JP3960930B2 - Ion exchange resin filling method for condensate demineralizer - Google Patents

Ion exchange resin filling method for condensate demineralizer Download PDF

Info

Publication number
JP3960930B2
JP3960930B2 JP2003048754A JP2003048754A JP3960930B2 JP 3960930 B2 JP3960930 B2 JP 3960930B2 JP 2003048754 A JP2003048754 A JP 2003048754A JP 2003048754 A JP2003048754 A JP 2003048754A JP 3960930 B2 JP3960930 B2 JP 3960930B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
water
resin layer
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003048754A
Other languages
Japanese (ja)
Other versions
JP2004255292A (en
Inventor
英紀 高橋
一彦 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2003048754A priority Critical patent/JP3960930B2/en
Priority to EP03255196A priority patent/EP1393806B1/en
Priority to AT03255196T priority patent/ATE353249T1/en
Priority to DE60311615T priority patent/DE60311615T2/en
Priority to KR1020030058218A priority patent/KR100947139B1/en
Publication of JP2004255292A publication Critical patent/JP2004255292A/en
Application granted granted Critical
Publication of JP3960930B2 publication Critical patent/JP3960930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力あるいは火力発電プラントの復水配管系統に設けられる復水脱塩装置へのイオン交換樹脂の充填方法に関するものである。
【0002】
【従来の技術】
復水脱塩装置の処理水には数種の有機性不純物が含まれていることが知られている。これらは主として脱塩塔に充填されているイオン交換樹脂から溶出した不純物であり、イオン交換樹脂が溶存酸素や酸化剤による酸化分解を受けることにより発生する。このうちカチオン交換樹脂から溶出する有機性不純物は、主としてポリスチレンスルホン酸(以下、PSSと略称することもある。)であり、原子炉や蒸気発生器で分解されて硫酸イオンを生じるため近年問題となっている。すなわち、硫酸は構造材の腐食やスケール発生の原因となるため、極力低減することが望ましく、硫酸イオンの発生を低減する方法がいくつか提案されている。
【0003】
低減方法の一つとして、脱塩塔内に形成されるイオン交換樹脂層を上下に分け、上層をカチオン交換樹脂とアニオン交換樹脂を混合した混合イオン交換樹脂、またはカチオン交換樹脂単独の層とし、下層をアニオン交換樹脂単独の層とする方法が提案されている(特許文献1)。この方法では、脱塩塔内下部のアニオン交換樹脂が上層から溶出してきたPSSを吸着するため、処理水中のPSS濃度を低減することができる。
【0004】
ところが、上記のように脱塩塔内に所望の上下二層のイオン交換樹脂層を形成しようとする場合、以下のような問題がある。すなわち、アニオン交換樹脂の比重は一般にカチオン交換樹脂よりも小さいので、脱塩塔内にイオン交換樹脂を充填するに際し、先にアニオン交換樹脂を受け入れて脱塩塔内下部にアニオン交換樹脂層を形成しても、その上に混合イオン交換樹脂を受け入れる際に、脱塩塔内の樹脂層が流動状態になり、アニオン交換樹脂が舞い上がって混合イオン交換樹脂層上部にまで移動してしまい、脱塩塔内下部のアニオン交換樹脂量が減少するという問題が生じる。脱塩塔内下部のアニオン交換樹脂量が減少すると、PSSが捕捉されにくくなり、処理水中のPSS濃度が増加し、二層に分けたことによる目標とする処理水中のPSS濃度低減効果が得られない。また、混合イオン交換樹脂のスラリーを充填する際に、脱塩塔内下部に形成されていたアニオン交換樹脂層の上面が乱れてしまい、アニオン交換樹脂層の厚さが不均一となり、厚みが薄い部分でPSSの除去性が悪くなる可能性もある。
【0005】
このような問題に対し、先に本出願人により、脱塩塔内下部に垂下壁を設けてアニオン交換樹脂層の流動を抑制するようにした構造が提案されている(特許文献2)。
【0006】
また、上下二層のイオン交換樹脂層を形成する場合に対してではないが、充填すべき混合樹脂をカチオン交換樹脂とアニオン交換樹脂への分離を抑えつつ脱塩塔内に充填する方法として、脱塩塔内に水の下降流を作りながら混合樹脂を充填する方法も提案されている(特許文献3)。
【0007】
【特許文献1】
特開平9−276862号公報(特許請求の範囲)
【特許文献2】
特開2000−167551号公報(特許請求の範囲)
【特許文献3】
特開2002−1328号公報(特許請求の範囲)
【0008】
【発明が解決しようとする課題】
ところが、特許文献2に記載されている垂下壁を設ける方法は、新設プラントであれば比較的問題なく実施できるが、既設プラントの改造で、とくにBWRプラント(沸騰水型原子力発電所)での放射線管理区域内での溶接作業やライニング補修等を伴う改造では、現実に実施するのが相当困難になる。
【0009】
また、特許文献3は、脱塩塔内に一種の混合樹脂層のみを形成する場合について記載したものであるから、互いに異なる上下二層のイオン交換樹脂層を形成することを前提とする場合には、そのまま適用はできない。
【0010】
