WO2018096700A1 - System for producing ultrapure water and method for producing ultrapure water - Google Patents

System for producing ultrapure water and method for producing ultrapure water Download PDF

Info

Publication number
WO2018096700A1
WO2018096700A1 PCT/JP2017/010270 JP2017010270W WO2018096700A1 WO 2018096700 A1 WO2018096700 A1 WO 2018096700A1 JP 2017010270 W JP2017010270 W JP 2017010270W WO 2018096700 A1 WO2018096700 A1 WO 2018096700A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange resin
boron
water
ultrapure water
Prior art date
Application number
PCT/JP2017/010270
Other languages
French (fr)
Japanese (ja)
Inventor
中馬 高明
洋一 宮▲崎▼
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016-230478 priority Critical
Priority to JP2016230478A priority patent/JP6907514B2/en
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2018096700A1 publication Critical patent/WO2018096700A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J43/00Amphoteric ion-exchange, i.e. using ion-exchangers having cationic and anionic groups; Use of material as amphoteric ion-exchangers; Treatment of material for improving their amphoteric ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Abstract

Provided is a system for producing ultrapure water, said system being provided with a pre-treatment system, a primary purification system, and a secondary purification system in the stated order, wherein: the primary/secondary pure water system is provided with an ion exchange device that treats boron-containing to-be-treated water using an ion-exchange resin; the ion exchange device has an accommodation part for filling in the ion-exchange resin, a supply part for supplying the to-be-treated water to the accommodation part, and a discharge part for discharging treated water from the accommodation part; and, in the accommodation part, a boron-selective ion-exchange resin fills the supply-part side, and an ion-exchange resin other than the boron-selective ion-exchange resin fills the discharge-part side. Such a system for producing ultrapure water and method for producing ultrapure water make it possible to stably obtain ultrapure water having a reduced concentration of boron without applying a TOC load to a subsystem.

