JPH11197661A - Condensed water desalting apparatus - Google Patents

Condensed water desalting apparatus

Info

Publication number
JPH11197661A
JPH11197661A JP10001298A JP129898A JPH11197661A JP H11197661 A JPH11197661 A JP H11197661A JP 10001298 A JP10001298 A JP 10001298A JP 129898 A JP129898 A JP 129898A JP H11197661 A JPH11197661 A JP H11197661A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
storage tank
tower
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10001298A
Other languages
Japanese (ja)
Inventor
Junichi Morikawa
順一 森川
Yoshikatsu Muramatsu
良活 村松
Keiji Ogata
慶次 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP10001298A priority Critical patent/JPH11197661A/en
Publication of JPH11197661A publication Critical patent/JPH11197661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of the desalting capacity of the ion exchange resin in a condensed water desalting tower while ensuring the healthiness of water quality. SOLUTION: A resin keeping tank 29 is connected to a condensed water desalting tower 15 through a resin supply piping 30. A org. impurity (TOC). removing apparatus 37 is connected to the resin keeping tank 29 through a keeping water guide pipe 33. TOC eluted during keeping is adsorbed by an anion resin and an anion resin bed is provided in the lower part of the mixed bed of the anion resin and cation resin in the condensed desalting tower 15 and TOC eluted from the cation resin of the mixed bed is caught by the lower anion bed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電プラントの復水
脱塩装置に係り、特に復水脱塩塔内のイオン交換樹脂の
化学再生処理を行わない発電プラントの復水脱塩装置ま
たは前記復水脱塩塔からの有機性不純物を抑制できるよ
うに構成した復水脱塩装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensate and desalination apparatus for a power plant, and more particularly to a condensate and desalination apparatus for a power plant which does not perform a chemical regeneration treatment of an ion exchange resin in a condensate desalination tower. The present invention relates to a condensate desalination apparatus configured to suppress organic impurities from a water desalination tower.

【0002】[0002]

【従来の技術】一般に、従来の原子力発電プラントでは
原子炉の信頼性の高い運転を行い、一次冷却材の健全性
を保つために、復水および給水の浄化が行われている。
従来の原子力発電プラントの一般系統を図5により説明
する。
2. Description of the Related Art Generally, in a conventional nuclear power plant, condensing and purifying water are performed in order to operate a nuclear reactor with high reliability and maintain the integrity of a primary coolant.
A general system of a conventional nuclear power plant will be described with reference to FIG.

【0003】図5において、符号1は原子炉であり、原
子炉1で発生した高温、高圧の蒸気は主蒸気管2を通し
てタービン3に送られ、そこで仕事を行い発電機4を駆
動する。このタービン3で仕事を行った蒸気は主復水器
5で海水冷却によって復水となり、低圧復水ポンプ6に
より、空気抽出器7,グランド蒸気復水器8を経て復水
脱塩装置9へ送られる。
In FIG. 5, reference numeral 1 denotes a nuclear reactor, and high-temperature, high-pressure steam generated in the reactor 1 is sent to a turbine 3 through a main steam pipe 2, where work is performed and a generator 4 is driven. The steam that has performed the work in the turbine 3 is condensed by cooling the seawater in the main condenser 5, and is condensed by a low-pressure condensate pump 6 through an air extractor 7 and a ground steam condenser 8 to a condensate desalination unit 9. Sent.

【0004】この復水脱塩装置9内に装荷されている粒
状の陽イオン交換樹脂、陰イオン交換樹脂(直径 0.4〜
1.2mm程度)によって、復水中の溶解性金属イオン,不
溶解性不純物(クラッド),海水リーク時の塩化物イオ
ン等の不純物が浄化される。その後、給水は高圧復水ポ
ンプ10により低圧給水加熱器11に送られ、さらに給水ポ
ンプ12および高圧給水加熱器13を経て昇温、昇圧され、
給水管14を通して原子炉1へと還流される。
The granular cation exchange resin and anion exchange resin (having a diameter of 0.4 to
(Approximately 1.2 mm) to purify impurities such as soluble metal ions and insoluble impurities (cladding) in the condensate and chloride ions at the time of seawater leak. Thereafter, the feedwater is sent to a low-pressure feedwater heater 11 by a high-pressure condensate pump 10, and further heated and boosted through a feedwater pump 12 and a high-pressure feedwater heater 13,
The water is returned to the reactor 1 through the water supply pipe 14.

【0005】図6により、この復水脱塩装置9の構造を
説明する。図6に示すように、復水脱塩塔15と再生系16
で構成される。この復水脱塩塔15内には粒状のイオン交
換樹脂17が積層されている。そして復水入口管18を通し
て塔頂部から復水が供給され、この復水に含まれるクラ
ッドおよびイオン不純物が上記イオン交換樹脂17により
捕獲される。さらに浄化された復水は復水出口管19によ
り樹脂ストレーナ20を通って次の装置に送られる。
Referring to FIG. 6, the structure of the condensate desalination apparatus 9 will be described. As shown in FIG. 6, the condensate desalination tower 15 and the regeneration system 16
It consists of. In the condensate desalination tower 15, a granular ion exchange resin 17 is laminated. Then, condensate is supplied from the tower top through the condensate inlet pipe 18, and the clad and ionic impurities contained in the condensate are captured by the ion exchange resin 17. Further, the purified condensate is sent to the next device through the resin strainer 20 by the condensate outlet pipe 19.