本発明の課題は、脱塩塔内に互いに異なる上下二層のイオン交換樹脂層を形成する場合において、とくに下側イオン交換樹脂層を所望の形態に形成しつつ、上側イオン交換樹脂を充填できるようにし、塔内に確実に目標とする二層形態のイオン交換樹脂層を形成して、所望の処理水中のPSS濃度低減効果を得ることが可能な、復水脱塩装置の脱塩塔へのイオン交換樹脂充填方法を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る復水脱塩装置へのイオン交換樹脂充填方法は、脱塩塔内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または前記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層を形成するに際し、脱塩塔内に、アニオン交換樹脂または混合樹脂Bを移送水とともに充填して下側イオン交換樹脂層を形成した後、脱塩塔内に水を補給し脱塩塔内の水位を上昇させて前記下側イオン交換樹脂層の上面に対して水深を持たせた後、脱塩塔内から水を抜くことにより脱塩塔内に下降流を形成しながら前記混合樹脂Aを移送水とともに充填し、前記下側イオン交換樹脂層上に上側イオン交換樹脂層を形成することを特徴とする方法からなる。上記水深は、下側イオン交換樹脂層の上面から少なくとも200mm、好ましくは300mm以上持たせることが好ましい。また、本発明に係る方法においては、上記の如く下側イオン交換樹脂層の上面に対して水深を持たせた結果、仮に脱塩塔内が満水状態になったとしても、何ら差し支えなく、このような態様も本発明の範疇に含まれる。
【0012】
この本発明に係る方法においては、上記水の補給は、脱塩塔の下部側から行うこともできるし、脱塩塔の上部側から行うこともできる。下部側から水を補給する場合には、既に形成されている下側イオン交換樹脂層を若干流動状態にしてその上面(粒面)をならす効果を期待できる。この補給態様はとくに下側イオン交換樹脂層がアニオン交換樹脂単独で形成される場合に好適であり、この場合には、下側イオン交換樹脂層が多少流動状態とされても層内部での分離は生じない。一方、上部側からの水の補給は、とくに下側イオン交換樹脂層がアニオン交換樹脂リッチの混合樹脂Bから形成される場合に好適であり、この場合には、上側からの補給であるから下側イオン交換樹脂層は基本的に流動状態とはならず、内部におけるカチオン、アニオン交換樹脂の分離は抑制される。ただしこの場合には、既に形成されている下側イオン交換樹脂層の上面を大きく乱さないように水補給を行うことが好ましい。
【0013】
また、上記水の補給後には、下側イオン交換樹脂層に瞬間的な流動を与えて該下側イオン交換樹脂層の上面をならすべく、脱塩塔の下部側から短時間の水補給(瞬時的な水補給)を行うことが好ましい。これによって、混合樹脂Aの受入れ前に、下側イオン交換樹脂層の上面を極力平坦な面に揃えておくことが可能になる。
【0014】
さらに、上記混合樹脂Aの充填後にも、上側イオン交換樹脂層に瞬間的な流動を与えて該上側イオン交換樹脂層の上面をならすべく、脱塩塔の下部側から短時間の水補給を行うことができる。これによって、最終的に脱塩塔内に充填されたイオン交換樹脂層全体の上面を極力平坦な面に揃えることが可能になる。
【0015】
上記のような本発明に係る復水脱塩装置へのイオン交換樹脂充填方法においては、アニオン交換樹脂または混合樹脂Bが移送水とともに充填されて下側イオン交換樹脂層が形成された後、脱塩塔内に水が補給されて脱塩塔内の水位が上昇され、下側イオン交換樹脂層の上面に対して所定深さ以上の水深が持たせられる。つまり、脱塩塔内に水抜きするに十分な水量が確保される。この状態から、脱塩塔内から水が抜かれることにより脱塩塔内に下降流が形成され、該下降流が形成されながら、つまり、下降流が形成されている状態にて、混合樹脂Aが移送水とともに充填され、下側イオン交換樹脂層上に上側イオン交換樹脂層が形成される。下降流が形成され、その状態が継続されることにより、既に形成されていた下側イオン交換樹脂層には該樹脂層を下方に押しつける力が作用し続けることになり、上方に混合樹脂Aが充填されている間にも、下側イオン交換樹脂層が所定の形態に維持され続ける。その結果、とくに下側イオン交換樹脂層の上面が大きく乱れることなく、目標とする上下二層形態のイオン交換樹脂層が脱塩塔内に形成されることになる。
【0016】
また、下側イオン交換樹脂層の上面に対して所定深さ以上の水深が付与されることにより、混合樹脂Aが移送水とともに充填される際に、下側イオン交換樹脂層の上面上に存在する水の層がバッファ層として機能し、流入されてくる混合樹脂Aあるいはその移送水による下側イオン交換樹脂層の上面の乱れの発生も極めて小さく抑えられる。これによって、目標とする上下二層形態のイオン交換樹脂層がより確実に形成されることになる。
【0017】
【発明の実施の形態】
以下に、本発明に係る方法の望ましい実施の形態について、図面を参照しながら説明する。
図1〜図5は、本発明の一実施態様に係る復水脱塩装置における脱塩塔へのイオン交換樹脂充填方法を、BWRプラントにおける竪型円筒形脱塩塔に対して適用した場合を示しており、該方法を工程順に示している。図1は、アニオン交換樹脂または混合樹脂B(上側イオン交換樹脂層を形成する混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂)を再生塔等から移送水とともに脱塩塔内に送り、該脱塩塔内に充填して下側イオン交換樹脂層を形成する様子を示している。脱塩塔1の上部には、下側イオン交換樹脂スラリ2(下側イオン交換樹脂と移送水との混合形態)を脱塩塔1内に導入する樹脂移送管3と、ベント管4が設けられている。樹脂移送管3を通して移送されてきた下側イオン交換樹脂5は、脱塩塔1内に充填され、脱塩塔1内の下部に、図示例では脱塩塔1内下部に設けられた目板6上に、下側イオン交換樹脂層7を形成する。このとき、必要に応じて余剰の移送水を脱塩塔1の下部に設けられたドレン管8を介して抜き出し(ドレン)してもよい。この下側イオン交換樹脂スラリ2の移送が終了した時点では、通常、図1に示すように、下側イオン交換樹脂層7の上面は平坦ではなく、不均一に乱れていることが多い。
【0018】
次に、図2に示すように、脱塩塔1の下部から、たとえばドレン管8を利用して、補給水9を脱塩塔1内に供給し、脱塩塔1内における水位を上昇させ、下側イオン交換樹脂層7の上面に対して所定の水深Hを持たせる。この水深Hは、少なくとも200mm、好ましくは300mm以上持たせることが望ましい。また、この脱塩塔1の下部から水の補給により、下側イオン交換樹脂層7が若干流動可能状態とされるので、下側イオン交換樹脂層7の上面が平坦にならされる効果がある。さらに上面を平坦化するには、たとえば、上記所定の水深Hとなるように水を補給した後、強めの流速で瞬時的に水を供給し(短時間の水補給を行い)、下側イオン交換樹脂層7を瞬間的に流動させて上面(粒面)を整えるようにしてもよい。
【0019】
また、図示は省略するが、上記水深Hを持たせるための補給水は脱塩塔1の上部から供給することもできる。上記脱塩塔1の下部からの供給では、下側イオン交換樹脂層7を若干流動可能状態としてその上面を平坦にならす効果が得られるが、このとき下側イオン交換樹脂層7を形成している下側イオン交換樹脂5が混合樹脂Bである場合には、カチオン交換樹脂とアニオン交換樹脂が比重差により分離、分級されるおそれがあるので、この下部からの供給は、分離のおそれのない、下側イオン交換樹脂層7がアニオン交換樹脂単独構成とされている場合にとくに有効である。一方、脱塩塔1の上部からの供給では、下部からの供給の場合のような下側イオン交換樹脂層7内での分離は実質的に生じないので、この上部からの供給は、とくに下側イオン交換樹脂層7が混合樹脂Bから形成される場合に有効である。
