status (1)

Country Link
JP (1) JP2004279227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer
JP2009281873A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
CN103177781A (en) * 2011-12-23 2013-06-26 江苏核电有限公司 Method for controlling concentration of sulfate radical of pressurized water reactor nuclear power plant unit-loop

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer
JP2009281873A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
US8861670B2 (en) 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization
CN103177781A (en) * 2011-12-23 2013-06-26 江苏核电有限公司 Method for controlling concentration of sulfate radical of pressurized water reactor nuclear power plant unit-loop
CN103177781B (en) * 2011-12-23 2015-08-26 江苏核电有限公司 A kind of pressurized-water reactor nuclear power plant unit primary Ioops sulfate concentration control method

Similar Documents

Publication Publication Date Title
US5980716A (en) Water treatment apparatus for a fuel cell system
Arahman et al. The removal of fluoride from water based on applied current and membrane types in electrodialyis
JP2677468B2 (en) Method and apparatus for producing pure water
US20040050786A1 (en) Method of removing organic impurities from water
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
CN110451704A (en) A kind of processing method of fluorine-containing recycle-water
JP2004033976A (en) Deionized water manufacturing method and apparatus therefor
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP5762863B2 (en) Method and apparatus for purifying alcohol
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2004279227A (en) Method and device for condensate demineralization
JP5930921B2 (en) Method and apparatus for purifying alcohol
JPH11352283A (en) Condensate processing method and condensate demineralization device
Babu et al. A comprehensive treatment method for defluoridation of drinking water
JP5038232B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPH0326390A (en) Pure water producing device
JP4383091B2 (en) Condensate desalination method and apparatus
JP4943376B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
CN110804111A (en) Defluorination high polymer material, synthesis method thereof and application thereof in municipal water treatment
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
Luo et al. Selective separation and recovery of fluoride ion from ammonia‐based flue gas desulfurization slurry using electrodialysis
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305