【0006】再生系16は陰イオン交換樹脂再生塔21と陽
イオン交換樹脂再生塔22とを有し、陰イオン交換樹脂再
生塔21は復水脱塩塔15と樹脂移送配管23により接続し、
陰イオン交換樹脂再生塔21で再生された陰イオン交換樹
脂は戻り管24により復水脱塩塔15に戻される。
[0006] The regeneration system 16 has an anion exchange resin regeneration tower 21 and a cation exchange resin regeneration tower 22. The anion exchange resin regeneration tower 21 is connected to the condensate desalination tower 15 by a resin transfer pipe 23.
The anion exchange resin regenerated in the anion exchange resin regeneration tower 21 is returned to the condensate and desalination tower 15 by the return pipe 24.

【0007】一方、陽イオン交換樹脂再生塔22は戻り管
24と接続する陽イオン交換樹脂入口管25を介して復水脱
塩塔15と接続し、陰イオン交換樹脂再生塔21と戻り管26
を介して陰イオン交換樹脂再生塔21と接続している。陰
イオン交換樹脂再生塔21には廃液移送管27が接続され、
陽イオン交換樹脂再生塔22にはドレン管28が接続されて
いる。
On the other hand, the cation exchange resin regeneration tower 22 has a return pipe
The cation exchange resin inlet pipe 25 is connected to the condensate desalination tower 15 through the cation exchange resin inlet pipe 25, and the anion exchange resin regeneration tower 21 and the return pipe 26 are connected.
Is connected to the anion exchange resin regenerating tower 21 via the. A waste liquid transfer pipe 27 is connected to the anion exchange resin regeneration tower 21,
A drain pipe 28 is connected to the cation exchange resin regeneration tower 22.

【0008】ここで復水脱塩塔15内のイオン交換樹脂17
は、クラッド捕獲により復水入口管18と復水出口管19の
圧力差圧の上昇および塔出口へのクラッドのリーク量の
増大を来すためにイオン交換樹脂17に付着したクラッド
を除去し、さらに系外排出するため水および空気による
逆洗再生が行われている。また、イオン不純物の捕獲に
よりイオン交換能力を消費した場合には、薬品によりイ
オン交換能力を回復させる化学再生が行われている。
The ion exchange resin 17 in the condensate desalination tower 15
Removes the clad attached to the ion exchange resin 17 in order to increase the pressure difference pressure between the condensate inlet pipe 18 and the condensate outlet pipe 19 and increase the amount of leak of the clad to the tower outlet by the clad capture, Further, backwashing with water and air is performed to discharge the water outside the system. Further, when the ion exchange capacity is consumed by capturing the ionic impurities, chemical regeneration is performed to restore the ion exchange capacity with a chemical.

【0009】[0009]

【発明が解決しようとする課題】上述の機器により構成
される原子力発電プラントにおいて、これからの復水脱
塩装置では、イオン交換樹脂の化学再生を行わない運用
としているため、定期検査等により復水脱塩塔15の内部
点検を行う場合には陰イオン交換樹脂再生塔21に代え
て、樹脂保管槽を別途設け、復水脱塩塔15内のイオン交
換樹脂17を一時、樹脂保管槽へ移送し保管することが考
えられる。
SUMMARY OF THE INVENTION In a nuclear power plant comprising the above-described equipment, a condensate desalination apparatus in the future is operated without performing chemical regeneration of the ion exchange resin. When inspecting the inside of the desalination tower 15, a resin storage tank is separately provided instead of the anion exchange resin regeneration tower 21, and the ion exchange resin 17 in the condensate desalination tower 15 is temporarily transferred to the resin storage tank. And store it.

【0010】しかしながら、樹脂保管槽でイオン交換樹
脂を保管する場合、保管水中に含まれる溶存酸素により
陽イオン交換樹脂が酸化劣化し、有機性不純物(以下、
TOCと記す)が陽イオン交換樹脂から溶出する。この
TOCが陰イオン交換樹脂に付着すると、陰イオン交換
樹脂のイオン交換能力が著しく低下する。
[0010] However, when the ion exchange resin is stored in the resin storage tank, the cation exchange resin is oxidatively degraded by dissolved oxygen contained in the storage water, and the organic impurities (hereinafter, referred to as “organic impurities”).
TOC) elutes from the cation exchange resin. When this TOC adheres to the anion exchange resin, the ion exchange capacity of the anion exchange resin is significantly reduced.

【0011】また、復水脱塩塔15に装荷された陽イオン
交換樹脂は、復水中に含まれる酸素等の影響を受け酸化
劣化により、TOCを溶出する。陽イオン交換樹脂から
溶出したTOCは、陰イオン交換樹脂表面に吸着してイ
オン交換能力を低下させるとともに、原子炉内に流入す
ると中性子照射や加熱により硫酸イオン等に変化し炉内
構造物へ腐食等の悪影響を与えるなどの課題がある。
The cation exchange resin loaded in the condensate desalination tower 15 is eluted with TOC due to oxidative deterioration under the influence of oxygen and the like contained in the condensate. TOC eluted from the cation exchange resin is adsorbed on the surface of the anion exchange resin and reduces the ion exchange capacity, and when it enters the reactor, it is converted to sulfate ions by neutron irradiation and heating, and corrodes inside the furnace. And other problems.

【0012】本発明は、上記課題を解決するためになさ
れたもので、陽イオン交換樹脂から溶出したTOCが陰
イオン交換樹脂に吸着するのを防止して陰イオン交換樹
脂の性能低下を防止して、もって復水の水質悪化を抑制
することができる復水脱塩装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to prevent TOC eluted from a cation exchange resin from adsorbing to the anion exchange resin to prevent the performance of the anion exchange resin from deteriorating. Accordingly, it is an object of the present invention to provide a condensate desalination apparatus capable of suppressing deterioration of condensed water quality.