【0020】
上述の如く下側イオン交換樹脂層7を形成し所定の水深Hを持たせた後、図3に示すように、脱塩塔1下部のドレン管8を介して脱塩塔1内の水を抜き出すことにより、脱塩塔1内に存在している水に下降流Rを形成しながら、再生塔等から樹脂移送管3を介して上側イオン交換樹脂スラリ10(上側イオン交換樹脂〔混合樹脂A〕と移送水との混合形態)を脱塩塔1内に送給する。脱塩塔1内に移送されてきた上側イオン交換樹脂11(混合樹脂A)は、脱塩塔1内の下側イオン交換樹脂層7上に充填され、上側イオン交換樹脂層12を形成していく。このとき、下降流Rが形成された状態が維持されるので、既に形成されている下側イオン交換樹脂層7にはその樹脂層7を下方に押しつける力が作用し続けることになり、その上方に上側イオン交換樹脂11が充填されている間にも、下側イオン交換樹脂層7は所定の望ましい形態に保たれる。また、下側イオン交換樹脂層7の上部の水深を有する水層が存在するので、上側イオン交換樹脂11やその移送水が勢いよく塔内に落下されてくる場合にあっても、その勢いを緩衝する機能を果たす。したがって、この面からも、下側イオン交換樹脂層7の上面の乱れが抑えられ、下側イオン交換樹脂層7は所定の望ましい形態に保たれる。
【0021】
また、この下降流Rを形成しながら上側イオン交換樹脂層12を形成していく過程においては、同時に脱塩塔1の上部側から、補給水13をたとえばベント管4を介して補給してもよい。この補給水13の補給により、前記水深Hを持たせていた脱塩塔1内の水量が十分に確保され、下降流Rの流速を上げても水深が低下しすぎることが防止される。したがって、上記下側イオン交換樹脂層7を所定の望ましい形態に保持する機能が保たれる。この補給水13に代えて、あるいは補給水13とともに、加圧空気を供給することも可能である。加圧空気の供給により、下側イオン交換樹脂層7を下方に押しつけその形態を保持する作用が補強される。
【0022】
さらに、上記上側イオン交換樹脂層12を形成していく過程は、下降流Rが形成された状態で実施されるから、充填されつつある上側イオン交換樹脂11、つまり混合樹脂Aの分離(カチオン交換樹脂とアニオン交換樹脂との分離)も抑えられ、望ましい混合状態のまま上側イオン交換樹脂層12が形成されていくことになる。
【0023】
このように上側イオン交換樹脂層12を形成した後には、その上面に若干の乱れが残る場合も想定される。この場合には、たとえば図4に示すように、脱塩塔1の下部から補給水14を瞬時的に供給し(短時間の水補給を行い)、上側イオン交換樹脂層12を瞬間的に流動させてその上面(粒面)を平坦に整えるようにすることができる。ただし、この操作が不要である場合には省略すればよい。
【0024】
上記の如く脱塩塔1内に目標とする望ましい形態の下側イオン交換樹脂層7および上側イオン交換樹脂層12を上下二層に形成した後、図5に示すように、脱塩塔1の上部側から補給水15を供給し、余剰の水をベント管4からドレンして、脱塩塔1内を満水にして通水準備が完了する。
【0025】
なお、上記実施態様ではBWRプラントにおける竪型円筒形脱塩塔に対して本発明を適用した場合を示したが、本発明は、たとえばBWRプラントにおける球形脱塩塔に対しても同様に適用でき、さらに、側面に樹脂入口を設けた脱塩塔に対しても同様に適用できる。脱塩塔の側面に樹脂入口が設けられている場合には、脱塩塔内に形成される樹脂層の粒面が樹脂入口に近い部分で高くなる傾向にあるが、前述した下降流や、瞬時的な補給水の供給により、粒面を適切に平坦にならすことが可能である。
【0026】
【発明の効果】
以上説明したように、本発明に係る復水脱塩装置へのイオン交換樹脂充填方法によれば、脱塩塔内において下側イオン交換樹脂層を望ましい形態に維持しながら上側イオン交換樹脂層を形成していくことができるようになり、上下二層のイオン交換樹脂層をともに目標とする望ましい形態に形成することができる。この本発明に係る方法は、既設の脱塩塔に対しても実質的に設備改造を伴うことなく容易に実施することができる。そして、本発明に係る方法の実施により、高い処理水中のPSS濃度低減効果を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る復水脱塩装置へのイオン交換樹脂充填方法における一ステップを示す脱塩塔の概略縦断面図である。
【図2】図1の次のステップを示す脱塩塔の概略縦断面図である。
【図3】図2の次のステップを示す脱塩塔の概略縦断面図である。
【図4】図3の次のステップを示す脱塩塔の概略縦断面図である。
【図5】図4の次のステップを示す脱塩塔の概略縦断面図である。
【符号の説明】
1 脱塩塔
2 下側イオン交換樹脂スラリ
3 樹脂移送管
4 ベント管
5 下側イオン交換樹脂
6 目板
7 下側イオン交換樹脂層
8 ドレン管
9 補給水
10 上側イオン交換樹脂スラリ
11 上側イオン交換樹脂
12 上側イオン交換樹脂層
13 補給水
14 補給水
15 補給水
H 水深
R 下降流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of filling an ion exchange resin into a condensate demineralizer provided in a condensate piping system of a nuclear or thermal power plant.
[0002]
[Prior art]
It is known that the treated water of the condensate demineralizer contains several kinds of organic impurities. These are impurities mainly eluted from the ion exchange resin packed in the desalting tower, and are generated when the ion exchange resin is subjected to oxidative decomposition by dissolved oxygen or an oxidizing agent. Among them, the organic impurities eluted from the cation exchange resin are mainly polystyrene sulfonic acid (hereinafter sometimes abbreviated as PSS), which has recently been a problem because it is decomposed in a nuclear reactor or a steam generator to generate sulfate ions. It has become. That is, since sulfuric acid causes corrosion of the structural material and scale generation, it is desirable to reduce it as much as possible, and several methods for reducing the generation of sulfate ions have been proposed.