Description

超純水製造システム及び超純水製造方法Ultrapure water production system and ultrapure water production method
 本発明は、被処理水中に存在するホウ素を効率的に低減させることができる超純水製造システム及びこれを用いた超純水製造方法に関する。 The present invention relates to an ultrapure water production system capable of efficiently reducing boron present in water to be treated and an ultrapure water production method using the same.
 従来、半導体や液晶パネル等の電子機器製造の分野では、システムを洗浄するために、有機物、微粒子、イオン性物質等の不純物の含有量が極めて小さい超純水が使用されている。中でも、半導体の製造工程においては、半導体の微細化・大容量化にともない、使用する超純水には非常に高い純度が求められる。 Conventionally, in the field of manufacturing electronic devices such as semiconductors and liquid crystal panels, ultrapure water containing a very small amount of impurities such as organic substances, fine particles, and ionic substances has been used to clean the system. In particular, in the semiconductor manufacturing process, the ultrapure water to be used is required to have a very high purity as the semiconductor is miniaturized and the capacity is increased.
 このような、半導体の製造工程に使用される超純水は、主に、前処理システム、一次純水システム、二次純水システムを備える超純水製造システムにおいて製造され、ユースポイントに供給される。前処理システムは、凝集濾過、精密濾過膜(MF膜)、限外濾過膜(UF膜)等による除濁処理装置や活性炭等による脱塩素処理装置を用いて原水を除濁するためのものである。一次純水システムは、2床3塔式イオン交換装置、逆浸透膜(RO膜)装置等により、前処理水に含まれるイオン成分やTOC成分等の不純物を除去するためのものである。二次純水システムはサブシステムとも呼ばれ、紫外線酸化装置(UV装置)、混床式イオン交換装置、膜式脱気装置、限外ろ過膜装置(UF装置)等により、一次純水中の極微量の微粒子や微量イオン、特に低分子の微量有機物のような不純物を除去し、より純度の高い超純水を製造するためのものである。このような超純水製造システムは、サブシステムからユースポイントへ超純水を流通する送水配管と、ユースポイントで使用されなかった超純水をサブシステムの先端へ返送し循環するための返送配管とを備えるのが一般的である。 Such ultrapure water used in the semiconductor manufacturing process is mainly produced in an ultrapure water production system including a pretreatment system, a primary pure water system, and a secondary pure water system, and supplied to a use point. The The pretreatment system is for turbidizing raw water using a turbidity treatment device such as coagulation filtration, microfiltration membrane (MF membrane), ultrafiltration membrane (UF membrane), etc., or a dechlorination treatment device such as activated carbon. is there. The primary pure water system is for removing impurities such as ion components and TOC components contained in pretreated water by a two-bed / three-column ion exchange device, a reverse osmosis membrane (RO membrane) device, and the like. The secondary pure water system is also called a sub-system, and is used in the primary pure water by an ultraviolet oxidation device (UV device), a mixed bed ion exchange device, a membrane deaeration device, an ultrafiltration membrane device (UF device), etc. It is intended to produce ultrapure water with higher purity by removing impurities such as extremely small amounts of fine particles and trace ions, particularly low molecular weight trace organic substances. Such an ultrapure water production system consists of a water supply pipe that distributes ultrapure water from the subsystem to the use point, and a return pipe that returns and circulates the ultrapure water that has not been used at the use point to the tip of the subsystem. Is generally provided.
 近年、超純水に含まれるイオン類、特に、ホウ素による半導体製品への悪影響が問題となっており、超純水中のホウ素濃度を低減することが重要な課題となっている。なお、サブシステムに供給される被処理水(一次純水)中にイオン成分やTOC成分が多く含まれていると、サブシステムを構成する混床式イオン交換装置のイオン交換樹脂の頻繁な再生が必要となる等、超純水製造システム全体のコスト増加につながり好ましくない。よって、通常、被処理水に含まれるイオン成分やTOC成分は、ほとんどが一次純水システムにおいて除去される。 In recent years, the adverse effects of semiconductors on ions, particularly boron, contained in ultrapure water have become a problem, and reducing the boron concentration in ultrapure water has become an important issue. If the water to be treated (primary pure water) supplied to the subsystem contains a large amount of ion components and TOC components, frequent regeneration of the ion exchange resin of the mixed bed type ion exchange apparatus constituting the subsystem. This is undesirable because it leads to an increase in the cost of the entire ultrapure water production system. Therefore, usually, most of ionic components and TOC components contained in the water to be treated are removed in the primary pure water system.
 被処理水に含まれるホウ素は、一般的なイオン交換樹脂(例えば、強塩基性アニオン交換樹脂等)でも除去することが可能である。しかし、ホウ素は水溶液中で極めて弱酸のホウ酸として存在するため、シリカ(ケイ酸)や他のアニオンと比べてイオン交換容量が小さく、比較的早期にイオン交換樹脂を破過し、処理水中へリークしてしまう。よって、このような一般的なイオン交換樹脂を用いて超純水に要求される濃度にまでホウ素を低減させようとすると、イオン交換樹脂の頻繁な再生が必要となり、再生のための薬品にコストがかかってしまう。 Boron contained in the water to be treated can be removed even with a general ion exchange resin (for example, a strongly basic anion exchange resin). However, since boron exists as a very weak acid boric acid in an aqueous solution, its ion exchange capacity is small compared to silica (silicic acid) and other anions, and it breaks through the ion exchange resin relatively early and enters the treated water. It leaks. Therefore, if such general ion exchange resin is used to reduce boron to the concentration required for ultrapure water, frequent regeneration of the ion exchange resin is required, and the cost for the chemical for regeneration is low. It will take.
 上述のような、いわゆる再生型のイオン交換装置の再生薬品によるコスト増加を防ぐために、例えば、特許文献1には、再生型のイオン交換装置を備えていない超純水製造装置において、アニオン交換樹脂よりもイオン交換容量が大きいホウ素選択性イオン交換樹脂を用いる方法が、特許文献2には、ホウ素選択吸着能を有する有機多孔質体を用いる方法が、特許文献3には、ホウ素選択除去性イオン交換繊維を用いる方法が、それぞれ提案されている。しかしながら、特許文献1-3に記載の方法では、追加の設備が必要となることに加えて、部材から溶出するTOC成分を含んだ被処理水が後段のサブシステムに供給されてしまうので、サブシステムにおいて超純水に要求されるレベルにまでTOC成分を低減させる必要が生じ、超純水製造システム全体のコスト増加につながるといった問題がある。 In order to prevent an increase in cost due to regenerative chemicals of the so-called regenerative ion exchange apparatus as described above, for example, Patent Document 1 discloses an anion exchange resin in an ultrapure water production apparatus that does not include a regenerative ion exchange apparatus. Patent Document 2 discloses a method using a boron-selective ion exchange resin having a larger ion exchange capacity than that of Patent Document 2, and Patent Document 3 discloses a method using a boron-selective-removable ion. Each method using an exchange fiber has been proposed. However, in the method described in Patent Documents 1-3, in addition to the need for additional equipment, the water to be treated containing the TOC component eluted from the member is supplied to the subsequent subsystem. There is a problem that the TOC component needs to be reduced to a level required for ultrapure water in the system, leading to an increase in the cost of the entire ultrapure water production system.
 また、被処理水に含まれるホウ素は、一般的な逆浸透膜(RO膜)でも除去することが可能である。しかし、上述のように、水溶液中のホウ酸は極めて弱酸であるため、ごく一部しか解離せず、ほとんどがH3BOの形態のままで存在する。よって、RO膜によるホウ素の除去率は極めて低く、超純水に要求される濃度にまでホウ素を低減させようとすると、RO膜装置そのものが重厚となり、コスト面で現実的ではない。 Further, boron contained in the water to be treated can be removed by a general reverse osmosis membrane (RO membrane). However, as described above, since boric acid in the aqueous solution is a very weak acid, only a part of it is dissociated, and most of it remains in the form of H 3 BO 4 . Therefore, the removal rate of boron by the RO membrane is extremely low, and if the boron is reduced to a concentration required for ultrapure water, the RO membrane device itself becomes heavy, which is not practical in terms of cost.
 上述のような、RO膜によるホウ素の除去率を上げるために、例えば、特許文献4には、RO装置に導入する被処理水のpHをアルカリ性にし、ホウ素の弱イオン成分をイオン化させることにより、イオン化したホウ素をRO装置で除去する方法が提案されている。しかしながら、特許文献4に記載の方法では、RO装置に導入する被処理水のpHをアルカリ性にするための薬品の添加設備が必要となることに加え、薬品の使用量の増加がそのままコストの増加につながるといった問題がある。また、pHを高い値にすると、水中の硬度成分(Ca,Mg等)が水酸化物として析出することにより、RO膜を目詰りさせるおそれがある。 In order to increase the boron removal rate by the RO film as described above, for example, Patent Document 4 discloses that the pH of the water to be treated introduced into the RO apparatus is made alkaline and the weak ion component of boron is ionized. A method of removing ionized boron with an RO apparatus has been proposed. However, in the method described in Patent Document 4, in addition to the need for chemical addition equipment for making the pH of the water to be treated introduced into the RO apparatus alkaline, an increase in the amount of chemical used increases the cost as it is. There is a problem that leads to. Further, when the pH is set to a high value, hardness components (Ca, Mg, etc.) in water are precipitated as hydroxides, which may clog the RO membrane.
特開平9-192661号公報JP-A-9-192661 特開2004-066153号公報Japanese Patent Laid-Open No. 2004-0666153 特開2005-246126号公報JP 2005-246126 A 特開2004-283710号公報JP 2004-283710 A
 本発明は上述のような事情に基づいてなされたものであり、一次純水システムでホウ素及びTOC成分を低減した後の被処理水をサブシステムに供給することにより、サブシステムにTOC負荷をかけることなく、ホウ素を低濃度化した超純水を安定的に得ることのできる超純水製造システム及び超純水製造方法の提供を目的とする。 The present invention has been made on the basis of the above-mentioned circumstances, and by applying treated water after reducing boron and TOC components in the primary pure water system to the subsystem, a TOC load is applied to the subsystem. An object of the present invention is to provide an ultrapure water production system and an ultrapure water production method capable of stably obtaining ultrapure water with a low boron concentration.
 上記課題を解決するために、第一に本発明は、前処理システムと一次純水システムと二次純水システムとをこの順に備える超純水の製造システムであって、前記一次純水システムが、ホウ素を含む被処理水をイオン交換樹脂で処理するイオン交換装置を備え、前記イオン交換装置が、イオン交換樹脂を充填するための収容部と、前記収容部に被処理水を供給するための供給部と、前記収容部から処理水を排出するための排出部とを有し、前記収容部には、前記供給部側にホウ素選択性イオン交換樹脂が、前記排出部側にホウ素選択性イオン交換樹脂以外のイオン交換樹脂が、それぞれ充填されている超純水製造システムを提供する(発明1)。 In order to solve the above problems, firstly, the present invention is a production system of ultrapure water comprising a pretreatment system, a primary pure water system, and a secondary pure water system in this order, wherein the primary pure water system includes: And an ion exchange device for treating the water to be treated containing boron with an ion exchange resin, wherein the ion exchange device is provided with a container for filling the ion exchange resin, and for supplying the water to be treated to the container A supply unit, and a discharge unit for discharging treated water from the storage unit, wherein the storage unit includes a boron-selective ion exchange resin on the supply unit side and a boron-selective ion on the discharge unit side. Provided is an ultrapure water production system in which an ion exchange resin other than an exchange resin is filled (invention 1).