【0013】また、本発明は復水脱塩塔へのイオン交換
樹脂の装荷手段を改善し、復水脱塩塔出口側でTOCを
捕獲することにより、TOCの十分少ない復水が得られ
るような復水脱塩装置を提供することにある。
Further, the present invention improves the means for loading the ion exchange resin into the condensate desalination tower, and captures the TOC at the outlet of the condensate desalination tower so that condensate with a sufficiently small TOC can be obtained. And a condensate desalination apparatus.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、復水
脱塩塔と、この復水脱塩塔に樹脂供給配管を介して接続
した樹脂保管槽と、この樹脂保管槽に接続した保管水導
水管と、この保管水導水管に接続した有機性不純物除去
装置と、この有機性不純物除去装置と前記樹脂保管槽と
の間に連結した保管水戻り管と、前記樹脂保管槽に接続
した保管水注入管と、前記樹脂保管槽と前記復水脱塩塔
とを連結する樹脂保管槽出口管とを具備したことを特徴
とする。
According to a first aspect of the present invention, a condensate desalination tower, a resin storage tank connected to the condensate desalination tower via a resin supply pipe, and a resin storage tank connected to the resin storage tank. A storage water conduit, an organic impurity removing device connected to the storage water conduit, a storage water return pipe connected between the organic impurity removing device and the resin storage tank, and a connection to the resin storage tank. And a resin storage tank outlet pipe connecting the resin storage tank and the condensate desalination tower.

【0015】請求項1の発明によれば、復水脱塩塔より
混合状態で供給された陽イオン交換樹脂と陰イオン交換
樹脂が、樹脂保管槽へ移送された後、樹脂保管槽下部の
保管水注水管より注水し、混合状態にある樹脂を樹脂保
管槽内部に展開させる。その後、保管水注水管からの注
水を停止し、イオン交換樹脂を自然沈降させ、陽イオン
交換樹脂と陰イオン交換樹脂の比重差を利用する。
According to the first aspect of the present invention, the cation exchange resin and the anion exchange resin supplied in a mixed state from the condensate demineralization tower are transferred to the resin storage tank and then stored in the lower part of the resin storage tank. Water is injected from a water injection pipe, and the mixed resin is spread inside the resin storage tank. Thereafter, water injection from the storage water injection pipe is stopped, the ion exchange resin is allowed to settle naturally, and the specific gravity difference between the cation exchange resin and the anion exchange resin is used.

【0016】これにより両イオン交換樹脂を分離させる
ことができ、樹脂保管槽内の上部に陰イオン交換樹脂
層、下部に陽イオン交換樹脂層、それらの中間部には、
陽イオン交換樹脂と陰イオン交換樹脂の混合層を形成す
ることができる。
Thus, both ion-exchange resins can be separated from each other. An anion-exchange resin layer is provided in an upper portion of the resin storage tank, a cation-exchange resin layer is provided in a lower portion, and an intermediate portion thereof is provided in
A mixed layer of a cation exchange resin and an anion exchange resin can be formed.

【0017】請求項2の発明は、前記樹脂保管槽内部を
満たしている保管水を前記保管水導水管により導き、前
記有機性不純物除去装置で処理し、前記保管水戻り管に
より前記樹脂保管槽へと戻す循環系を設けてなることを
特徴とする。
According to a second aspect of the present invention, the storage water filling the inside of the resin storage tank is guided by the storage water conduit, treated by the organic impurity removing device, and the resin storage tank is returned by the storage water return pipe. It is characterized by having a circulating system for returning to.

【0018】請求項2の発明によれば、樹脂保管槽下部
の保管水導水管から樹脂保管槽内部の保管水を導水し、
TOC除去装置で処理した後に、保管水戻り管により樹
脂保管槽へと戻す。これによりドレンの発生を増加させ
ることなくTOCを含まない保管水を常に樹脂保管槽内
部に供給することができる。
According to the second aspect of the present invention, the storage water inside the resin storage tank is guided from the storage water conduit under the resin storage tank,
After the treatment with the TOC removal device, the solution is returned to the resin storage tank by the storage water return pipe. Thereby, the storage water containing no TOC can always be supplied into the resin storage tank without increasing the generation of drain.

【0019】請求項3の発明は、前記有機性不純物除去
装置は、前記保管水を循環させる循環ポンプおよび前記
保管水中の有機性不純物を除去する有機性不純物吸着槽
を備えてなることを特徴とする。
According to a third aspect of the present invention, the organic impurity removing apparatus includes a circulation pump for circulating the storage water and an organic impurity adsorption tank for removing organic impurities in the storage water. I do.

【0020】請求項3の発明によれば、循環ポンプによ
り保管水を循環させ、TOC吸着槽で保管水中のTOC
を除去する。これにより樹脂保管槽とTOC吸着槽の間
で保管水を循環させ、陽イオン交換樹脂より溶出したT
OCが樹脂保管槽内部に滞留することを防ぐことができ
る。
According to the third aspect of the present invention, the storage water is circulated by the circulation pump, and the TOC in the storage water is stored in the TOC adsorption tank.
Is removed. Thereby, the storage water is circulated between the resin storage tank and the TOC adsorption tank, and T eluted from the cation exchange resin.
OC can be prevented from staying inside the resin storage tank.

【0021】請求項4の発明は、前記有機性不純物除去
装置は、有機性不純物を吸着する陰イオン交換樹脂を内
包することを特徴とする。
According to a fourth aspect of the present invention, the organic impurity removing device includes an anion exchange resin that adsorbs organic impurities.