[0003]
As one of the reduction methods, the ion exchange resin layer formed in the desalting tower is divided into upper and lower, and the upper layer is a mixed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed, or a layer of a cation exchange resin alone, A method has been proposed in which the lower layer is made of an anion exchange resin alone (Patent Document 1). In this method, since the anion exchange resin in the lower part of the desalting tower adsorbs PSS eluted from the upper layer, the PSS concentration in the treated water can be reduced.
[0004]
However, when a desired upper and lower two-layer ion exchange resin layer is formed in the desalting tower as described above, there are the following problems. That is, since the specific gravity of anion exchange resin is generally smaller than that of cation exchange resin, when the ion exchange resin is filled into the demineralization tower, the anion exchange resin is first received and an anion exchange resin layer is formed in the lower part of the demineralization tower. However, when receiving the mixed ion exchange resin thereon, the resin layer in the desalting tower becomes a fluid state, the anion exchange resin rises and moves to the upper part of the mixed ion exchange resin layer. There arises a problem that the amount of anion exchange resin in the lower part of the column is reduced. When the amount of the anion exchange resin in the lower part of the desalting tower decreases, it becomes difficult to capture PSS, the PSS concentration in the treated water increases, and the target effect of reducing the PSS concentration in the treated water by dividing into two layers is obtained. Absent. In addition, when filling the slurry of the mixed ion exchange resin, the upper surface of the anion exchange resin layer formed in the lower part of the desalting tower is disturbed, the thickness of the anion exchange resin layer becomes uneven, and the thickness is thin. There is also a possibility that the PSS removability is deteriorated in a part.
[0005]
For such a problem, the present applicant has previously proposed a structure in which a drooping wall is provided in the lower part of the desalting tower to suppress the flow of the anion exchange resin layer (Patent Document 2).
[0006]
In addition, although not in the case of forming an upper and lower two-layer ion exchange resin layer, as a method of filling the desalting tower while suppressing the separation of the mixed resin to be charged into a cation exchange resin and an anion exchange resin, A method of filling a mixed resin while making a downward flow of water in the desalting tower has also been proposed (Patent Document 3).