 かかる発明(発明1)によれば、一次純水システムが備えるイオン交換装置において、収容部の供給部側にホウ素選択性イオン交換樹脂が、排出部側にホウ素選択性イオン交換樹脂以外のイオン交換樹脂が充填されることにより、供給されるホウ素を含む被処理水から、まずホウ素選択性イオン交換樹脂によってホウ素が吸着除去され、その後ホウ素選択性イオン交換樹脂以外のイオン交換樹脂によってホウ素選択性イオン交換樹脂より溶出するTOC成分が吸着除去されるので、後段のサブシステムにTOC負荷をかけることなく、ホウ素濃度の低減された一次処理水を供給することができる。これにより、ホウ素を低濃度化した超純水を安定的に得ることができる。また、サブシステムにおけるTOC負荷の増加による処理コストを低減させることもできる。 According to this invention (Invention 1), in the ion exchange apparatus provided in the primary pure water system, the boron selective ion exchange resin is provided on the supply part side of the housing part, and the ion exchange other than the boron selective ion exchange resin is provided on the discharge part side. By filling the resin, boron is first adsorbed and removed from the treated water containing boron by a boron selective ion exchange resin, and then boron selective ions by an ion exchange resin other than the boron selective ion exchange resin. Since the TOC component eluted from the exchange resin is adsorbed and removed, primary treated water with a reduced boron concentration can be supplied without applying a TOC load to the subsequent subsystem. Thereby, the ultrapure water in which the concentration of boron is reduced can be stably obtained. In addition, the processing cost due to an increase in the TOC load in the subsystem can be reduced.
 上記発明(発明1)においては、前記収容部が立設されており、前記収容部の上側に前記供給部が、前記収容部の下側に前記排出部が、それぞれ配設されていることが好ましい(発明2)。 In the said invention (invention 1), the said accommodating part is standingly arranged, The said supply part is arrange | positioned above the said accommodating part, and the said discharge part is arrange | positioned below the said accommodating part, respectively. Preferred (Invention 2).
 かかる発明(発明2)によれば、イオン交換樹脂を充填した収容部に、流れ方向が収容部の上方から下方であるように供給部から被処理水を供給することができるので、被処理水とイオン交換樹脂とを効率よく接触させることができ、各イオン交換樹脂の持つ吸着能力が高く発揮される。よって、被処理水に含まれるホウ素及びホウ素選択性イオン交換樹脂より溶出するTOC成分を効果的に除去することができる。 According to this invention (invention 2), the water to be treated can be supplied from the supply part to the accommodating part filled with the ion exchange resin so that the flow direction is from the upper side to the lower part of the accommodating part. And the ion exchange resin can be contacted efficiently, and the adsorption ability of each ion exchange resin is high. Accordingly, boron contained in the water to be treated and the TOC component eluted from the boron selective ion exchange resin can be effectively removed.
 上記発明(発明1,2)においては、前記イオン交換樹脂が、前記ホウ素選択性イオン交換樹脂と前記ホウ素選択性イオン交換樹脂以外のイオン交換樹脂とを積層した構造であることが好ましい(発明3)。 In the said invention (invention 1 and 2), it is preferable that the said ion exchange resin is a structure which laminated | stacked the boron selective ion exchange resin and ion exchange resins other than the said boron selective ion exchange resin (invention 3). ).
 かかる発明(発明3)によれば、イオン交換樹脂が、ホウ素選択性イオン交換樹脂とホウ素選択性イオン交換樹脂以外のイオン交換樹脂との二層構造であることにより、上記各イオン交換樹脂の吸着効率の予測が容易になるので、効率的にイオン交換樹脂による処理を行うこともできる。 According to this invention (Invention 3), the ion exchange resin has a two-layer structure of a boron selective ion exchange resin and an ion exchange resin other than the boron selective ion exchange resin, so Since prediction of efficiency becomes easy, it is possible to efficiently perform treatment with an ion exchange resin.
 上記発明(発明1-3)においては、前記イオン交換装置が、前記一次純水システムの末端に設けられることが好ましい(発明4)。 In the above invention (Invention 1-3), the ion exchange device is preferably provided at the end of the primary pure water system (Invention 4).
 一般的に、ホウ素選択性イオン交換樹脂の吸着能力を最大限に発揮させるためには、供給される被処理水の負荷がホウ素のみであることが好ましい。かかる発明(発明4)によれば、ホウ素選択性イオン交換樹脂を有するイオン交換装置が、一次純水システムの末端に設けられることにより、ホウ素以外の負荷を低減させた被処理水を上記イオン交換装置に供給することができるので、ホウ素選択性イオン交換樹脂の吸着能力が最大限に発揮され、ホウ素の除去効率を向上させることができる。 Generally, in order to maximize the adsorption ability of the boron-selective ion exchange resin, it is preferable that the load of water to be treated to be supplied is only boron. According to this invention (invention 4), the ion-exchange apparatus having a boron-selective ion-exchange resin is provided at the end of the primary pure water system, so that the water to be treated whose load other than boron is reduced is exchanged with the ion-exchange apparatus. Since it can be supplied to the apparatus, the adsorption capacity of the boron selective ion exchange resin is maximized, and the boron removal efficiency can be improved.
 上記発明(発明1-4)においては、前記ホウ素選択性イオン交換樹脂以外のイオン交換樹脂が、強塩基性アニオン交換樹脂、アニオン交換樹脂とカチオン交換樹脂との混合物、及び両性イオン交換樹脂から選択される少なくとも1種であることが好ましい(発明5)。 In the above invention (Invention 1-4), the ion exchange resin other than the boron selective ion exchange resin is selected from a strongly basic anion exchange resin, a mixture of an anion exchange resin and a cation exchange resin, and an amphoteric ion exchange resin. It is preferable that it is at least one kind (Invention 5).
 かかる発明(発明5)によれば、ホウ素選択性イオン交換樹脂より溶出するTOC成分をより効率的に吸着除去することができる。 According to this invention (Invention 5), the TOC component eluted from the boron selective ion exchange resin can be more efficiently adsorbed and removed.
 第二に本発明は、当該超純水製造システムを用いた超純水製造方法を提供する(発明6)。 Second, the present invention provides an ultrapure water production method using the ultrapure water production system (Invention 6).
 本発明の超純水製造システム及び超純水製造方法によれば、一次純水システムでホウ素及びTOC成分を低減した後の被処理水をサブシステム(二次純水システム)に供給することにより、サブシステムにTOC負荷をかけることなく、ホウ素を低濃度化した超純水を安定的に得ることができる。 According to the ultrapure water production system and ultrapure water production method of the present invention, by supplying treated water after reducing boron and TOC components in a primary pure water system to a subsystem (secondary pure water system). The ultrapure water in which the boron concentration is reduced can be stably obtained without applying a TOC load to the subsystem.
本発明の一実施形態に係る超純水製造システムを示すブロック図である。It is a block diagram which shows the ultrapure water manufacturing system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る超純水製造システムが備えるホウ素選択性イオン交換樹脂を有するイオン交換装置を示す概略図である。It is the schematic which shows the ion exchange apparatus which has a boron selective ion exchange resin with which the ultrapure water manufacturing system which concerns on one Embodiment of this invention is provided.
 以下、本発明の超純水製造システム及び超純水製造方法の実施の形態について、適宜図面を参照して説明する。以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。 Hereinafter, embodiments of the ultrapure water production system and the ultrapure water production method of the present invention will be described with reference to the drawings as appropriate. The embodiment described below is for facilitating the understanding of the present invention, and does not limit the present invention.
 (超純水)
 本実施形態で製造される超純水は、ホウ素濃度が0.5ppt-50pptの間であることが好ましい。ホウ素濃度が上記範囲外であると、半導体製品の製造工程におけるシステムの洗浄の際に、半導体製品へ悪影響を及ぼすおそれがあり好ましくない。
(Ultra pure water)
The ultrapure water produced in the present embodiment preferably has a boron concentration of 0.5 ppt-50 ppt. When the boron concentration is outside the above range, there is a possibility that the semiconductor product may be adversely affected when the system is cleaned in the manufacturing process of the semiconductor product.
 (被処理水)
 本実施形態で使用されるホウ素を含有する被処理水は、特に限定されるものではない。通常、前処理システムによる徐濁処理後の被処理水(前処理水)、つまり、一次処理システムに供給される被処理水には、ホウ素が30ppb程度含まれている。なお、ホウ素は、被処理水中で主にホウ酸(B(OH))の形態で存在している。
(Treated water)
The treated water containing boron used in the present embodiment is not particularly limited. Usually, the water to be treated (pretreated water) after the turbidity treatment by the pretreatment system, that is, the water to be treated supplied to the primary treatment system contains about 30 ppb of boron. Boron is present mainly in the form of boric acid (B (OH) 3 ) in the water to be treated.
 [超純水製造システム]
 図1は、本発明の一実施形態に係る超純水製造システムを示すブロック図である。図1に示す超純水製造システム1は、前処理システム2、一次純水システム3、二次純水システム(サブシステム)4をこの順に備える。前処理システム2に供給された原水は、凝集ろ過、MF膜(精密ろ過膜)、UF膜(限外ろ過膜)等による除濁処理や活性炭等による脱塩素処理の後、送水配管L1を経て、一次純水システム3へ供給される。一次純水システム3に供給された前処理水は、イオン成分やTOC成分等の不純物が除去された後、送水配管L2を経て、サブシステム4へ供給される。サブシステム4では、被処理水中の極微量の微粒子や微量イオン成分、特に低分子の微量有機物のような不純物が除去され、より純度の高い超純水が製造される。サブシステム4で製造された超純水は、送水配管L3を経て、ユースポイント5へ送られる。
[Ultrapure water production system]
FIG. 1 is a block diagram showing an ultrapure water production system according to an embodiment of the present invention. The ultrapure water production system 1 shown in FIG. 1 includes a pretreatment system 2, a primary pure water system 3, and a secondary pure water system (subsystem) 4 in this order. The raw water supplied to the pretreatment system 2 passes through a water supply pipe L1 after turbidity treatment using coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), or dechlorination treatment using activated carbon. , Supplied to the primary pure water system 3. The pretreatment water supplied to the primary pure water system 3 is supplied to the subsystem 4 through the water supply pipe L2 after impurities such as ion components and TOC components are removed. In the subsystem 4, impurities such as a very small amount of fine particles and a small amount of ionic components in the water to be treated, particularly a low-molecular amount organic substance, are removed, and ultrapure water with higher purity is produced. The ultrapure water produced by the subsystem 4 is sent to the use point 5 through the water supply pipe L3.
 <一次純水システム>
 一次純水システム3は、2床3塔式のイオン交換装置(第一イオン交換装置)31、逆浸透膜(RO膜)装置32、混床式のイオン交換装置(第二イオン交換装置)33、ホウ素選択性イオン交換樹脂を有するイオン交換装置(第三イオン交換装置)34をこの順に備えている。第一イオン交換装置31は、カチオン交換塔(H塔)、脱炭酸塔、アニオン交換塔(OH塔)をこの順に備え、前処理システム2から供給される被処理水を脱塩するためのものである。逆浸透膜(RO膜)装置32は、被処理水中のイオン成分やTOC成分等の不純物を除去するためのものである。第一イオン交換装置31による脱塩処理により、逆浸透膜(RO膜)装置32には、塩濃度が低減された被処理水が供給されるので、逆浸透膜(RO膜)装置32における水回収率が向上し、これに伴い被処理水中に含まれるイオン成分やTOC成分等の不純物の除去率も向上する。第二イオン交換装置33は、アニオン交換樹脂とカチオン交換樹脂とを均一混合して充填した塔を備え、被処理水中に存在する低分子量のカチオン及びアニオンを除去し、処理水の純度を高めるためのものである。
<Primary pure water system>
The primary pure water system 3 includes a two-bed / three-column type ion exchange device (first ion exchange device) 31, a reverse osmosis membrane (RO membrane) device 32, and a mixed bed type ion exchange device (second ion exchange device) 33. An ion exchange device (third ion exchange device) 34 having a boron selective ion exchange resin is provided in this order. The first ion exchange device 31 includes a cation exchange tower (H tower), a decarboxylation tower, and an anion exchange tower (OH tower) in this order, and for desalting the water to be treated supplied from the pretreatment system 2. It is. The reverse osmosis membrane (RO membrane) device 32 is for removing impurities such as ion components and TOC components in the water to be treated. By the desalination treatment by the first ion exchange device 31, the water to be treated with reduced salt concentration is supplied to the reverse osmosis membrane (RO membrane) device 32. Therefore, the water in the reverse osmosis membrane (RO membrane) device 32 The recovery rate is improved, and the removal rate of impurities such as ion components and TOC components contained in the water to be treated is improved accordingly. The second ion exchange device 33 includes a tower in which an anion exchange resin and a cation exchange resin are uniformly mixed and packed, and removes low molecular weight cations and anions present in the water to be treated to increase the purity of the treated water. belongs to.
 なお、一次純水システムが備える混床式イオン交換装置は、再生式、非再生式のいずれであってもよいが、非再生式のイオン交換装置であることが好ましい。これは、一次純水システムに再生式のイオン交換装置を用いると、イオン交換樹脂を再生するときに使用する薬品によって、コスト高になるだけでなく、イオン交換樹脂の再生に必要な薬品によって、排水の量が増加しやすいからである。通常、一次純水システムに非再生式のイオン交換装置を用いる場合は、本実施形態のように逆浸透膜(RO膜)装置等と組み合わせて使用することにより、イオン成分の除去率を向上させることが行われている。 Note that the mixed bed type ion exchange device provided in the primary pure water system may be either a regenerative type or a non-regenerative type, but is preferably a non-regenerative type ion exchange device. This is because, when a regenerative ion exchange device is used in the primary pure water system, not only the cost increases due to the chemicals used when regenerating the ion exchange resin, but also depending on the chemicals necessary for the regeneration of the ion exchange resin, This is because the amount of drainage tends to increase. Normally, when using a non-regenerative ion exchange device in the primary pure water system, the ion component removal rate is improved by using it in combination with a reverse osmosis membrane (RO membrane) device as in this embodiment. Things have been done.
 (ホウ素選択性イオン交換樹脂を有するイオン交換装置)
 次に、本実施形態の一次純水システム3が備えるホウ素選択性イオン交換樹脂を有するイオン交換装置(第三イオン交換装置)34について、図2も参照しつつ詳説する。
(Ion exchange device with boron selective ion exchange resin)
Next, an ion exchange device (third ion exchange device) 34 having a boron selective ion exchange resin provided in the primary pure water system 3 of the present embodiment will be described in detail with reference to FIG.
 第三イオン交換装置34は、ホウ素選択性イオン交換樹脂によって被処理水に含まれるホウ素を除去するとともに、ホウ素選択性イオン交換樹脂より溶出したTOC成分をホウ素選択性イオン交換樹脂以外のイオン交換樹脂によって除去するためのものである。ホウ素選択性イオン交換樹脂の吸着能力を最大限に発揮させるためには、第三イオン交換装置34に供給される被処理水の負荷がホウ素のみであることが望ましいことから、第三イオン交換装置34は、一次純水システム3の末端に設置される。また、後段のサブシステム4の先端に設置される紫外線酸化装置(UV装置)41は、装置自体が大きく嵩張る上に高価であるため、できるだけ規模を小さくすることが求められる。そのためにも、一次純水システム3の末端に設置される第三イオン交換装置34において被処理水中のTOC成分をできるだけ除去することで、サブシステム4の先端に設置される紫外線酸化装置(UV装置)41にTOC負荷をかけないことが望ましい。 The third ion exchange device 34 removes boron contained in the water to be treated by the boron selective ion exchange resin, and converts the TOC component eluted from the boron selective ion exchange resin into an ion exchange resin other than the boron selective ion exchange resin. It is for removing by. In order to maximize the adsorption capacity of the boron-selective ion exchange resin, it is desirable that the load of water to be treated supplied to the third ion exchange device 34 is only boron. 34 is installed at the end of the primary pure water system 3. Further, the ultraviolet oxidation device (UV device) 41 installed at the tip of the subsystem 4 at the rear stage is required to be as small as possible because the device itself is large and bulky and expensive. For this purpose, the third ion exchange device 34 installed at the end of the primary pure water system 3 removes the TOC component in the water to be treated as much as possible, so that an ultraviolet oxidation device (UV device) installed at the tip of the subsystem 4 is obtained. ) It is desirable not to apply a TOC load to 41.
 図2は、本実施形態に係る第三イオン交換装置34の構成を示す概略図である。第三イオン交換装置34は、イオン交換樹脂Aを充填するための収容部341と、収容部341に被処理水を供給するための供給部342と、収容部341から処理水を排出するための排出部343とを有している。収容部341は立設されており、収容部341の上側に供給部342が、収容部341の下側に排出部343が、それぞれ配設されていて、ホウ素選択性イオン交換樹脂A1が供給部342側に、ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2が排出部343側に、それぞれ充填されている。 FIG. 2 is a schematic diagram showing the configuration of the third ion exchange device 34 according to the present embodiment. The third ion exchange device 34 includes a storage unit 341 for filling the ion exchange resin A, a supply unit 342 for supplying treated water to the storage unit 341, and a discharge unit for discharging treated water from the storage unit 341. A discharge portion 343. The accommodating portion 341 is erected, a supply portion 342 is disposed above the accommodating portion 341, a discharge portion 343 is disposed below the accommodating portion 341, and the boron-selective ion exchange resin A <b> 1 is disposed in the supplying portion. On the 342 side, an ion exchange resin A2 other than the boron selective ion exchange resin is filled on the discharge part 343 side.
 第三イオン交換装置34において、供給部342側にホウ素選択性イオン交換樹脂A1が、排出部343側にホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2が、それぞれ充填されることにより、収容部341に供給されるホウ素を含む被処理水から、まずホウ素選択性イオン交換樹脂A1によってホウ素が吸着除去され、その後ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2によってホウ素選択性イオン交換樹脂A1より溶出したTOC成分が吸着除去されるので、後段のサブシステム4にTOC負荷をかけることなく、ホウ素濃度の低減された一次処理水を供給することができる。サブシステム4に対するTOC負荷が抑えられることにより、超純水製造システム全体のコスト増加を防ぐこともできる。 In the third ion exchange device 34, the supply unit 342 side is filled with boron-selective ion exchange resin A1, and the discharge unit 343 side is filled with ion-exchange resin A2 other than boron-selective ion exchange resin, respectively. Boron is first adsorbed and removed from the treated water containing boron supplied to 341 by the boron selective ion exchange resin A1, and then from the boron selective ion exchange resin A1 by an ion exchange resin A2 other than the boron selective ion exchange resin. Since the eluted TOC component is adsorbed and removed, primary treated water with a reduced boron concentration can be supplied without applying a TOC load to the subsequent subsystem 4. By suppressing the TOC load on the subsystem 4, it is possible to prevent an increase in the cost of the entire ultrapure water production system.
 また、収容部341が立設されており、その上側に供給部342が、下側に排出部343が配設されていることにより、流れ方向が収容部341の上方から下方であるように供給部342から被処理水を供給することができるので、イオン交換樹脂Aが被処理水によって撹拌されにくく、ホウ素選択性イオン交換樹脂A1とホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2との二層構造が維持される。これにより、被処理水と各イオン交換樹脂A1、A2とを効率よく接触させることができるので、各イオン交換樹脂A1、A2の持つ吸着能力が高く発揮される。よって、被処理水に含まれるホウ素及びホウ素選択性イオン交換樹脂A1より溶出するTOC成分を効果的に除去することができる。 In addition, since the accommodating portion 341 is erected, the supply portion 342 is disposed on the upper side and the discharge portion 343 is disposed on the lower side, so that the flow direction is from the upper side to the lower side of the accommodating portion 341. Since the water to be treated can be supplied from the part 342, the ion exchange resin A is not easily stirred by the water to be treated, and the two of the boron selective ion exchange resin A1 and the ion exchange resin A2 other than the boron selective ion exchange resin are used. The layer structure is maintained. Thereby, since the to-be-processed water and each ion exchange resin A1, A2 can be made to contact efficiently, the adsorption capacity which each ion exchange resin A1, A2 has is exhibited highly. Thus, boron contained in the water to be treated and the TOC component eluted from the boron selective ion exchange resin A1 can be effectively removed.
 収容部341に充填されるイオン交換樹脂Aは、ホウ素選択性イオン交換樹脂A1とホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2とを積層した構造であってもよい。イオン交換樹脂Aが、上記のような二層構造であることにより、上記各イオン交換樹脂A1、A2の吸着効率の予測が容易になるので、効率的に処理を行うこともできる。 The ion exchange resin A filled in the accommodating portion 341 may have a structure in which a boron selective ion exchange resin A1 and an ion exchange resin A2 other than the boron selective ion exchange resin are laminated. Since the ion exchange resin A has a two-layer structure as described above, the adsorption efficiency of each of the ion exchange resins A1 and A2 can be easily predicted, so that the treatment can be performed efficiently.
 なお、収容部341は、ホウ素選択性イオン交換樹脂A1とホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2とを仕切るための仕切板を内部に有していてもよい。このような仕切板を有することにより、イオン交換樹脂A1、A2の混合や上下への流出を防止することができる。また、収容部341は、例えば、ホウ素選択性イオン交換樹脂A1が充填されたサブ収容部3411(図示しない)と、ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2が充填されたサブ収容部3412(図示しない)とが、直列に接続された構造であってもよい。 In addition, the accommodating part 341 may have a partition plate inside for partitioning the boron selective ion exchange resin A1 and the ion exchange resin A2 other than the boron selective ion exchange resin. By having such a partition plate, mixing of the ion exchange resins A1 and A2 and outflow up and down can be prevented. The accommodating part 341 includes, for example, a sub accommodating part 3411 (not shown) filled with a boron selective ion exchange resin A1 and a sub accommodating part 3412 filled with an ion exchange resin A2 other than the boron selective ion exchange resin. (Not shown) may be connected in series.