【0022】請求項4の発明によれば、TOC吸着槽に
内包される陰イオン交換樹脂により、TOCを吸着さ
せ、樹脂保管槽へ戻される保管水中のTOCを除去する
ことができる。
According to the fourth aspect of the present invention, the TOC can be adsorbed by the anion exchange resin contained in the TOC adsorption tank, and the TOC in the storage water returned to the resin storage tank can be removed.

【0023】請求項5の発明は、前記保管水戻り管は、
前記樹脂保管槽内の中間部に位置する陰イオン交換樹脂
と、陽イオン交換樹脂の混合樹脂層より上部に位置する
ことを特徴とする。
According to a fifth aspect of the present invention, the storage water return pipe comprises:
It is characterized by being located above a mixed resin layer of an anion exchange resin and a cation exchange resin located at an intermediate portion in the resin storage tank.

【0024】請求項5の発明によれば、TOCを除去し
た後の保管水を樹脂保管槽内部の陽イオン交換樹脂と陰
イオン交換樹脂の混合層の上側へ戻すことにより、樹脂
保管槽内部に下向きの流れをつくり、陽イオン交換樹脂
より溶出したTOCが樹脂保管槽上部の陰イオン交換樹
脂に付着するのを防ぐとともに、陰イオン交換樹脂層近
傍に漂っているTOCを樹脂保管槽下部の陽イオン交換
樹脂側へと移動させることができる。
According to the fifth aspect of the present invention, the storage water from which the TOC has been removed is returned to the upper side of the mixed layer of the cation exchange resin and the anion exchange resin in the resin storage tank, so that the resin storage tank can be cooled. A downward flow is created to prevent TOC eluted from the cation exchange resin from adhering to the anion exchange resin at the top of the resin storage tank and to remove TOC floating near the anion exchange resin layer at the bottom of the resin storage tank. It can be moved to the ion exchange resin side.

【0025】請求項6の発明は、粒状陽イオン交換樹脂
および陰イオン交換樹脂からなる混床式復水脱塩塔内に
陽イオン樹脂と陰イオン樹脂との混合層を装荷し、この
混合層の下部に陰イオン交換樹脂を装荷してなることを
特徴とする。
According to a sixth aspect of the present invention, a mixed bed of a cation resin and an anion resin is loaded in a mixed-bed condensate demineralization tower comprising a granular cation exchange resin and an anion exchange resin. Characterized in that an anion exchange resin is loaded in the lower part of the.

【0026】請求項6の発明によれば、復水脱塩塔へ陽
イオン・陰イオン混合状態で供給された混合樹脂(C/
2 )下部に、陰イオン交換樹脂層(A1 )を設ける。
(A2 )と比較し比重の大きいカチオン樹脂(C)は混
合層の下部に集まるが、カチオンから溶出したTOCは
最下層に装荷したアニオン樹脂(A1 )により捕獲す
る。これにより、復水脱塩装置からのTOC流出を抑制
することができる。
According to the invention of claim 6, the mixed resin (C / C) supplied to the condensate desalination tower in a mixed state of cations and anions.
A 2) at the bottom, provided the anion exchange resin layer (A 1).
The cation resin (C) having a higher specific gravity than (A 2 ) is collected at the lower part of the mixed layer, but the TOC eluted from the cation is captured by the anion resin (A 1 ) loaded on the lowermost layer. Thereby, TOC outflow from the condensate desalination apparatus can be suppressed.

【0027】請求項7の発明は、前記混合樹脂層下部に
装荷する陰イオン交換樹脂は、前記混合層の陽イオン交
換樹脂および陰イオン交換樹脂より沈降速度が大きいも
のからなることを特徴とする。
[0027] The invention of claim 7 is characterized in that the anion exchange resin loaded under the mixed resin layer has a higher sedimentation rate than the cation exchange resin and the anion exchange resin of the mixed layer. .

【0028】請求項7の発明によれば、下部陰イオン交
換樹脂(A1 )の沈降速度を混合樹脂層(C/A2 )の
陽イオン交換樹脂および陰イオン交換樹脂より大きくす
ることにより、再生塔で樹脂を分離する際に最下層に陰
イオン交換樹脂層(A1 )を形成させることができる。
According to the seventh aspect of the present invention, the sedimentation velocity of the lower anion exchange resin (A 1 ) is made larger than that of the cation exchange resin and the anion exchange resin of the mixed resin layer (C / A 2 ). When the resin is separated in the regeneration tower, an anion exchange resin layer (A 1 ) can be formed as the lowermost layer.

【0029】請求項8の発明は、前記混合層の下部に装
荷する陰イオン交換樹脂は苛性ソーダで化学再生を行わ
ないことを特徴とする。請求項8の発明によれば、混合
樹脂(C/A2 )下部に装荷される陰イオン交換樹脂層
(A1 )は、陽イオン交換樹脂(C)から溶出するTO
C数年分を吸着するのに必要な樹脂量とし、化学再生は
必要としない。
The invention according to claim 8 is characterized in that the anion exchange resin loaded at the lower part of the mixed layer is not chemically regenerated with caustic soda. According to the invention of claim 8, the anion exchange resin layer (A 1 ) loaded under the mixed resin (C / A 2 ) has a TO content eluted from the cation exchange resin (C).
The amount of resin required to adsorb several years C is set as the amount of resin necessary for adsorption, and no chemical regeneration is required.

【0030】請求項9の発明は、前記混合層を分離、再
生、混合が可能な陰イオン交換樹脂再生塔および陽イオ
ン交換樹脂を再生可能な陽イオン交換樹脂再生塔を有す
ることを特徴とする。
A ninth aspect of the present invention is characterized by having an anion exchange resin regeneration tower capable of separating, regenerating and mixing the mixed layer and a cation exchange resin regeneration tower capable of regenerating the cation exchange resin. .