[0007]
[Patent Document 1]
JP-A-9-276862 (Claims)
[Patent Document 2]
JP 2000-167551 A (Claims)
[Patent Document 3]
JP 2002-1328 A (Claims)
[0008]
[Problems to be solved by the invention]
However, the method of providing the hanging wall described in Patent Document 2 can be implemented without any problem if it is a newly installed plant. However, it is possible to modify radiation of a BWR plant (boiling water nuclear power plant) by modifying an existing plant. In remodeling involving welding work and lining repairs in the controlled area, it becomes considerably difficult to actually carry out.
[0009]
Further, since Patent Document 3 describes a case where only one kind of mixed resin layer is formed in the desalting tower, when it is assumed that two different upper and lower ion exchange resin layers are formed. Cannot be applied as is.
[0010]
The object of the present invention is to form the upper ion exchange resin while forming the lower ion exchange resin layer in a desired form, particularly when forming two different upper and lower ion exchange resin layers in the desalting tower. To the demineralization tower of the condensate demineralization apparatus capable of reliably forming the target two-layer ion exchange resin layer in the tower and obtaining the desired effect of reducing the PSS concentration in the treated water An ion exchange resin filling method is provided.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an ion exchange resin filling method for a condensate demineralizer according to the present invention comprises an upper ion exchange resin layer comprising a mixed resin A of a cation exchange resin and an anion exchange resin in a demineralization tower. When forming two different upper and lower ion exchange resin layers of the anion exchange resin alone or the lower ion exchange resin layer made of the mixed resin B having a higher ratio of the anion exchange resin than the mixed resin A, After filling the salt tower with the anion exchange resin or mixed resin B together with the transfer water to form the lower ion exchange resin layer, the demineralizer is replenished with water to raise the water level in the demineralizer. After giving the water depth to the upper surface of the lower ion exchange resin layer, the mixed resin A is filled together with the transfer water while forming a downward flow in the desalting tower by draining water from the desalting tower, The lower ion exchange tree Consists method characterized by forming the upper ion-exchange resin layer on the layer. The water depth is preferably at least 200 mm, preferably 300 mm or more from the upper surface of the lower ion exchange resin layer. Further, in the method according to the present invention, as a result of providing the water depth to the upper surface of the lower ion exchange resin layer as described above, even if the inside of the desalting tower becomes full, there is no problem. Such an embodiment is also included in the scope of the present invention.
[0012]
In the method according to the present invention, the replenishment of water can be performed from the lower side of the demineralization tower or from the upper side of the demineralization tower. When water is replenished from the lower side, it can be expected that the lower ion exchange resin layer that has already been formed is in a slightly fluidized state and the upper surface (grain surface) is smoothed. This replenishment mode is particularly suitable when the lower ion exchange resin layer is formed of the anion exchange resin alone. In this case, the separation within the layer is performed even if the lower ion exchange resin layer is somewhat fluidized. Does not occur. On the other hand, the replenishment of water from the upper side is particularly suitable when the lower ion exchange resin layer is formed from the mixed resin B rich in anion exchange resin. In this case, the replenishment is performed from the upper side. The side ion exchange resin layer is basically not in a fluid state, and separation of the cation and anion exchange resin inside is suppressed. However, in this case, it is preferable to supply water so as not to greatly disturb the upper surface of the lower ion exchange resin layer that has already been formed.
[0013]
In addition, after the replenishment of water, a short time of water replenishment (instantaneous from the lower side of the desalting tower is performed in order to give an instantaneous flow to the lower ion exchange resin layer and level the upper surface of the lower ion exchange resin layer. Water replenishment). This makes it possible to align the upper surface of the lower ion exchange resin layer as flat as possible before receiving the mixed resin A.
[0014]
Furthermore, even after filling with the mixed resin A, water is replenished for a short time from the lower side of the desalting tower in order to give an instantaneous flow to the upper ion exchange resin layer and level the upper surface of the upper ion exchange resin layer. be able to. This makes it possible to align the top surface of the entire ion exchange resin layer finally filled in the desalting tower as flat as possible.
[0015]
In the ion exchange resin filling method to the condensate demineralization apparatus according to the present invention as described above, after the anion exchange resin or the mixed resin B is filled with the transfer water to form the lower ion exchange resin layer, the deionization resin is removed. Water is replenished in the salt tower, the water level in the desalting tower is raised, and a water depth of a predetermined depth or more is given to the upper surface of the lower ion exchange resin layer. That is, a sufficient amount of water is secured to drain water into the desalting tower. From this state, when the water is extracted from the desalting tower, a downward flow is formed in the desalting tower, and while the downward flow is formed, that is, in the state where the downward flow is formed, the mixed resin A Are filled together with the transfer water, and an upper ion exchange resin layer is formed on the lower ion exchange resin layer. When the downward flow is formed and the state is continued, the force that presses the resin layer downward continues to act on the lower ion exchange resin layer that has already been formed. Even during filling, the lower ion exchange resin layer continues to be maintained in a predetermined form. As a result, the target ion exchange resin layer in the upper and lower two-layer form is formed in the desalting tower without particularly disturbing the upper surface of the lower ion exchange resin layer.