 ホウ素選択性イオン交換樹脂A1の層高は特に限定されず、必要に応じて適宜設定することができるが、800mm以上となるように設定することが好ましく、1000mm以上となるように設定することがより好ましい。層高を800mm以上とすることで、ホウ素選択性イオン交換樹脂A1の吸着効率が向上する。また、ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2の層高は特に限定されず、必要に応じて適宜設定することができるが、100mm以上となるように設定することが好ましく、500mm以上となるように設定することがより好ましい。層高を100mm以上とすることで、ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2の吸着効率が向上する。 The layer height of the boron-selective ion exchange resin A1 is not particularly limited and can be appropriately set as necessary, but is preferably set to be 800 mm or more, and is set to be 1000 mm or more. More preferred. By setting the layer height to 800 mm or more, the adsorption efficiency of the boron selective ion exchange resin A1 is improved. Further, the layer height of the ion exchange resin A2 other than the boron selective ion exchange resin is not particularly limited and can be appropriately set as necessary, but is preferably set to be 100 mm or more, and 500 mm or more. It is more preferable to set so that. By setting the layer height to 100 mm or more, the adsorption efficiency of the ion exchange resin A2 other than the boron selective ion exchange resin is improved.
 (ホウ素選択性イオン交換樹脂)
 ホウ素選択性イオン交換樹脂A1は、アニオン交換樹脂におけるイオン交換基の代わりにホウ素選択性を有するN-メチルグルカミン基を官能基として有するもの(キレート樹脂)であれば特に限定されない。しかし、アニオン交換樹脂へのホウ素選択性を有するキレート基の導入率は100%に達することがなく、残存するアニオン基に他のイオンが吸着することによって、吸着速度が減少してしまうことが起こり得る。よって、このようなことを防ぐために、ホウ素選択性イオン交換樹脂A1としては、超純水の製造に使用されるキレート樹脂や超純水で洗浄されたキレート樹脂等、TOC成分の溶出が少なく、通水前後でTOC濃度が可能な限り増加しないものが好ましい。このようなキレート樹脂としては、N-メチルグルカミン基を有するものが好ましく、例えば、三菱化学社製のCRB03等が使用できる。
(Boron selective ion exchange resin)
The boron-selective ion exchange resin A1 is not particularly limited as long as it has an N-methylglucamine group having boron selectivity as a functional group instead of the ion exchange group in the anion exchange resin (chelate resin). However, the introduction rate of the chelate group having boron selectivity into the anion exchange resin does not reach 100%, and the adsorption rate may decrease due to the adsorption of other ions to the remaining anion group. obtain. Therefore, in order to prevent such a thing, as boron selective ion exchange resin A1, there is little elution of TOC components, such as chelate resin used for manufacture of ultrapure water, and chelate resin washed with ultrapure water, It is preferable that the TOC concentration does not increase as much as possible before and after water flow. As such a chelating resin, those having an N-methylglucamine group are preferable, and for example, CRB03 manufactured by Mitsubishi Chemical Corporation can be used.
 (ホウ素選択性イオン交換樹脂以外のイオン交換樹脂)
 ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2は、特に限定されないが、超純水の製造に使用されるイオン交換樹脂や超純水で洗浄されたイオン交換樹脂等、TOC成分の溶出が少なく、通水前後でTOC濃度の増加量(△TOC)が<1-3ppb程度であるものが好ましい。このようなイオン交換樹脂としては、強塩基性アニオン交換樹脂、アニオン交換樹脂とカチオン交換樹脂との混合物、及び両性イオン交換樹脂から選択される少なくとも1種であることが好ましく、さらに好適には強塩基性アニオン交換樹脂であり、例えば、三菱化学社製のSAT10L等が使用できる。
(Ion exchange resins other than boron selective ion exchange resins)
The ion exchange resin A2 other than the boron selective ion exchange resin is not particularly limited, but there is little elution of the TOC component such as an ion exchange resin used for the production of ultra pure water or an ion exchange resin washed with ultra pure water. Preferably, the amount of increase in TOC concentration (ΔTOC) before and after water flow is about <1-3 ppb. Such an ion exchange resin is preferably at least one selected from a strongly basic anion exchange resin, a mixture of an anion exchange resin and a cation exchange resin, and an amphoteric ion exchange resin, and more preferably a strong ion exchange resin. This is a basic anion exchange resin, and for example, SAT10L manufactured by Mitsubishi Chemical Corporation can be used.
 <サブシステム>
 サブシステム4は、紫外線酸化装置(UV装置)41、膜式脱気装置42、混床式イオン交換装置43、限外ろ過膜装置(UF装置)44をこの順に備えている。紫外線酸化装置(UV装置)41は、紫外線照射による酸化処理により、被処理水中に残存するTOC成分を酸化分解するためのものである。膜式脱気装置42は、処理水中の溶存酸素量を低減するためのものである。混床式イオン交換装置43は、処理水中の酸化分解されたTOC成分のうち、イオン化した成分を除去し、処理水の純度を高めるためのものである。限外ろ過膜装置(UF装置)44は、混床式イオン交換装置43から流出したイオン交換樹脂の微粒子等を除去するためのものである。
<Subsystem>
The subsystem 4 includes an ultraviolet oxidation device (UV device) 41, a membrane deaeration device 42, a mixed bed ion exchange device 43, and an ultrafiltration membrane device (UF device) 44 in this order. The ultraviolet oxidation device (UV device) 41 is for oxidizing and decomposing the TOC component remaining in the water to be treated by oxidation treatment by ultraviolet irradiation. The membrane deaerator 42 is for reducing the amount of dissolved oxygen in the treated water. The mixed bed type ion exchange device 43 is for removing the ionized component from the TOC component which has been oxidatively decomposed in the treated water to increase the purity of the treated water. The ultrafiltration membrane device (UF device) 44 is for removing fine particles and the like of the ion exchange resin flowing out from the mixed bed type ion exchange device 43.
 なお、一般的な超純水製造システムにおいて、一次純水システムとサブシステムとには、その規模にかなりの差があり、一次純水システムの方が大規模である。本実施形態においても、一次純水システム3が備える各装置は、サブシステム4が備える各装置に比べて規模が大きく、例えば、一次純水システム3の末端に設けられる第三イオン交換装置34を、規模の異なるサブシステム4の先端に設けることは一般的ではない。同様に、サブシステム4の先端に設けられる紫外線酸化装置(UV装置)41を、規模の異なる一次純水システム3の末端に設けることも一般的ではない。 Note that, in a general ultrapure water production system, there is a considerable difference in scale between the primary pure water system and the subsystem, and the primary pure water system is larger. Also in this embodiment, each apparatus with which the primary pure water system 3 is provided is larger in scale than each apparatus with which the subsystem 4 is provided. For example, the third ion exchange device 34 provided at the end of the primary pure water system 3 is provided. It is not generally provided at the tip of the subsystem 4 having a different scale. Similarly, it is not common to provide an ultraviolet oxidation device (UV device) 41 provided at the tip of the subsystem 4 at the end of the primary pure water system 3 having a different scale.
 [超純水製造方法]
 次に、上述したような本実施形態の超純水製造システム1を用いた超純水の製造方法について説明する。
[Ultrapure water production method]
Next, the manufacturing method of the ultrapure water using the ultrapure water manufacturing system 1 of this embodiment as mentioned above is demonstrated.
 前処理システム2に供給された原水は、凝集ろ過、MF膜(精密ろ過膜)、UF膜(限外ろ過膜)等による除濁処理や活性炭等による脱塩素処理(前処理工程)の後、送水配管L1を経て、一次純水システム3へ供給される。一次純水システム3に供給された前処理水は、イオン成分やTOC成分等の不純物の除去処理(一次純水製造工程)の後、送水配管L2を経て、サブシステム4へ供給される。サブシステム4に供給された一次純水は、極微量の微粒子や微量イオン成分、特に低分子の微量有機物のような不純物の除去が行われ、より純度の高い超純水が製造される(二次純水製造工程)。サブシステム4で製造された超純水は、送水配管L3を経て、ユースポイント5へ送られる。 The raw water supplied to the pretreatment system 2 is subjected to turbidity treatment by coagulation filtration, MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane) or dechlorination treatment (pretreatment step) by activated carbon, etc. The water is supplied to the primary pure water system 3 through the water supply pipe L1. The pretreatment water supplied to the primary pure water system 3 is supplied to the subsystem 4 via the water supply pipe L2 after removing impurities (primary pure water production process) such as ionic components and TOC components. The primary pure water supplied to the subsystem 4 is subjected to removal of impurities such as trace amounts of fine particles and trace ion components, particularly low molecular weight trace organic substances, and ultrapure water with higher purity is produced (2 Next pure water production process). The ultrapure water produced by the subsystem 4 is sent to the use point 5 through the water supply pipe L3.
 (ホウ素選択性イオン交換樹脂を有するイオン交換装置による処理工程)
 次に、本実施形態の一次純水システム3が備えるホウ素選択性イオン交換樹脂を有するイオン交換装置(第三イオン交換装置)34による処理工程について、図2も参照しつつ詳説する。
(Processing by ion exchange device with boron selective ion exchange resin)
Next, processing steps by the ion exchange device (third ion exchange device) 34 having a boron selective ion exchange resin provided in the primary pure water system 3 of the present embodiment will be described in detail with reference to FIG.
 まず、収容部341に、流れ方向が収容部341の上方から下方であるように、供給部342から被処理水を供給する。収容部341は立設されており、その上側に供給部342が、下側に排出部343が配設されていて、ホウ素選択性イオン交換樹脂A1が供給部342側に、ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2が排出部343側に充填されている。収容部341に供給された被処理水は、まずホウ素選択性イオン交換樹脂A1によってホウ素イオンを吸着除去され、次にホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2によってホウ素選択性イオン交換樹脂A1から溶出したTOC成分が吸着除去される。ホウ素及びTOC成分が除去された被処理水(一次処理水)は、排出部343から排出されて次の工程へと移送される。 First, water to be treated is supplied from the supply unit 342 to the storage unit 341 so that the flow direction is from the top to the bottom of the storage unit 341. The accommodating portion 341 is erected, a supply portion 342 is disposed on the upper side, a discharge portion 343 is disposed on the lower side, and the boron selective ion exchange resin A1 is disposed on the supply portion 342 side. An ion exchange resin A2 other than the resin is filled on the discharge part 343 side. The treated water supplied to the storage unit 341 is first removed by adsorption of boron ions by the boron-selective ion exchange resin A1, and then boron-selective ion-exchange resin A1 by the ion-exchange resin A2 other than the boron-selective ion-exchange resin. The TOC component eluted from is adsorbed and removed. The treated water from which the boron and TOC components have been removed (primary treated water) is discharged from the discharge unit 343 and transferred to the next step.