【0031】請求項9の発明によれば、前記混合樹脂層
(C/A2 )を分離・再生・混合が可能な陰イオン交換
樹脂再生塔および陽イオン交換樹脂を再生可能な陽イオ
ン交換樹脂再生塔の2塔で再生可能である。
According to the ninth aspect of the present invention, the anion exchange resin regeneration tower capable of separating, regenerating and mixing the mixed resin layer (C / A 2 ) and the cation exchange resin capable of regenerating the cation exchange resin Regeneration is possible with two regeneration towers.

【0032】[0032]

【発明の実施の形態】図1および図2により本発明に係
る復水脱塩装置の第1の実施の形態を説明する。図1に
おいて、符号15は復水脱塩塔で、この復水脱塩塔15で内
部にイオン交換樹脂17が装荷(充填)されており、復水
脱塩塔15には上下部に復水入口管18と復水出口管19が接
続されており、復水出口管19の出口側は樹脂ストレーナ
20に接続している。符号29は樹脂保管槽で、樹脂保管槽
29の下部は樹脂供給配管30を介して復水脱塩塔15の上部
と接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a condensate desalination apparatus according to the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 15 denotes a condensate desalination tower in which an ion exchange resin 17 is loaded (filled). The inlet pipe 18 and the condensing outlet pipe 19 are connected, and the outlet side of the condensing outlet pipe 19 is a resin strainer.
Connected to 20. Reference numeral 29 denotes a resin storage tank, which is a resin storage tank.
The lower part of 29 is connected to the upper part of the condensate desalination tower 15 via a resin supply pipe 30.

【0033】樹脂保管槽29の下部と復水脱塩塔17の上部
とは樹脂保管槽出口管31により接続されている。また、
樹脂保管槽29には樹脂保管槽ドレン配管32と保管水導水
管33が接続されている。保管水導水管33は保管水を循環
させる循環ポンプ34を経由し、TOCを除去するTOC
吸着槽35に接続されている。
The lower part of the resin storage tank 29 and the upper part of the condensate desalination tower 17 are connected by a resin storage tank outlet pipe 31. Also,
A resin storage tank drain pipe 32 and a storage water conduit 33 are connected to the resin storage tank 29. The storage water conduit 33 passes through a circulating pump 34 for circulating storage water and removes TOC from the TOC.
It is connected to the adsorption tank 35.

【0034】TOC吸着槽35は保管水戻り管36により、
樹脂保管槽29に接続されている。循環ポンプ34とTOC
吸着槽35によりTOC除去装置37を構成する。符号38は
保管水注水管で、樹脂保管槽29の底部に接続している。
The TOC adsorption tank 35 is connected to the storage water return pipe 36 by
It is connected to the resin storage tank 29. Circulation pump 34 and TOC
A TOC removal device 37 is constituted by the adsorption tank 35. Reference numeral 38 denotes a storage water injection pipe, which is connected to the bottom of the resin storage tank 29.

【0035】つぎに上記構成からなる本実施の形態の作
用について説明する。復水脱塩塔15内のイオン交換樹脂
17は樹脂供給配管30を経由して、樹脂保管槽29へ移送す
る。次に、保管水注水管38から樹脂保管槽29内へ水が注
入され、その上昇流により混合状態のイオン交換樹脂は
注入水の中を自然沈降する。
Next, the operation of the present embodiment having the above configuration will be described. Ion exchange resin in condensate desalination tower 15
17 is transferred to a resin storage tank 29 via a resin supply pipe 30. Next, water is injected into the resin storage tank 29 from the storage water injection pipe 38, and the ion-exchange resin in a mixed state spontaneously settles in the injected water due to the upward flow.

【0036】この際、図2に示したように陽イオン交換
樹脂と陰イオン交換樹脂はその比重差により、樹脂保管
槽29内で上方には陰イオン交換樹脂層A、下方には陽イ
オン交換樹脂層B、両者の境界面付近には両樹脂が混在
している混合樹脂層Cが形成される。
At this time, as shown in FIG. 2, the cation-exchange resin and the anion-exchange resin have an anion-exchange resin layer A on the upper side and a cation-exchange resin layer on the lower side in the resin storage tank 29 due to the difference in specific gravity. A resin layer B and a mixed resin layer C in which both resins are mixed are formed near the boundary between the two.

【0037】次に、循環ポンプ34を起動し、樹脂保管槽
29内の保管水を保管水導水管33を経由し、TOC吸着槽
35へと導く。TOC吸着槽35では、保管水中のTOCを
除去し、除去後の保管水は保管水戻り管36を通って樹脂
保管槽29へ戻す。この保管水の循環を樹脂保管中は常に
行い、陽イオン交換樹脂から発生するTOCを適時除去
する。
Next, the circulation pump 34 is started, and the resin storage tank is started.
Storage water in 29 passes through storage water conduit 33, TOC adsorption tank
Lead to 35. In the TOC adsorption tank 35, the TOC in the storage water is removed, and the storage water after the removal is returned to the resin storage tank 29 through the storage water return pipe 36. The circulation of the storage water is always performed during storage of the resin, and TOC generated from the cation exchange resin is removed as needed.