[0016]
Further, when the mixed resin A is filled together with the transfer water by providing a water depth of a predetermined depth or more on the upper surface of the lower ion exchange resin layer, it exists on the upper surface of the lower ion exchange resin layer. The water layer that functions as a buffer layer suppresses the occurrence of turbulence of the upper surface of the lower ion exchange resin layer due to the mixed resin A or its transferred water flowing in. Thereby, the target ion-exchange resin layer of the upper and lower two-layer form is more reliably formed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a method according to the present invention will be described with reference to the drawings.
FIGS. 1 to 5 show the case where the ion exchange resin filling method in the demineralization tower in the condensate demineralization apparatus according to one embodiment of the present invention is applied to the vertical cylindrical demineralization tower in the BWR plant. The method is shown in the order of steps. FIG. 1 shows that an anion exchange resin or a mixed resin B (a mixed resin having a higher ratio of anion exchange resin than the mixed resin A forming the upper ion exchange resin layer) is sent from a regeneration tower or the like together with transfer water into the desalting tower. It shows how the lower ion exchange resin layer is formed by filling the desalting tower. A resin transfer pipe 3 for introducing a lower ion exchange resin slurry 2 (mixed form of lower ion exchange resin and transfer water) into the desalting tower 1 and a vent pipe 4 are provided at the upper part of the desalting tower 1. It has been. The lower ion exchange resin 5 transferred through the resin transfer pipe 3 is filled in the desalting tower 1 and is provided in the lower part of the desalting tower 1, in the illustrated example, in the lower part of the desalting tower 1. 6, the lower ion exchange resin layer 7 is formed. At this time, excess transfer water may be extracted (drained) through a drain pipe 8 provided in the lower part of the desalting tower 1 as necessary. When the transfer of the lower ion exchange resin slurry 2 is completed, the upper surface of the lower ion exchange resin layer 7 is usually not flat and often irregularly disturbed, as shown in FIG.
[0018]
Next, as shown in FIG. 2, makeup water 9 is supplied into the desalting tower 1 from the lower part of the desalting tower 1 using, for example, a drain pipe 8 to raise the water level in the desalting tower 1. A predetermined water depth H is given to the upper surface of the lower ion exchange resin layer 7. The water depth H should be at least 200 mm, preferably 300 mm or more. In addition, since the lower ion exchange resin layer 7 is brought into a slightly flowable state by replenishing water from the lower part of the demineralization tower 1, there is an effect that the upper surface of the lower ion exchange resin layer 7 is flattened. . In order to further flatten the upper surface, for example, after replenishing water so that the predetermined water depth H is obtained, water is instantaneously supplied at a higher flow rate (short-time water replenishment), and lower ions are supplied. The exchange resin layer 7 may be instantaneously flowed to adjust the upper surface (grain surface).
[0019]
Although not shown, makeup water for providing the water depth H can be supplied from the upper part of the demineralization tower 1. The supply from the lower part of the desalting tower 1 has the effect of making the lower ion exchange resin layer 7 slightly flowable and flattening its upper surface, but at this time, the lower ion exchange resin layer 7 is formed. When the lower ion exchange resin 5 is the mixed resin B, the cation exchange resin and the anion exchange resin may be separated and classified due to the difference in specific gravity. This is particularly effective when the lower ion exchange resin layer 7 has an anion exchange resin alone. On the other hand, in the supply from the upper part of the desalting tower 1, separation in the lower ion exchange resin layer 7 as in the case of the supply from the lower part does not substantially occur. This is effective when the side ion exchange resin layer 7 is formed of the mixed resin B.
[0020]
After the lower ion exchange resin layer 7 is formed as described above and given a predetermined water depth H, the water in the desalting tower 1 is drained through the drain pipe 8 at the lower part of the desalting tower 1 as shown in FIG. By pulling out, while forming a downward flow R in the water present in the desalting tower 1, the upper ion exchange resin slurry 10 (upper ion exchange resin [mixed resin A ] And mixed water) are fed into the desalting tower 1. The upper ion exchange resin 11 (mixed resin A) transferred into the desalting tower 1 is filled on the lower ion exchange resin layer 7 in the desalting tower 1 to form an upper ion exchange resin layer 12. Go. At this time, since the state where the downward flow R is formed is maintained, the force that presses the resin layer 7 downward continues to act on the already formed lower ion exchange resin layer 7, The lower ion exchange resin layer 7 is kept in a predetermined desired form even while the upper ion exchange resin 11 is being filled in. In addition, since there is a water layer having a depth above the lower ion exchange resin layer 7, even if the upper ion exchange resin 11 or its transfer water is dropped into the tower vigorously, Serves as a buffer. Therefore, also from this surface, the disturbance of the upper surface of the lower ion exchange resin layer 7 is suppressed, and the lower ion exchange resin layer 7 is kept in a predetermined desirable form.
[0021]
Further, in the process of forming the upper ion exchange resin layer 12 while forming the downward flow R, the make-up water 13 may be supplied from the upper side of the desalting tower 1 through the vent pipe 4 at the same time. Good. By replenishing the makeup water 13, a sufficient amount of water in the desalting tower 1 having the water depth H is secured, and even if the flow rate of the descending flow R is increased, the water depth is prevented from excessively decreasing. Therefore, the function of holding the lower ion exchange resin layer 7 in a predetermined desired form is maintained. It is also possible to supply pressurized air instead of or together with the makeup water 13. By supplying the pressurized air, the action of pressing the lower ion exchange resin layer 7 downward and maintaining its form is reinforced.