 上述のように、供給部342側にホウ素選択性イオン交換樹脂A1が、排出部343側にホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2が、それぞれ充填されていることにより、収容部341に供給されるホウ素を含む被処理水から、まずホウ素選択性イオン交換樹脂A1によってホウ素が吸着除去され、その後ホウ素選択性イオン交換樹脂以外のイオン交換樹脂A2によってホウ素選択性イオン交換樹脂より溶出するTOC成分が吸着除去されるので、後段のサブシステム4にTOC負荷をかけることなく、ホウ素濃度の低減された一次処理水を供給することができる。サブシステム4に対するTOC負荷が抑えられることにより、超純水製造システム全体のコスト増加を防ぐこともできる。 As described above, the container 341 is filled with the boron selective ion exchange resin A1 on the supply unit 342 side and the ion exchange resin A2 other than the boron selective ion exchange resin on the discharge unit 343 side. First, boron is adsorbed and removed from the treated water containing boron by the boron selective ion exchange resin A1, and then eluted from the boron selective ion exchange resin by an ion exchange resin A2 other than the boron selective ion exchange resin. Since the components are removed by adsorption, primary treated water with a reduced boron concentration can be supplied without applying a TOC load to the subsystem 4 at the subsequent stage. By suppressing the TOC load on the subsystem 4, it is possible to prevent an increase in the cost of the entire ultrapure water production system.
 本実施形態の超純水製造方法において、第三イオン交換装置34への被処理水の通水速度は特に限定されないが、空間速度(SV)で30/h-180/hの範囲であることが好ましく、60/hであることがより好ましい。被処理水の通水速度が30/h未満であると、第三イオン交換装置34による処理速度が遅くなり、効率的ではない。また、被処理水の通水速度が180/hを超えると、第三イオン交換装置34による処理が不十分になり、被処理水中のホウ素を十分に取り除くことが困難となる。 In the ultrapure water production method of the present embodiment, the flow rate of the water to be treated to the third ion exchange device 34 is not particularly limited, but the space velocity (SV) is in the range of 30 / h-180 / h. Is more preferable, and 60 / h is more preferable. When the flow rate of the water to be treated is less than 30 / h, the treatment rate by the third ion exchange device 34 is slow, which is not efficient. Moreover, when the water flow rate of the water to be treated exceeds 180 / h, the treatment by the third ion exchanger 34 becomes insufficient, and it becomes difficult to sufficiently remove boron in the water to be treated.
 本実施形態の超純水製造システム1を用いた超純水製造方法によれば、一次純水システム3でホウ素及びTOC成分を低減した後の被処理水をサブシステム(二次純水システム)4に供給することにより、サブシステム4にTOC負荷をかけることなく、ホウ素を低濃度化した超純水を安定的に得ることができる。 According to the ultrapure water production method using the ultrapure water production system 1 of the present embodiment, the treated water after the boron and TOC components are reduced by the primary pure water system 3 is sub-system (secondary pure water system). By supplying to 4, ultrapure water with a low boron concentration can be stably obtained without applying a TOC load to the subsystem 4.
 なお、上述した超純水製造方法は、前処理工程と一次純水製造工程と二次純水製造工程とをこの順に備える超純水の製造方法であって、一次純水製造工程が、ホウ素を含む被処理水をイオン交換樹脂で処理する工程を備え、このイオン交換樹脂による処理工程が、ホウ素を含む被処理水とホウ素選択性イオン交換樹脂とを接触させ、当該被処理水からホウ素を分離する第一の分離工程と、第一の分離工程後の被処理水とホウ素選択性イオン交換樹脂以外のイオン交換樹脂とを接触させ、第一の分離工程後の被処理水からTOC成分を分離する第二の分離工程とを有する超純水製造方法であると捉えることもできる。 The ultrapure water production method described above is a method for producing ultrapure water that includes a pretreatment process, a primary pure water production process, and a secondary pure water production process in this order, and the primary pure water production process includes boron. A process of treating the water to be treated with an ion exchange resin, wherein the treatment process with the ion exchange resin brings the water to be treated containing boron into contact with the boron-selective ion exchange resin, and boron is removed from the water to be treated. The first separation step to be separated, the treated water after the first separation step and an ion exchange resin other than the boron-selective ion exchange resin are brought into contact, and the TOC component is removed from the treated water after the first separation step. It can also be regarded as an ultrapure water production method having a second separation step for separation.
 以上、本発明について図面を参照にして説明してきたが、本発明は上記実施形態に限定されず、種々の変更実施が可能である。 As mentioned above, although this invention has been demonstrated with reference to drawings, this invention is not limited to the said embodiment, A various change implementation is possible.
 以下、実施例に基づき本発明をさらに詳説するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
 [実施例1]
 図2に示す第三イオン交換装置34を用いて被処理水の処理を行った。収容部341として、直径が40mmの円筒状のアクリル製のカラム(以下、単に「アクリルカラム」と称す。)を用い、アクリルカラムに、層高が100mmとなるように三菱化学社製の強塩基性アニオン交換樹脂を充填し、その上側に、層高が800mmとなるように三菱化学社製のホウ素選択性イオン交換樹脂を充填した。ここに、流れ方向が下向きであるように、ホウ素濃度0.8ppb、比抵抗18.2MΩ・cm、TOC成分0.5ppbの被処理水を60/h(SV)で通水し、処理を行った。得られた処理水のホウ素濃度(ppt)とTOC濃度(ppb)を測定した。
[Example 1]
The to-be-processed water was processed using the 3rd ion exchange apparatus 34 shown in FIG. A cylindrical acrylic column having a diameter of 40 mm (hereinafter simply referred to as “acrylic column”) is used as the accommodating portion 341, and a strong base manufactured by Mitsubishi Chemical Corporation is used so that the layer height is 100 mm. Anionic anion exchange resin was filled, and a boron selective ion exchange resin manufactured by Mitsubishi Chemical Corporation was filled on the upper side thereof so that the layer height was 800 mm. Here, treatment is performed by passing water to be treated having a boron concentration of 0.8 ppb, a specific resistance of 18.2 MΩ · cm, and a TOC component of 0.5 ppb at 60 / h (SV) so that the flow direction is downward. It was. The boron concentration (ppt) and TOC concentration (ppb) of the obtained treated water were measured.
 [比較例1]
 アクリルカラムに、層高が800mmとなるように三菱化学社製のホウ素選択性イオン交換樹脂のみを充填した以外は、実施例1と同様の条件で処理を行った。得られた処理水のホウ素濃度(ppt)とTOC濃度(ppb)を測定した。
[Comparative Example 1]
The treatment was performed under the same conditions as in Example 1 except that the acrylic column was filled only with a boron selective ion exchange resin manufactured by Mitsubishi Chemical Corporation so that the layer height was 800 mm. The boron concentration (ppt) and TOC concentration (ppb) of the obtained treated water were measured.
 [比較例2]
 アクリルカラムに、層高が800mmとなるように三菱化学社製の強塩基性アニオン交換樹脂のみを充填した以外は、実施例1と同様の条件で処理を行った。得られた処理水のホウ素濃度(ppt)とTOC濃度(ppb)を測定した。
[Comparative Example 2]
The treatment was performed under the same conditions as in Example 1 except that the acrylic column was filled only with a strongly basic anion exchange resin manufactured by Mitsubishi Chemical Corporation so that the layer height was 800 mm. The boron concentration (ppt) and TOC concentration (ppb) of the obtained treated water were measured.
 [結果]
 処理水のホウ素濃度(ppt)とTOC濃度(ppb)の経時変化を表1に示す。本結果からわかるように、実施例1では、処理水のホウ素濃度を24時間満足できるレベルで維持することができ、TOC濃度も大きく上昇することなく維持することができた。
[result]
Table 1 shows temporal changes in the boron concentration (ppt) and the TOC concentration (ppb) of the treated water. As can be seen from this result, in Example 1, the boron concentration of the treated water could be maintained at a level that could be satisfied for 24 hours, and the TOC concentration could be maintained without significantly increasing.
 比較例1では、処理水のホウ素濃度は24時間満足できるレベルで維持することができたが、TOC濃度は1時間で大きく上昇し、24時間の時点でも際立った減少は見られなかった。これは、ホウ素選択性イオン交換樹脂からTOC成分が溶出したことによる。なお、比較例1の処理水(一次処理水)をサブシステム4に供給して、通水速度60/h(SV)で処理を行い、TOC濃度が1.0ppb以下の処理水を安定的に得る場合の試算をしたところ、実施例1の場合に比べて、サブシステム4全体にかかるコストの10%に相当する費用がさらに必要となるとの結果が得られた。 In Comparative Example 1, the boron concentration of the treated water could be maintained at a satisfactory level for 24 hours, but the TOC concentration increased greatly in 1 hour, and no marked decrease was seen even at 24 hours. This is because the TOC component was eluted from the boron-selective ion exchange resin. In addition, the treated water (primary treated water) of Comparative Example 1 is supplied to the subsystem 4 and treated at a water flow rate of 60 / h (SV) to stably treat the treated water having a TOC concentration of 1.0 ppb or less. As a result of a trial calculation in the case of obtaining, it was found that a cost corresponding to 10% of the cost of the entire subsystem 4 is further required as compared with the case of the first embodiment.
 比較例2では、イオン交換容量が低いため、処理水のホウ素濃度は24時間満足できるレベルで維持することができなかったが、TOC濃度は大きく上昇することがなかった。 In Comparative Example 2, since the ion exchange capacity was low, the boron concentration of the treated water could not be maintained at a satisfactory level for 24 hours, but the TOC concentration did not increase significantly.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上説明したように、本発明の超純水製造システム及び超純水製造方法によれば、一次純水システムでホウ素及びTOC成分を低減した後の被処理水をサブシステム(二次純水システム)に供給することにより、サブシステムにTOC負荷をかけることなく、ホウ素を低濃度化した超純水を安定的に得ることができる。 As described above, according to the ultrapure water production system and the ultrapure water production method of the present invention, the treated water after reducing boron and TOC components in the primary pure water system is treated as a subsystem (secondary pure water system). ), It is possible to stably obtain ultrapure water with a low boron concentration without applying a TOC load to the subsystem.
 本発明は、ホウ素を低濃度化した超純水を安定的に得るための超純水製造システム及び超純水製造方法として有用である。 The present invention is useful as an ultrapure water production system and an ultrapure water production method for stably obtaining ultrapure water having a low boron concentration.
1…超純水製造システム
2…前処理システム
3…一次純水システム
 31…2床3塔式イオン交換装置(第一イオン交換装置)
 32…逆浸透膜(RO膜)装置
 33…混床式イオン交換装置(第二イオン交換装置)
 34…ホウ素選択性イオン交換樹脂を有するイオン交換装置(第三イオン交換装置)
  341…収容部
  342…供給部
  343…排出部
4…二次純水システム(サブシステム)
 41…紫外線酸化装置(UV装置)
 42…膜式脱気装置
 43…混床式イオン交換装置
 44…限外ろ過膜装置(UF装置)
5…ユースポイント
L1,L2,L3…送水配管
R1…返送配管
A…イオン交換樹脂
 A1…ホウ素選択性イオン交換樹脂
 A2…ホウ素選択性イオン交換樹脂以外のイオン交換樹脂
DESCRIPTION OF SYMBOLS 1 ... Ultrapure water production system 2 ... Pretreatment system 3 ... Primary pure water system 31 ... Two-bed 3 tower type ion exchanger (1st ion exchanger)
32 ... Reverse osmosis membrane (RO membrane) device 33 ... Mixed bed type ion exchange device (second ion exchange device)
34 ... Ion exchange apparatus having boron selective ion exchange resin (third ion exchange apparatus)
341 ... Accommodating unit 342 ... Supplying unit 343 ... Discharging unit 4 ... Secondary pure water system (subsystem)
41 ... UV oxidation equipment (UV equipment)
42 ... Membrane type deaerator 43 ... Mixed bed type ion exchanger 44 ... Ultrafiltration membrane device (UF device)
5 ... Use point L1, L2, L3 ... Water supply pipe R1 ... Return pipe A ... Ion exchange resin A1 ... Boron selective ion exchange resin A2 ... Ion exchange resin other than boron selective ion exchange resin

Claims (6)

  1.  前処理システムと一次純水システムと二次純水システムとをこの順に備える超純水の製造システムであって、
     前記一次純水システムが、ホウ素を含む被処理水をイオン交換樹脂で処理するイオン交換装置を備え、
     前記イオン交換装置が、
      イオン交換樹脂を充填するための収容部と、
      前記収容部に被処理水を供給するための供給部と、
      前記収容部から処理水を排出するための排出部と
     を有し、
     前記収容部には、前記供給部側にホウ素選択性イオン交換樹脂が、前記排出部側にホウ素選択性イオン交換樹脂以外のイオン交換樹脂が、それぞれ充填されている
     超純水製造システム。
    An ultrapure water production system comprising a pretreatment system, a primary pure water system, and a secondary pure water system in this order,
    The primary pure water system includes an ion exchange device for treating water to be treated containing boron with an ion exchange resin,
    The ion exchange device
    A container for filling the ion exchange resin;
    A supply unit for supplying treated water to the housing unit;
    A discharge part for discharging treated water from the storage part,
    The ultrapure water production system, wherein the container is filled with a boron selective ion exchange resin on the supply unit side and an ion exchange resin other than the boron selective ion exchange resin on the discharge unit side.
  2.  前記収容部が立設されており、
     前記収容部の上側に前記供給部が、前記収容部の下側に前記排出部が、それぞれ配設されている請求項1に記載の超純水製造システム。
    The housing is erected,
    The ultrapure water production system according to claim 1, wherein the supply unit is disposed above the housing unit, and the discharge unit is disposed below the housing unit.
  3.  前記イオン交換樹脂が、前記ホウ素選択性イオン交換樹脂と前記ホウ素選択性イオン交換樹脂以外のイオン交換樹脂とを積層した構造である請求項1または請求項2に記載の超純水製造システム。 The ultrapure water production system according to claim 1 or 2, wherein the ion exchange resin has a structure in which the boron selective ion exchange resin and an ion exchange resin other than the boron selective ion exchange resin are laminated.
  4.  前記イオン交換装置が、前記一次純水システムの末端に設けられる請求項1から請求項3のいずれか1項に記載の超純水製造システム。 The ultrapure water production system according to any one of claims 1 to 3, wherein the ion exchange device is provided at an end of the primary pure water system.
  5.  前記ホウ素選択性イオン交換樹脂以外のイオン交換樹脂が、強塩基性アニオン交換樹脂、アニオン交換樹脂とカチオン交換樹脂との混合物、及び両性イオン交換樹脂から選択される少なくとも1種である請求項1から請求項4のいずれか1項に記載の超純水製造システム。 The ion exchange resin other than the boron selective ion exchange resin is at least one selected from a strongly basic anion exchange resin, a mixture of an anion exchange resin and a cation exchange resin, and an amphoteric ion exchange resin. The ultrapure water production system according to any one of claims 4 to 5.
  6.  請求項1から請求項5のいずれか1項に記載の超純水製造システムを用いた超純水製造方法。 An ultrapure water production method using the ultrapure water production system according to any one of claims 1 to 5.
PCT/JP2017/010270 2016-11-28 2017-03-14 System for producing ultrapure water and method for producing ultrapure water WO2018096700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016-230478 2016-11-28
JP2016230478A JP6907514B2 (en) 2016-11-28 2016-11-28 Ultrapure water production system and ultrapure water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201780070819.7A CN109982976A (en) 2016-11-28 2017-03-14 Hyperpure water manufacturing systems and ultrapure water manufacturing method
KR1020197014836A KR20190085936A (en) 2016-11-28 2017-03-14 Ultrapure water production system and ultrapure water production method

Publications (1)

Publication Number Publication Date
WO2018096700A1 true WO2018096700A1 (en) 2018-05-31

Family

ID=62194921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010270 WO2018096700A1 (en) 2016-11-28 2017-03-14 System for producing ultrapure water and method for producing ultrapure water

Country Status (6)

Country Link
JP (1) JP6907514B2 (en)
KR (1) KR20190085936A (en)
CN (1) CN109982976A (en)
SG (1) SG10202104439SA (en)
TW (1) TW201825405A (en)
WO (1) WO2018096700A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110334456A (en) * 2019-07-11 2019-10-15 中国水利水电科学研究院 A kind of river basin ecological dispatching method based on two-layer structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JP2005246126A (en) * 2004-03-01 2005-09-15 Nomura Micro Sci Co Ltd Device and method for manufacturing pure water or ultra pure water
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2016047496A (en) * 2014-08-27 2016-04-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (en) 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP3852926B2 (en) 2002-08-08 2006-12-06 オルガノ株式会社 Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
CN1176032C (en) * 2002-09-24 2004-11-17 天津大学 Producing process and technology for electronic grade water by intergrated film process
JP2004283710A (en) 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
KR20100099227A (en) * 2007-11-30 2010-09-10 지멘스 워터 테크놀로지스 코포레이션 Systems and methods for water treatment
JP6024416B2 (en) * 2012-11-27 2016-11-16 三菱化学株式会社 Ultrapure water production method and ultrapure water production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884986A (en) * 1994-07-22 1996-04-02 Japan Organo Co Ltd Method and device for production of pure water or ultrapure water
JP2005246126A (en) * 2004-03-01 2005-09-15 Nomura Micro Sci Co Ltd Device and method for manufacturing pure water or ultra pure water
JP2014100706A (en) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl Water treatment for particularly producing ultrapure water
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2016047496A (en) * 2014-08-27 2016-04-07 野村マイクロ・サイエンス株式会社 Pure water production apparatus, ultrapure water production system, and pure water production method

Also Published As

Publication number Publication date
TW201825405A (en) 2018-07-16
SG10202104439SA (en) 2021-06-29
JP6907514B2 (en) 2021-07-21
JP2018086619A (en) 2018-06-07
KR20190085936A (en) 2019-07-19
CN109982976A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
KR100784438B1 (en) apparatus and method for continuous electrodeionization
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP4599803B2 (en) Demineralized water production equipment
TWI616404B (en) Method and device for processing boron-containing water
US20100288308A1 (en) Method and system for producing ultrapure water, and method and system for washing electronic component members
WO2016098891A1 (en) Ultrapure water production apparatus and ultrapure water production method
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP2008013379A (en) Method for recovering iodine from waste fluid in polarizing film production
JP4635827B2 (en) Ultrapure water production method and apparatus
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP6310819B2 (en) Pure water production apparatus, ultrapure water production system, and pure water production method
JP2009112945A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
TWI756249B (en) Regenerative ion exchange device and method of operating the same
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
KR101036880B1 (en) Wastewater recycling apparatus and method of preparing ultrapure water using reusable water prepared by the same
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JP3674368B2 (en) Pure water production method
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP5895962B2 (en) Method for preventing boron contamination of ion exchange resin
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JP2003245659A (en) Method and device for treating drain water
JP2018086657A (en) Pure water production apparatus, ultrapure water production system, and pure water producing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014836

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874661

Country of ref document: EP

Kind code of ref document: A1