【0038】樹脂の保管が終了した後は、循環ポンプ34
を停止させ、保管水注水管38から水を樹脂保管槽29内へ
供給し、陽イオン交換樹脂と陰イオン交換樹脂を混合
し、樹脂保管槽出口管31を通って、復水脱塩塔15へ樹脂
を戻す。
After the storage of the resin is completed, the circulation pump 34
Is stopped, water is supplied from the storage water injection pipe 38 into the resin storage tank 29, the cation exchange resin and the anion exchange resin are mixed, and the condensate demineralization tower 15 is passed through the resin storage tank outlet pipe 31. Return the resin to

【0039】このように、本実施例によると保管水導水
管33,循環ポンプ34,TOC吸着槽35,保管水戻り管36
を設けたことにより、保管中に陽イオン交換樹脂から溶
出するTOCを除去することが可能となる。
As described above, according to the present embodiment, the storage water conduit 33, the circulation pump 34, the TOC adsorption tank 35, and the storage water return pipe 36
Is provided, it is possible to remove TOC eluted from the cation exchange resin during storage.

【0040】つぎに、図3から図5により本発明に係る
復水脱塩装置の第2の実施の形態を説明する。
Next, a second embodiment of the condensate desalination apparatus according to the present invention will be described with reference to FIGS.

【0041】図3において符号15は復水脱塩塔であり、
その内部のイオン交換樹脂17が供給される陰イオン樹脂
再生塔21,陽イオン樹脂を貯留する陽イオン樹脂再生塔
22が設置されている。復水脱塩塔15の上部には復水入口
管18が接続され、その下部にはストレーナ20が設けられ
た復水出口管19が接続されている。
In FIG. 3, reference numeral 15 denotes a condensate desalination tower,
Anion resin regeneration tower 21 into which ion exchange resin 17 is supplied, and cation resin regeneration tower storing cation resin
22 are installed. A condensate inlet pipe 18 is connected to an upper part of the condensate desalination tower 15, and a condensate outlet pipe 19 provided with a strainer 20 is connected to a lower part thereof.

【0042】復水脱塩塔15の下部と陰イオン樹脂再生塔
21の上部とは、樹脂供給配管30により接続されている。
陰イオン樹脂再生塔21の下部には、陽イオン樹脂出口管
39が接続されており、陽イオン樹脂入口管25を経由し陽
イオン樹脂再生塔22に移送される。化学再生された陽イ
オン交換樹脂は、陽イオン交換樹脂戻り配管26を経由し
陰イオン交換樹脂再生塔21に戻される。
The lower part of the condensate desalination tower 15 and the anion resin regeneration tower
The upper part of 21 is connected by a resin supply pipe 30.
At the bottom of the anion resin regeneration tower 21, a cation resin outlet pipe
39 is connected, and is transferred to the cation resin regeneration tower 22 via the cation resin inlet pipe 25. The chemically regenerated cation exchange resin is returned to the anion exchange resin regeneration tower 21 via the cation exchange resin return pipe 26.

【0043】化学生成された陰イオン交換樹脂と陽イオ
ン交換樹脂再生塔22から戻された陽イオン交換樹脂は、
陰イオン交換樹脂塔21で混合洗浄された後、陽イオン交
換樹脂出口配管39を経由し復水脱塩塔15へ移送される。
陰イオン交換樹脂再生塔21の下部に接続された廃液移送
管27と、陽イオン交換樹脂再生塔22のドレン管は合流
し、廃棄物処理設備へ接続されている。
The chemically formed anion exchange resin and the cation exchange resin returned from the cation exchange resin regeneration tower 22 are:
After being mixed and washed in the anion exchange resin tower 21, it is transferred to the condensate desalination tower 15 via the cation exchange resin outlet pipe 39.
The waste liquid transfer pipe 27 connected to the lower part of the anion exchange resin regeneration tower 21 and the drain pipe of the cation exchange resin regeneration tower 22 merge and are connected to waste treatment equipment.

【0044】つぎに本実施の形態の作用を説明する。図
3において復水脱塩塔15から陰イオン交換樹脂再生塔21
へ移送された樹脂は、陰イオン交換樹脂再生塔21の塔内
で逆洗展開した後、沈降する際に、図4に示すようにそ
の沈降速度の差により下層に陰イオン交換樹脂層A1
その層A1 上に陽イオン交換樹脂Cさらに、そのC層上
に陰イオン交換樹脂層A2 が形成される。
Next, the operation of the present embodiment will be described. In FIG. 3, the condensate desalination tower 15 to the anion exchange resin regeneration tower 21
Resin that is transferred to, after backwash deployment in the column of anion exchange resin regeneration tower 21, at the time of precipitation, anion exchange resin layer in the lower layer to the difference in settling velocity as shown in FIG. 4 A 1 ,
The layer A 1 on the cation exchange resin C In addition, the anion exchange resin layer A 2 is formed on its C layer.

【0045】この後、下層の陰イオン交換樹脂層A1
復水脱塩塔15へ返送し、陰イオン交換樹脂再生塔21に残
った陽イオン交換樹脂Cを陽イオン樹脂再生塔22へ移送
し、陰イオン交換樹脂層A2 と陽イオン交換樹脂Cの化
学再生を行う。
Thereafter, the lower anion exchange resin layer A 1 is returned to the condensate and desalination tower 15, and the cation exchange resin C remaining in the anion exchange resin regeneration tower 21 is transferred to the cation resin regeneration tower 22. and, a chemical regeneration of the anion exchange resin layer a 2 and a cation-exchange resin C.

【0046】陽イオン交換樹脂Cを陰イオン交換樹脂再
生塔21へ移送した後、最終混合洗浄を行い復水脱塩塔15
へ返送する。返送された状態は図5に示す如く、下層に
陰イオン交換樹脂層A1 、上層に混合樹脂層C/A2
形成される。
After the cation exchange resin C has been transferred to the anion exchange resin regeneration tower 21, final mixing and washing are performed, and the condensate desalination tower 15
Return to In the returned state, as shown in FIG. 5, an anion exchange resin layer A 1 is formed in a lower layer, and a mixed resin layer C / A 2 is formed in an upper layer.