[0022]
Further, since the process of forming the upper ion exchange resin layer 12 is performed in a state where the downward flow R is formed, the separation of the upper ion exchange resin 11 being filled, that is, the mixed resin A (cation exchange). The separation of the resin and the anion exchange resin) is also suppressed, and the upper ion exchange resin layer 12 is formed in a desirable mixed state.
[0023]
After the upper ion exchange resin layer 12 is formed in this way, it may be assumed that some disturbance remains on the upper surface. In this case, for example, as shown in FIG. 4, make-up water 14 is instantaneously supplied from the lower part of the desalting tower 1 (short-time water supply is performed), and the upper ion-exchange resin layer 12 flows instantaneously. Thus, the upper surface (grain surface) can be made flat. However, if this operation is unnecessary, it can be omitted.
[0024]
After forming the lower ion exchange resin layer 7 and the upper ion exchange resin layer 12 in a desired desirable form in the demineralization tower 1 as described above in two upper and lower layers, as shown in FIG. The makeup water 15 is supplied from the upper side, and excess water is drained from the vent pipe 4 so that the inside of the desalting tower 1 is filled with water.
[0025]
In the above embodiment, the case where the present invention is applied to the vertical cylindrical demineralization tower in the BWR plant is shown. However, the present invention can be similarly applied to the spherical demineralization tower in the BWR plant, for example. Furthermore, the present invention can be similarly applied to a desalting tower having a resin inlet on a side surface. When the resin inlet is provided on the side surface of the desalting tower, the particle surface of the resin layer formed in the desalting tower tends to be higher in the portion near the resin inlet, By supplying the make-up water instantaneously, it is possible to level the grain surface appropriately.
[0026]
【The invention's effect】
As described above, according to the ion exchange resin filling method for the condensate demineralizer according to the present invention, the upper ion exchange resin layer is formed while maintaining the lower ion exchange resin layer in a desired form in the demineralization tower. Thus, both the upper and lower ion exchange resin layers can be formed in a desired desired form. The method according to the present invention can be easily carried out on an existing desalting tower without substantial modification of equipment. And the implementation of the method according to the present invention makes it possible to obtain a high PSS concentration reduction effect in the treated water.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a desalting tower showing one step in a method for filling an ion exchange resin into a condensate desalination apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of a desalting tower showing the next step of FIG.
FIG. 3 is a schematic longitudinal sectional view of a desalting tower showing the next step of FIG. 2;
4 is a schematic longitudinal sectional view of a demineralization tower showing the next step of FIG. 3. FIG.
FIG. 5 is a schematic longitudinal sectional view of a demineralization tower showing the next step of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Desalination tower 2 Lower ion exchange resin slurry 3 Resin transfer pipe 4 Vent pipe 5 Lower ion exchange resin 6 Eyeplate 7 Lower ion exchange resin layer 8 Drain pipe 9 Make-up water 10 Upper ion exchange resin slurry 11 Upper ion exchange Resin 12 Upper ion exchange resin layer 13 Makeup water 14 Makeup water 15 Makeup water H Water depth R Downflow

Claims (5)

脱塩塔内に、カチオン交換樹脂とアニオン交換樹脂の混合樹脂Aからなる上側イオン交換樹脂層と、アニオン交換樹脂単独または前記混合樹脂Aよりもアニオン交換樹脂の比率が高い混合樹脂Bからなる下側イオン交換樹脂層との、互いに異なる上下二層のイオン交換樹脂層を形成するに際し、脱塩塔内に、アニオン交換樹脂または混合樹脂Bを移送水とともに充填して下側イオン交換樹脂層を形成した後、脱塩塔内に水を補給し脱塩塔内の水位を上昇させて前記下側イオン交換樹脂層の上面に対して水深を持たせた後、脱塩塔内から水を抜くことにより脱塩塔内に下降流を形成しながら前記混合樹脂Aを移送水とともに充填し、前記下側イオン交換樹脂層上に上側イオン交換樹脂層を形成することを特徴とする、復水脱塩装置へのイオン交換樹脂充填方法。In the desalting tower, an upper ion exchange resin layer made of a mixed resin A of a cation exchange resin and an anion exchange resin, and a lower resin made of an anion exchange resin alone or a mixed resin B having a higher ratio of the anion exchange resin than the mixed resin A When forming two different upper and lower ion exchange resin layers with the side ion exchange resin layer, the anion exchange resin or mixed resin B is filled together with transport water in the desalting tower to form the lower ion exchange resin layer. After the formation, water is replenished in the desalting tower to raise the water level in the desalting tower so that the upper surface of the lower ion exchange resin layer has a water depth, and then the water is drained from the desalting tower. Thus, the mixed resin A is filled with the transfer water while forming a downward flow in the demineralization tower, and an upper ion exchange resin layer is formed on the lower ion exchange resin layer. Ion exchange with salt equipment Resin filling method. 脱塩塔の下部側から前記水の補給を行う、請求項1の復水脱塩装置へのイオン交換樹脂充填方法。The method for filling an ion exchange resin into a condensate demineralizer according to claim 1, wherein the water is replenished from the lower side of the demineralization tower. 脱塩塔の上部側から前記水の補給を行う、請求項1の復水脱塩装置へのイオン交換樹脂充填方法。The method for filling ion-exchange resin into a condensate demineralizer according to claim 1, wherein the water is replenished from the upper side of the demineralization tower. 前記水の補給後に、前記下側イオン交換樹脂層に瞬間的な流動を与えて該下側イオン交換樹脂層の上面をならすべく、脱塩塔の下部側から短時間の水補給を行う、請求項1〜3のいずれかに記載の復水脱塩装置へのイオン交換樹脂充填方法。After the replenishment of water, in order to give an instantaneous flow to the lower ion exchange resin layer and level the upper surface of the lower ion exchange resin layer, water is replenished for a short time from the lower side of the demineralization tower. Item 4. A method for filling an ion exchange resin into a condensate demineralizer according to any one of Items 1 to 3. 前記混合樹脂Aの充填後に、前記上側イオン交換樹脂層に瞬間的な流動を与えて該上側イオン交換樹脂層の上面をならすべく、脱塩塔の下部側から短時間の水補給を行う、請求項1〜4のいずれかに記載の復水脱塩装置へのイオン交換樹脂充填方法。After the filling of the mixed resin A, short-time water replenishment is performed from the lower side of the demineralization tower in order to give an instantaneous flow to the upper ion exchange resin layer to level the upper surface of the upper ion exchange resin layer. Item 5. A method for filling an ion exchange resin into a condensate demineralizer according to any one of Items 1 to 4.