【0047】[0047]

【発明の効果】本発明によれば、保管中に溶出したTO
Cが陰イオン交換樹脂に付着しないので、樹脂の性能低
下を防ぐことができる。また、溶出したTOCを含んだ
保管水をドレンに排出することがないので、廃棄物処理
設備の処理量を減少させることができる。
According to the present invention, TO eluted during storage
Since C does not adhere to the anion exchange resin, the performance of the resin can be prevented from deteriorating. Further, since the storage water containing the eluted TOC is not discharged to the drain, the processing amount of the waste treatment equipment can be reduced.

【0048】このように本発明によると、酸化鉄等の影
響により陽イオン交換樹脂かR溶出したTOCを下層に
形成した陰イオン交換樹脂により捕獲できるため、TO
Cの原子炉内への流入を抑制できる。
As described above, according to the present invention, TOC eluted from the cation exchange resin or R can be captured by the anion exchange resin formed in the lower layer under the influence of iron oxide or the like.
C can be suppressed from flowing into the reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る復水脱塩装置の第1の実施の形態
を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of a condensate desalination apparatus according to the present invention.

【図2】図1における樹脂保管槽を概略的に示す縦断面
図。
FIG. 2 is a longitudinal sectional view schematically showing a resin storage tank in FIG.

【図3】本発明に係る復水脱塩装置の第2の実施の形態
を示す系統図。
FIG. 3 is a system diagram showing a second embodiment of the condensate desalination apparatus according to the present invention.

【図4】図3における陰イオン交換樹脂再生塔内の樹脂
の充填状態を概略的に示す縦断面図。
FIG. 4 is a longitudinal sectional view schematically showing a resin filling state in the anion exchange resin regeneration tower in FIG.

【図5】図3における復水脱塩塔内の樹脂の充填状態を
概略的に示す縦断面図。
FIG. 5 is a longitudinal sectional view schematically showing a resin filling state in the condensate demineralization tower in FIG.

【図6】BWR型原子力発電プラントを一般的に示す系
統図。
FIG. 6 is a system diagram generally showing a BWR type nuclear power plant.

【図7】図6における復水脱塩装置を一般的に示す系統
図。
FIG. 7 is a system diagram generally showing the condensate desalination apparatus in FIG. 6;

【符号の説明】[Explanation of symbols]

1…原子炉、2…主蒸気管、3…タービン、4…発電
機、5…主復水器、6…低圧復水ポンプ、7…空気抽出
器、8…グランド蒸気復水器、9…復水脱塩装置、10…
高圧復水ポンプ、11…低圧給水加熱器、12…給水ポン
プ、13…高圧給水加熱器、14…給水管、15…復水脱塩
塔、16…再生系、17…イオン交換樹脂、18…復水入口
管、19…復水出口管、20…樹脂ストレーナ、21…陰イオ
ン交換樹脂再生塔、22…陽イオン交換樹脂再生塔、23…
樹脂移送配管、24…戻り管、25…陽イオン交換樹脂入口
管、26…戻り管、27…廃液移送管、28…ドレン管、29…
樹脂保管槽、30…樹脂供給配管、31…樹脂保管槽出口
管、32…樹脂保管槽ドレン配管、33…保管水導水管、34
…循環ポンプ、35…TOC吸着槽、36…保管水戻り管、
37…TOC除去装置、38…保管水注水管、39…陽イオン
交換樹脂出口配管。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main steam pipe, 3 ... Turbine, 4 ... Generator, 5 ... Main condenser, 6 ... Low-pressure condenser pump, 7 ... Air extractor, 8 ... Ground steam condenser, 9 ... Condensate desalination equipment, 10…
High-pressure condensate pump, 11: low-pressure feed water heater, 12: feed water pump, 13: high-pressure feed water heater, 14: water supply pipe, 15 ... condensate desalination tower, 16 ... regeneration system, 17 ... ion exchange resin, 18 ... Condenser inlet pipe, 19 ... Condenser outlet pipe, 20 ... Resin strainer, 21 ... Anion exchange resin regeneration tower, 22 ... Cation exchange resin regeneration tower, 23 ...
Resin transfer pipe, 24 ... Return pipe, 25 ... Cation exchange resin inlet pipe, 26 ... Return pipe, 27 ... Waste liquid transfer pipe, 28 ... Drain pipe, 29 ...
Resin storage tank, 30: Resin supply pipe, 31: Resin storage tank outlet pipe, 32: Resin storage tank drain pipe, 33: Storage water conduit, 34
… Circulation pump, 35… TOC adsorption tank, 36… storage water return pipe,
37: TOC removal device, 38: Storage water injection pipe, 39: Cation exchange resin outlet pipe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G21C 19/307 GDB G21C 19/30 GDBD (72)発明者 尾形 慶次 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI G21C 19/307 GDB G21C 19/30 GBDD (72) Inventor Keiji Ogata 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama In business office

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 復水脱塩塔と、この復水脱塩塔に樹脂供
給配管を介して接続した樹脂保管槽と、この樹脂保管槽
に接続した保管水導水管と、この保管水導水管に接続し
た有機性不純物除去装置と、この有機性不純物除去装置
と前記樹脂保管槽との間に連結した保管水戻り管と、前
記樹脂保管槽に接続した保管水注入管と、前記樹脂保管
槽と前記復水脱塩塔とを連結する樹脂保管槽出口管とを
具備したことを特徴とする復水脱塩装置。
1. A condensate desalination tower, a resin storage tank connected to the condensate desalination tower via a resin supply pipe, a storage water conduit connected to the resin storage tank, and a storage water conduit. A storage water return pipe connected between the organic impurity removal apparatus and the resin storage tank, a storage water injection pipe connected to the resin storage tank, and the resin storage tank And a resin storage tank outlet pipe connecting the condensate desalination tower with the condensate desalination tower.
【請求項2】 前記樹脂保管槽内部を満たしている保管
水を前記保管水導水管により導き、前記有機性不純物除
去装置で処理し、前記保管水戻り管により前記樹脂保管
槽へと戻す循環系を設けてなることを特徴とする請求項
1記載の復水脱塩装置。
2. A circulation system in which storage water filling the inside of the resin storage tank is guided by the storage water conduit, processed by the organic impurity removing device, and returned to the resin storage tank by the storage water return pipe. The condensate desalination apparatus according to claim 1, further comprising:
【請求項3】 前記有機性不純物除去装置は、前記保管
水を循環させる循環ポンプおよび前記保管水中の有機性
不純物を除去する有機性不純物吸着槽を備えてなること
を特徴とする請求項1記載の復水脱塩装置。
3. The organic impurity removing device according to claim 1, further comprising a circulation pump for circulating the storage water and an organic impurity adsorption tank for removing organic impurities in the storage water. Condensing desalination equipment.
【請求項4】 前記有機性不純物除去装置は、有機性不
純物を吸着する陰イオン交換樹脂を内包することを特徴
とする請求項1記載の復水脱塩装置。
4. The condensate desalination apparatus according to claim 1, wherein the organic impurity removing apparatus includes an anion exchange resin that adsorbs organic impurities.
【請求項5】 前記保管水戻り管は、前記樹脂保管槽中
間部の陰イオン交換樹脂と、陽イオン交換樹脂の混合樹
脂層より上部に位置することを特徴とする請求項1記載
の復水脱塩装置。
5. The condensing water according to claim 1, wherein the storage water return pipe is located above a mixed resin layer of an anion exchange resin and a cation exchange resin in an intermediate portion of the resin storage tank. Desalination equipment.
【請求項6】 粒状陽イオン交換樹脂および陰イオン交
換樹脂からなる混床式復水脱塩塔内に陽イオン樹脂と陰
イオン樹脂との混合層を装荷し、この混合層の下部に陰
イオン交換樹脂を装荷してなることを特徴とする復水脱
塩装置。
6. A mixed bed of a cation resin and an anion resin is loaded in a mixed-bed condensate demineralization tower comprising a granular cation exchange resin and an anion exchange resin, and an anion is provided below the mixed layer. A condensate desalination apparatus characterized by being loaded with exchange resin.
【請求項7】 前記混合樹脂層下部に装荷する陰イオン
交換樹脂は、前記混合層の陽イオン交換樹脂および陰イ
オン交換樹脂より沈降速度が大きいものからなることを
特徴とする請求項6記載の復水脱塩装置。
7. The method according to claim 6, wherein the anion exchange resin loaded in the lower part of the mixed resin layer has a higher sedimentation rate than the cation exchange resin and the anion exchange resin of the mixed layer. Condensate desalination equipment.
【請求項8】 前記混合層の下部に装荷する陰イオン交
換樹脂は苛性ソーダで化学再生を行わないことを特徴と
する請求項6記載の復水脱塩装置。
8. The condensate desalination apparatus according to claim 6, wherein the anion exchange resin loaded under the mixed layer is not subjected to chemical regeneration with caustic soda.
【請求項9】 前記混合層を分離、再生、混合が可能な
陰イオン交換樹脂再生塔および陽イオン交換樹脂を再生
可能な陽イオン交換樹脂再生塔を有することを特徴とす
る請求項6記載の復水脱塩装置。
9. The method according to claim 6, further comprising an anion exchange resin regeneration tower capable of separating, regenerating and mixing the mixed layer, and a cation exchange resin regeneration tower capable of regenerating the cation exchange resin. Condensate desalination equipment.
JP10001298A 1998-01-07 1998-01-07 Condensed water desalting apparatus Pending JPH11197661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10001298A JPH11197661A (en) 1998-01-07 1998-01-07 Condensed water desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10001298A JPH11197661A (en) 1998-01-07 1998-01-07 Condensed water desalting apparatus

Publications (1)

Publication Number Publication Date
JPH11197661A true JPH11197661A (en) 1999-07-27

Family

ID=11497576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10001298A Pending JPH11197661A (en) 1998-01-07 1998-01-07 Condensed water desalting apparatus

Country Status (1)

Country Link
JP (1) JPH11197661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
US8861670B2 (en) 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization

Similar Documents

Publication Publication Date Title
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP5380215B2 (en) Condensate demineralization apparatus and condensate demineralization method
JP3610388B2 (en) Condensate demineralizer
JPH11197661A (en) Condensed water desalting apparatus
JP3614995B2 (en) Condensate demineralizer
JPH10192718A (en) Resin regenerator for condensate desalter
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3226604B2 (en) Condensate desalination equipment
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2543767B2 (en) Condensate desalination method
JP3610390B2 (en) Filling method of ion exchange resin in condensate demineralizer
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JP2892827B2 (en) Nuclear power plant desalination equipment
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP2004354056A (en) Method and device for desalinating condensation
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JP2965806B2 (en) Regeneration method of condensate desalination equipment
JP2005296748A (en) Condensate demineralizer and its regeneration method
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPH05317729A (en) Method for regenerating of ion-exchange resin and plant therefor
JP3238619B2 (en) Regeneration method of desalination equipment
JP2001179249A (en) Condensed water desalting apparatus
JPS5966354A (en) Regeneration of ion-exchange resin
JP2001004784A (en) Condensate purification system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071031