JP2003048754A 2002-08-23 2003-02-26 Ion exchange resin filling method for condensate demineralizer Expired - Fee Related JP3960930B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003048754A JP3960930B2 (en) 2003-02-26 2003-02-26 Ion exchange resin filling method for condensate demineralizer
EP03255196A EP1393806B1 (en) 2002-08-23 2003-08-21 Method for charging ion exchange resins into condensate demineralizer
AT03255196T ATE353249T1 (en) 2002-08-23 2003-08-21 METHOD FOR PACKING CONDENSATE DESALTING DEVICES WITH ION EXCHANGE RESINS
DE60311615T DE60311615T2 (en) 2002-08-23 2003-08-21 Process for packing condensate desalination apparatus with ion exchange resins
KR1020030058218A KR100947139B1 (en) 2002-08-23 2003-08-22 Process for Charging Ion Exchange Resin into a Condensed Water-Demineralization Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048754A JP3960930B2 (en) 2003-02-26 2003-02-26 Ion exchange resin filling method for condensate demineralizer

Publications (2)

Publication Number Publication Date
JP2004255292A JP2004255292A (en) 2004-09-16
JP3960930B2 true JP3960930B2 (en) 2007-08-15

Family

ID=33114627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048754A Expired - Fee Related JP3960930B2 (en) 2002-08-23 2003-02-26 Ion exchange resin filling method for condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3960930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943378B2 (en) * 2008-05-22 2012-05-30 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus
JP5451436B2 (en) * 2010-02-05 2014-03-26 オルガノ株式会社 Filtration desalination equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186685A (en) * 1983-04-06 1984-10-23 Hitachi Ltd Resin transfer system to desalting tower of condensed water
JPS6019041A (en) * 1983-07-12 1985-01-31 Japan Organo Co Ltd Backwashing and separation method of resin mixture
JPS6111992U (en) * 1984-06-26 1986-01-24 オルガノ株式会社 Water tower of condensate desalination equipment
JP3610388B2 (en) * 1996-04-11 2005-01-12 オルガノ株式会社 Condensate demineralizer
JP3880231B2 (en) * 1998-12-10 2007-02-14 オルガノ株式会社 Condensate desalination apparatus and method
JP2002001328A (en) * 2000-06-15 2002-01-08 Japan Organo Co Ltd Method for charging resin in mixed bed ion exchanger resin tower and device therefor
JP2004081927A (en) * 2002-08-23 2004-03-18 Japan Organo Co Ltd Method of filling condensed water desalting apparatus with ion exchange resin

Also Published As

Publication number Publication date
JP2004255292A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
CN102325728B (en) Method for operation of ion exchanger, and ion exchanger
US5108616A (en) Process for ion exchangers, particularly for regeneration after softening and demineralization of aqueous solutions
JP3960930B2 (en) Ion exchange resin filling method for condensate demineralizer
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
JPH06165945A (en) Improved method for regeneration of countercurrent
JP2007098328A (en) Condensate demineralization method and apparatus
US4891138A (en) Method of separating and transferring ion-exchange resin
PL121483B1 (en) Cyclic process for deionization of aqueous supplying solutionhhego rastvora
JP2004081927A (en) Method of filling condensed water desalting apparatus with ion exchange resin
KR100947139B1 (en) Process for Charging Ion Exchange Resin into a Condensed Water-Demineralization Apparatus
JP3880231B2 (en) Condensate desalination apparatus and method
TW201402471A (en) Condensate demineralizer and condensate demineralization method
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JP2006326588A (en) Method for condensate demineralization
CN103046065B (en) A kind of method of stability contorting titanium strip coil pickling quality
JPS6068092A (en) Desalter
JP2011189317A (en) Ion exchange device
JP5375842B2 (en) Ion exchanger
JP2001029801A (en) Regeneration system for condensate desalting device
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JPS59199048A (en) Regeneration of mixed bed ion exchange resin
JP2572421B2 (en) Method of forming magnetic film layer
JP5375851B2 (en) Ion exchanger
JPS594446A (en) Ion exchange resin regeneration apparatus
JP3947818B2 (en) Cation exchange resin regeneration tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Ref document number: 3960930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees