JPH11216372A - Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent - Google Patents

Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent

Info

Publication number
JPH11216372A
JPH11216372A JP10032402A JP3240298A JPH11216372A JP H11216372 A JPH11216372 A JP H11216372A JP 10032402 A JP10032402 A JP 10032402A JP 3240298 A JP3240298 A JP 3240298A JP H11216372 A JPH11216372 A JP H11216372A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
water
condensate
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10032402A
Other languages
Japanese (ja)
Inventor
Chika Kenmochi
千佳 建持
Kazumi Otsuki
一美 大槻
Kuniie Oikawa
邦家 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10032402A priority Critical patent/JPH11216372A/en
Publication of JPH11216372A publication Critical patent/JPH11216372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing the oxidative deterioration of a cation exchange resin by an oxidizing agent such as hydrogen peroxide or the like by bonding a fine particlate metal oxide to an ion exchange resin. SOLUTION: A fine particlate metal oxide such as fine particulate iron oxide or the like is bonded to an ion exchange resin (a cation exchange resin alone, an anion exchange resin alone or a mixed ion exchange resin of both resins) to form a mixed bed of a cation exchange resin and an anion exchange resin and this mixed bed is used in the condensed water desalting apparatus of a boiling water reactor atomic power plant. By this constitution, even when an oxidizing agent such as hydrogen peroxide or the like flows in condensed water, the oxidative decomposition of the cation exchange resin is suppressed and the contamination of the anion exchange resin by the decomposition product thereof is reduced and the lowering of the reactivity of the anion exchange resin can be also suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、陽イオン交換樹脂
の酸化剤による酸化劣化の防止処理方法に関し、特に沸
騰水型原子力発電所(BWR型発電プラント)における
復水脱塩装置の陽イオン交換樹脂の酸化剤(例えば、原
子炉内の燃料棒近傍で原子炉水の放射線分解により発生
し、原子炉水中に含まれてくる微量の過酸化水素)によ
る酸化劣化の防止処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing oxidative deterioration of a cation exchange resin by an oxidizing agent, and more particularly to a cation exchange method for a condensate desalination apparatus in a boiling water nuclear power plant (BWR type power plant). The present invention relates to a method for preventing oxidative deterioration of a resin by an oxidizing agent (for example, a small amount of hydrogen peroxide generated by radiolysis of reactor water near a fuel rod in a reactor and contained in reactor water).

【0002】[0002]

【従来の技術】BWR型発電プラントでは、原子炉で発
生した蒸気を直接タービンに送り、タービンを介して発
電機を回転させて発電させる。図2は、通常のBWR型
発電プラントの蒸気・復水系と原子炉水浄化系の概要を
示すシステムフロー図である。図2において、22はポ
ンプを表す。原子炉11では、原子炉水中のイオン状不
純物やコロイド状金属等のクラッドを炉水脱塩装置12
により除去しながら、この原子炉水を加熱して蒸気を発
生させる。得られた蒸気(破線で示される)は高圧ター
ビン13へ供給されて高圧タービン13を駆動する。高
圧タービン13を出た低圧蒸気(破線で示される)は低
圧タービン14へ供給されて、低圧タービン14を駆動
する。これらの両タービン13、14の駆動力で発電機
(図示されていない)を回転させて発電する。発電用タ
ービン13、14を駆動させ発電した後の蒸気は復水器
15へ供給されて、ここで海水により冷却され、再び液
体水に戻り復水となる。次いで、この復水は、前置濾過
装置16において主としてクラッドが除去され、復水脱
塩装置17において主としてイオン状不純物が除去され
て、低圧給水加熱器18へ供給される。ここで、復水
は、低圧タービン14からの蒸気(破線で示される)を
用いて加熱されると共に、図示されていない昇圧器によ
り昇圧される。低圧給水加熱器18を出た復水は、高圧
給水加熱器19へ供給される。ここで、復水は、高圧タ
ービン13から供給される蒸気(破線で示される)によ
り加熱されると共に、図示されていない昇圧器により昇
圧される。加熱・昇圧された復水は、再び原子炉11へ
供給されて、発電用蒸気発生のために繰り返し使用され
る。
2. Description of the Related Art In a BWR type power plant, steam generated in a nuclear reactor is directly sent to a turbine, and a generator is rotated through the turbine to generate power. FIG. 2 is a system flow diagram showing an outline of a steam / condensation system and a reactor water purification system of a normal BWR type power plant. In FIG. 2, reference numeral 22 denotes a pump. In the reactor 11, cladding of ionic impurities or colloidal metal in the reactor water is converted into a reactor water desalination device 12.
The reactor water is heated to generate steam while being removed. The obtained steam (shown by a broken line) is supplied to the high-pressure turbine 13 to drive the high-pressure turbine 13. The low-pressure steam (indicated by a broken line) leaving the high-pressure turbine 13 is supplied to a low-pressure turbine 14 to drive the low-pressure turbine 14. A generator (not shown) is rotated by the driving force of both turbines 13 and 14 to generate power. The steam after driving the power generation turbines 13 and 14 to generate power is supplied to the condenser 15 where it is cooled by seawater and returns to liquid water again to be condensed. Next, this condensate is supplied to the low-pressure feedwater heater 18 after the cladding is removed mainly in the pre-filter 16 and the ionic impurities are mainly removed in the condensate desalination device 17. Here, the condensed water is heated using steam (indicated by a broken line) from the low-pressure turbine 14 and is pressurized by a booster (not shown). The condensed water leaving the low-pressure feedwater heater 18 is supplied to the high-pressure feedwater heater 19. Here, the condensed water is heated by steam (shown by a broken line) supplied from the high-pressure turbine 13 and is pressurized by a booster (not shown). The heated and pressurized condensate is supplied to the nuclear reactor 11 again, and is repeatedly used for generating steam for power generation.

【0003】この様に、復水は、繰り返し原子炉11に
供給、加熱され、蒸気として発電タービンの駆動に利用
され、発電するサイクルを繰り返している。このため、
復水は、原子炉等の腐食障害防止や作業員の被曝の原因
となる放射能(特に、不純物としての鉄分等を介して蓄
積される)低減の観点から高度に浄化する必要があり、
このため混床式復水脱塩塔を備えた復水脱塩装置17が
用いられている。
As described above, the condensed water is repeatedly supplied to the reactor 11, heated, and used as steam for driving the power generation turbine, and a cycle of generating power is repeated. For this reason,
Condensate needs to be highly purified from the viewpoint of preventing corrosion damage to nuclear reactors and the like and reducing radioactivity (especially, accumulated through iron as impurities), which causes worker exposure.
For this reason, a condensate desalination apparatus 17 equipped with a mixed-bed condensate desalination tower is used.

【0004】復水脱塩装置17は、通常、複数の混床式
復水脱塩塔(以下、時に「脱塩塔」と言う)からなる通
水系統を有し、脱塩塔において使用したイオン交換樹脂
を再生するための再生設備(再生系統)21を付設して
いる。BWR型発電プラントの場合、上記脱塩塔内に
は、一般に、H形の強酸性陽イオン交換樹脂とOH形の
強塩基性陰イオン交換樹脂とが充填されている。
[0004] The condensate desalination unit 17 usually has a water flow system composed of a plurality of mixed-bed condensate desalination towers (hereinafter sometimes referred to as "desalination towers"), and is used in the desalination towers. A regeneration facility (regeneration system) 21 for regenerating the ion exchange resin is provided. In the case of a BWR-type power plant, the desalination tower is generally filled with an H-type strongly acidic cation exchange resin and an OH-type strongly basic anion exchange resin.

【0005】BWR型発電プラントの復水脱塩装置17
においては、下記のようにして復水の処理を行う。即
ち、複数の脱塩塔に復水をそれぞれ並列に通水し、復水
中に含まれているNa+ イオン、Fe2+イオン、Cl-
イオン、SO4 - イオン等の不純物イオンをイオン交換
作用による吸着によって除去し、また、酸化鉄等の金属
酸化物は、濾過作用及び物理吸着作用によって除去し、
浄化された処理水を得る。
[0005] Condensate desalination unit 17 for BWR type power plant
In, the condensate treatment is performed as follows. That is, condensate is passed in parallel to a plurality of desalination towers, and Na + ions, Fe 2+ ions, and Cl contained in the condensate are contained.
Ions, impurity ions such as SO 4 - ions are removed by adsorption by ion exchange action, and metal oxides such as iron oxide are removed by filtration action and physical adsorption action,
Obtain purified treated water.

【0006】このような通水を続行して、複数の脱塩塔
の中の一脱塩塔が一定水量処理した場合や該一脱塩塔内
のイオン交換樹脂が不純物イオンで飽和した場合などの
いわゆる通水終点に達した時には、該脱塩塔のみを通水
系統から切離し、該脱塩塔内のイオン交換樹脂を再生設
備21の再生塔に移送し、再生プロセスを行う。再生プ
ロセスには、再生塔に移送されたイオン交換樹脂の表面
に付着した金属酸化物等の吸着・付着物をエアスクラビ
ング(air scrubbing 、イオン交換樹脂を水に浸漬した
状態で再生塔内の下部より空気を吹き込んで空気による
攪拌を行う操作)により剥離するエアスクラビング工
程、逆洗(再生塔の下部から純水等の水を流入する操
作)により陽イオン交換樹脂と陰イオン交換樹脂とを比
重差によって分離する分離工程、両者の分離後、陽イオ
ン交換樹脂には塩酸又は硫酸等の酸再生薬品を通薬し、
陰イオン交換樹脂には水酸化ナトリウム等のアルカリ再
生薬品を通薬し、それぞれ不純物を脱離して両イオン交
換樹脂を再生する再生工程がある。なお、再生工程は、
逆洗により比重差を利用して下層の陽イオン交換樹脂と
上層の陰イオン交換樹脂とに分離した両イオン交換樹脂
を一塔で再生する一塔再生方式と別々の塔で再生する別
塔再生方式とがある。
[0006] When such a flow of water is continued, one of the plurality of desalination towers is treated with a fixed amount of water, or the ion exchange resin in the one of the desalination towers is saturated with impurity ions. When the so-called water-flow end point is reached, only the desalination tower is disconnected from the water supply system, and the ion exchange resin in the desalination tower is transferred to the regeneration tower of the regeneration facility 21 to perform the regeneration process. The regeneration process includes air scrubbing of adsorbed and adhering substances such as metal oxides attached to the surface of the ion exchange resin transferred to the regeneration tower, and lowering the ion exchange resin in the lower part of the regeneration tower while immersing the ion exchange resin in water. An air scrubbing step of stripping off by air blowing and stirring by air), and a specific gravity between the cation exchange resin and the anion exchange resin by back washing (operation of flowing water such as pure water from the lower part of the regeneration tower) Separation step to separate by difference, after separation of both, pass the acid regeneration chemicals such as hydrochloric acid or sulfuric acid to the cation exchange resin,
There is a regeneration step in which an alkali regeneration chemical such as sodium hydroxide is passed through the anion exchange resin, and impurities are eliminated to regenerate both ion exchange resins. The regeneration step is
One-column regeneration method in which both ion-exchange resins separated into a lower-layer cation exchange resin and an upper-layer anion-exchange resin using a difference in specific gravity by backwashing are regenerated in one column, and in a separate column regeneration in a separate column There is a method.

【0007】この再生プロセスの各工程の順序は、上述
の順序で行う方法と、特開平4−371239号公報に
開示される方法がある。後者の方法で一塔再生方式の場
合は、先ず再生塔の下部より水(純水)を上昇流で流入
させ陽イオン交換樹脂と陰イオン交換樹脂とを比重差に
よって分離する分離工程、酸再生薬品による陽イオン交
換樹脂の再生工程、エアスクラビング工程、両イオン交
換樹脂の再分離工程、アルカリ再生薬品による陰イオン
交換樹脂の再生工程の順序で行う。また、別塔再生方式
の場合は、先ず両イオン交換樹脂の分離工程を行い、上
層の陰イオン交換樹脂を別の再生塔に移送する。陽イオ
ン交換樹脂が残留している再生塔では、酸再生薬品を通
薬して陽イオン交換樹脂の再生を行い、必要であればエ
アスクラビングを行う(酸再生薬品として塩酸を使用し
た場合は、エアスクラビングが不要である場合が多
い)。一方、陰イオン交換樹脂に対しては、エアスクラ
ビングを行い、次いで水で洗浄して剥離した金属酸化物
等を除去し、次いでアルカリ再生薬品を通薬して再生を
行う。特開平4−371239号公報に開示される方法
は、大部分の銅イオン等の金属イオン類を予め除去する
ことを特徴とし、エアスクラビング時の陽イオン交換樹
脂の酸化分解の防止、劣化防止、長寿命化等の利点があ
る。
[0007] The order of each step of the regeneration process includes a method performed in the above-described order and a method disclosed in Japanese Patent Application Laid-Open No. 4-371239. In the latter method, in the case of a single-column regeneration system, first, water (pure water) flows in an ascending flow from a lower portion of the regeneration tower to separate a cation exchange resin and an anion exchange resin by a specific gravity difference, and an acid regeneration. The steps of regenerating a cation exchange resin with a chemical, air scrubbing, reseparating both ion exchange resins, and regenerating an anion exchange resin with an alkali regenerating chemical are performed in this order. In the case of a separate tower regeneration system, first, both ion exchange resins are separated, and the upper anion exchange resin is transferred to another regeneration tower. In the regeneration tower where the cation exchange resin remains, the cation exchange resin is regenerated by passing the acid regeneration chemical through, and air scrubbing is performed if necessary (if hydrochloric acid is used as the acid regeneration chemical, Air scrubbing is often unnecessary). On the other hand, the anion exchange resin is subjected to air scrubbing, then washed with water to remove exfoliated metal oxides and the like, and then regenerated by passing an alkali regenerating chemical. The method disclosed in Japanese Patent Application Laid-Open No. 4-371239 is characterized in that most of metal ions such as copper ions are removed in advance, preventing oxidative decomposition of a cation exchange resin during air scrubbing, preventing deterioration, There are advantages such as longer life.

【0008】再生が終了したイオン交換樹脂は、通常は
貯槽に移し、別の脱塩塔内のイオン交換樹脂が通水終点
に達するまでの間、待機させておく。別の脱塩塔内のイ
オン交換樹脂が通水終点に達したら、該イオン交換樹脂
を取り出し、代わりに待機中のイオン交換樹脂を該別の
脱塩塔に移送し、陽イオン交換樹脂と陰イオン交換樹脂
の混床として復水の処理に供される。なお、陽イオン交
換樹脂と陰イオン交換樹脂の混合は、通常は、予備的な
事前混合と脱塩塔内での事後混合によって行い、混床と
する。
The regenerated ion-exchange resin is usually transferred to a storage tank, and is kept on standby until the ion-exchange resin in another desalination tower reaches the end of water flow. When the ion-exchange resin in another desalination tower reaches the water-flow end point, the ion-exchange resin is taken out, and instead, the waiting ion-exchange resin is transferred to the another desalination tower, and the cation-exchange resin and the anion are removed. Used as a mixed bed of ion exchange resin for condensate treatment. The mixing of the cation exchange resin and the anion exchange resin is usually performed by preliminary pre-mixing and post-mixing in a desalting tower to form a mixed bed.

【0009】一方、発電プラントの定期点検後の再起動
時には、原子炉水の循環系及び復水系に所定純度の純水
を発電に必要な量だけ供給し、発電プラントの起動を行
うが、起動時の初期段階には炉内の温度が低いために炉
内への給水量と蒸気の発生量とのバランスが取れず、炉
内の水位が上昇したり、あるいは、炉内温度の上昇に伴
う水の熱膨張などの要因によって原子炉水の水位が上昇
し、原子炉11内の基準水位を越えることがある。その
ため、従来から起動時に原子炉11内で基準水位を越え
た過剰の原子炉水は循環系の炉水脱塩装置12の下流側
から抜き出して、例えば、復水器15に供給したり、復
水脱塩装置17のイオン交換樹脂の再生用水を溜める復
水タンク20に供給したりして、原子炉11内の水位を
一定レベルに維持している。なお、起動時の過剰な原子
炉水を系外へ排出する方法も考えられるが、原子炉水は
放射能を帯びているため、その処理方法及び処理容量に
は厳しい制約があり、系外へ排出することができず、従
来から過剰な原子炉水は系外へ排出されず上記のように
系内で再使用されている。
On the other hand, when the power plant is restarted after the periodic inspection, pure water of a predetermined purity is supplied to the circulating system and the condensing system of the reactor water in an amount required for power generation, and the power plant is started. In the early stage of the time, the temperature in the furnace was low, so the amount of water supplied to the furnace and the amount of steam generated could not be balanced, and the water level in the furnace rose, or as the furnace temperature rose The water level of the reactor water may rise due to factors such as thermal expansion of the water and may exceed the reference water level in the reactor 11. For this reason, the excess reactor water that has exceeded the reference water level in the reactor 11 at the time of startup has conventionally been extracted from the downstream side of the reactor water desalination device 12 in the circulation system and supplied to, for example, the condenser 15 or the condenser 15. The water level in the reactor 11 is maintained at a constant level by, for example, supplying the water for regenerating the ion exchange resin in the water desalination unit 17 to a condensate tank 20. In addition, a method of discharging excess reactor water out of the system at the time of start-up is conceivable.However, since the reactor water has radioactivity, its treatment method and processing capacity are severely restricted. Conventionally, excess reactor water that cannot be discharged is not discharged out of the system but is reused in the system as described above.

【0010】[0010]

【発明が解決しようとする課題】BWR型発電所では、
加圧水型原子力発電所とは異なり、復水中にヒドラジン
やアンモニアを添加せず、中性の純水を使用するので、
定常運転時は過酸化水素の発生が問題となることは無い
(加圧水型原子力発電所では、脱酸素剤として使用され
るヒドラジンが大気中の酸素により酸化され、特にアル
カリ性溶液では過酸化水素を生成することが知られてい
る)。しかし、BWR型発電プラントでは、起動時に上
述の様に原子炉水を蒸気の状態では無く液体水の状態で
タービンを経由すること無く直接復水器15へ供給した
り、復水タンク20へ供給したりする場合に、過酸化水
素に起因する下記の問題がある。
In the BWR type power plant,
Unlike pressurized water nuclear power plants, hydrazine and ammonia are not added to condensate water, and neutral pure water is used.
During normal operation, generation of hydrogen peroxide is not a problem. (In a pressurized water nuclear power plant, hydrazine used as a deoxidizer is oxidized by atmospheric oxygen, and hydrogen peroxide is generated especially in an alkaline solution. Is known to do). However, in the BWR type power plant, as described above, the reactor water is supplied to the condenser 15 directly at the time of start-up without passing through the turbine in the state of liquid water instead of the state of steam, or to the condenser tank 20. In such cases, there are the following problems caused by hydrogen peroxide.

【0011】即ち、BWR型発電プラントでは、燃料棒
近傍で原子炉水が放射線分解を受け、微量の過酸化水素
が発生する。この過酸化水素は、発電プラントの定常運
転時には原子炉内の高温(例えば、300℃近い温度)
により熱分解され、原子炉水中に過酸化水素が残留する
ことは殆ど無いが、発電プラントの起動時には原子炉水
の温度が上昇過程にあり、初期段階では該原子炉水温度
が低いために過酸化水素は分解すること無く原子炉水中
に残留する。この過酸化水素は、原子炉水の循環系に設
置された炉水脱塩装置12では除去されず、そのまま原
子炉水中に残留する。このような原子炉水を上述のよう
な復水器15へ供給すると、過酸化水素を含んだ復水が
復水脱塩装置17に流入する。この過酸化水素が、復水
脱塩装置17内部に使用されているスチレンとジビニー
ルベンゼンとの共重合体をスルホン化した陽イオン交換
樹脂と接触すると、陽イオン交換樹脂を酸化劣化させ、
しかも樹脂粒内にイオン交換反応により吸着(収着)さ
れた金属イオン類の酸化触媒作用により該陽イオン交換
樹脂の酸化劣化を更に促進することになる。この酸化分
解により陽イオン交換樹脂の母体構造の一部であるポリ
スチレンスルホン酸が分解生成物として生成し、これが
復水中に溶出してくる。このような分解生成物、特に分
子量約1000以上のポリスチレンスルホン酸は、陰イ
オン交換樹脂の表面に吸着して汚染し、その陰イオン交
換反応を阻害し、陰イオン交換樹脂の反応性低下を引き
起こす。このように、過酸化水素は、本来長期間に渡っ
て使用すべき復水脱塩装置17内のイオン交換樹脂を短
命化するという問題がある。
That is, in a BWR type power plant, nuclear reactor water undergoes radiolysis near the fuel rods, generating a small amount of hydrogen peroxide. This hydrogen peroxide has a high temperature (for example, a temperature close to 300 ° C.) in the reactor during a steady operation of the power plant.
Hydrogen peroxide hardly remains in the reactor water, but the reactor water temperature is in the process of rising when the power plant is started up, and the reactor water temperature is low at the initial stage because the reactor water temperature is low. Hydrogen oxide remains in the reactor water without decomposition. This hydrogen peroxide is not removed by the reactor water desalination device 12 installed in the reactor water circulation system, but remains in the reactor water as it is. When such reactor water is supplied to the condenser 15 as described above, the condensate containing hydrogen peroxide flows into the condensate desalination unit 17. When this hydrogen peroxide comes in contact with a cation exchange resin obtained by sulfonating a copolymer of styrene and divinylbenzene used in the condensate desalination unit 17, the cation exchange resin is oxidized and degraded,
In addition, the oxidative deterioration of the cation exchange resin is further promoted by the oxidation catalytic action of the metal ions adsorbed (sorbed) in the resin particles by the ion exchange reaction. As a result of this oxidative decomposition, polystyrene sulfonic acid, which is a part of the parent structure of the cation exchange resin, is generated as a decomposition product, which elutes in the condensed water. Such decomposition products, particularly polystyrene sulfonic acid having a molecular weight of about 1000 or more, are adsorbed and contaminated on the surface of the anion exchange resin, inhibit the anion exchange reaction, and reduce the reactivity of the anion exchange resin. . As described above, there is a problem that hydrogen peroxide shortens the life of the ion exchange resin in the condensate desalination apparatus 17 which should be used for a long period of time.

【0012】更に、復水脱塩装置17内の陰イオン交換
樹脂の反応性が低下すると、陽イオン交換樹脂からの溶
出物が陰イオン交換樹脂に捕捉されないで処理復水中に
残留し、原子炉等中の高温、高圧下に熱分解され二酸化
炭素や硫酸イオンを生成するためイオン量が増加し、ま
た、塩素イオン、硫酸イオン等が除去されず、更に処理
復水の水質の悪化を引き起こす。
Furthermore, when the reactivity of the anion exchange resin in the condensate desalination unit 17 decreases, the eluate from the cation exchange resin remains in the treated condensate without being trapped by the anion exchange resin, and It is thermally decomposed under high temperature and high pressure to generate carbon dioxide and sulfate ions, so that the amount of ions increases, and chlorine ions, sulfate ions and the like are not removed.

【0013】このような場合、上述のような通常の化学
再生での陰イオン交換樹脂の性能回復は困難で、通常の
倍量の再生剤での再生や洗浄が必要となる。それでも性
能が回復しない場合は、陰イオン交換樹脂を交換せざる
を得ない。このように、陽イオン交換樹脂の酸化劣化
は、イオン交換樹脂の寿命を短くし、その交換頻度の増
加を余儀無くし、延いては放射性廃棄物量の増加に繋が
る。
In such a case, it is difficult to recover the performance of the anion exchange resin by the usual chemical regeneration as described above, and it is necessary to regenerate and wash with an ordinary amount of a regenerant. If the performance still does not recover, the anion exchange resin must be replaced. As described above, the oxidative deterioration of the cation exchange resin shortens the life of the ion exchange resin, necessitates an increase in the exchange frequency, and leads to an increase in the amount of radioactive waste.

【0014】また、過酸化水素を含んだ原子炉水を復水
タンク20に導入し、復水脱塩装置17のイオン交換樹
脂の再生用水として使用する場合にも、イオン交換樹脂
の再生時に陽イオン交換樹脂が過酸化水素による酸化劣
化を受けるという問題がある。陽イオン交換樹脂の酸化
劣化防止には、特開平4−371239号公報に記載さ
れているように、酸化劣化要因となる銅イオン等の金属
イオン類を予め除去する再生方法を採用することが効果
的である。しかしながら、陽イオン交換樹脂に吸着され
た銅イオン等の金属イオン類は、薬品再生でも完全に除
去されないため、薬品再生工程以外の再生操作中に酸化
劣化が進行する。
Also, when the reactor water containing hydrogen peroxide is introduced into the condensate tank 20 and used as the water for regenerating the ion exchange resin in the condensate desalination unit 17, the water is also used during regeneration of the ion exchange resin. There is a problem that the ion exchange resin is oxidized and deteriorated by hydrogen peroxide. In order to prevent oxidative deterioration of the cation exchange resin, it is effective to employ a regenerating method for previously removing metal ions such as copper ions which cause oxidative deterioration as described in JP-A-4-371239. It is a target. However, metal ions such as copper ions adsorbed on the cation exchange resin are not completely removed even by the chemical regeneration, and thus the oxidative deterioration proceeds during a regeneration operation other than the chemical regeneration step.

【0015】陽イオン交換樹脂の酸化劣化が、鉄イオン
や銅イオン等の金属イオン類の存在と溶存酸素や過酸化
水素等の酸化剤の存在により引き起こされることは一般
的に知られている。特に分子量約1000以上のポリス
チレンスルホン酸は、陽イオン交換樹脂に銅イオンが負
荷された状態で、水中で空気を長時間吹き込んでも発生
し難いが、過酸化水素が存在すると、短時間で発生する
ことが分かった。従って、復水中の鉄イオンや銅イオン
を吸着した陽イオン交換樹脂は、これらの重金属イオン
の触媒作用により、復水中に過酸化水素が存在すると特
に酸化劣化を受け易く、分解生成物としてポリスチレン
スルホン酸が生成し、これが復水中に溶出してくるので
ある。
It is generally known that oxidative deterioration of a cation exchange resin is caused by the presence of metal ions such as iron ions and copper ions and the presence of oxidizing agents such as dissolved oxygen and hydrogen peroxide. In particular, polystyrene sulfonic acid having a molecular weight of about 1000 or more is hardly generated even when air is blown in water for a long time in a state where copper ions are loaded on a cation exchange resin, but is generated in a short time when hydrogen peroxide is present. I understood that. Therefore, the cation exchange resin adsorbing iron and copper ions in the condensate is particularly susceptible to oxidative degradation when hydrogen peroxide is present in the condensate due to the catalytic action of these heavy metal ions, and polystyrene sulfone is used as a decomposition product. An acid is formed and elutes in the condensate.

【0016】上述のことに鑑み、復水脱塩装置17に過
酸化水素等の酸化剤が流入した場合でも、混床式復水脱
塩塔が高い性能を維持し、高純度且つ高水質の処理水を
定常的に得る必要があり、このため、陽イオン交換樹脂
の酸化分解を極力抑制し、陽イオン交換樹脂の酸化分解
生成物による陰イオン交換樹脂の汚染を防止することが
強く望まれている。
In view of the above, even when an oxidizing agent such as hydrogen peroxide flows into the condensate desalination unit 17, the mixed-bed type condensate desalination tower maintains high performance and has high purity and high water quality. It is necessary to constantly obtain treated water. Therefore, it is strongly desired to suppress oxidative decomposition of the cation exchange resin as much as possible and to prevent contamination of the anion exchange resin by oxidative decomposition products of the cation exchange resin. ing.

【0017】従って、本発明は、陽イオン交換樹脂の過
酸化水素等の酸化剤による酸化劣化の効果的な防止処理
方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method of effectively preventing oxidative deterioration of a cation exchange resin by an oxidizing agent such as hydrogen peroxide.

【0018】[0018]

【課題を解決するための手段】本発明は、陽イオン交換
樹脂及び/又は陰イオン交換樹脂に微粒子状酸化金属の
付着を行い、両イオン交換樹脂を混床として用いること
により、陽イオン交換樹脂の過酸化水素等の酸化剤によ
る酸化分解の抑制と陰イオン交換樹脂の反応性低下の抑
制とを図ることを特徴とする陽イオン交換樹脂の酸化剤
による酸化劣化の防止処理方法を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, a cation exchange resin is prepared by depositing particulate metal oxide on a cation exchange resin and / or an anion exchange resin and using both ion exchange resins as a mixed bed. A method for preventing oxidative degradation of a cation exchange resin by an oxidizing agent, characterized by suppressing oxidative decomposition by an oxidizing agent such as hydrogen peroxide and suppressing a decrease in reactivity of an anion exchange resin. It is.

【0019】次に、本発明に至った経緯を説明する。上
述したように、陽イオン交換樹脂の酸化劣化が、鉄イオ
ンや銅イオン等の金属イオン類の存在と溶存酸素や過酸
化水素等の酸化剤の存在により引き起こされることは一
般的に知られていることである。BWR型発電プラント
における復水脱塩装置の陽イオン交換樹脂の酸化劣化を
考えてみると、過酸化水素等の酸化剤が流入した時、イ
オン交換で陽イオン交換樹脂に吸着された金属イオン等
の金属が触媒となって、陽イオン交換樹脂の酸化分解が
引き起こされる。従って、陽イオン交換樹脂の表面を微
粒子状の酸化金属で覆い、過酸化水素等の酸化剤が陽イ
オン交換樹脂の粒外で金属と接触できるようにし、該粒
外で過酸化水素等の酸化剤を分解することができれば、
陽イオン交換樹脂への酸化剤の影響を抑制することがで
きる筈である。
Next, the circumstances that led to the present invention will be described. As described above, it is generally known that oxidative deterioration of a cation exchange resin is caused by the presence of metal ions such as iron ions and copper ions and the presence of oxidizing agents such as dissolved oxygen and hydrogen peroxide. It is that you are. Considering the oxidative deterioration of the cation exchange resin in the condensate desalination unit in a BWR type power plant, when an oxidizing agent such as hydrogen peroxide flows in, the metal ions and the like adsorbed on the cation exchange resin by ion exchange The metal serves as a catalyst to cause oxidative decomposition of the cation exchange resin. Therefore, the surface of the cation exchange resin is covered with fine metal oxide particles so that an oxidizing agent such as hydrogen peroxide can come into contact with the metal outside of the cation exchange resin, and the oxidation of hydrogen peroxide or the like outside the particles. If the agent can be decomposed,
It should be possible to suppress the effect of the oxidizing agent on the cation exchange resin.

【0020】一方、陰イオン交換樹脂は、陽イオン交換
樹脂からの分解生成物の溶出が抑制されるか、或いは、
その表面を微粒子状の酸化金属で覆い、陽イオン交換樹
脂の分解生成物との接触を抑制すれば、反応速度低下を
防止できる筈である。
On the other hand, the anion exchange resin suppresses elution of decomposition products from the cation exchange resin, or
If the surface is covered with fine-particle metal oxide to suppress contact with the decomposition product of the cation exchange resin, a reduction in the reaction rate should be prevented.

【0021】そこで、本発明者等は、陽イオン交換樹脂
粒の内部の金属が触媒となって、その酸化劣化を促進す
るような状態をなるべく造らない様にイオン交換樹脂に
予め微粒子状酸化金属を付着させ、その表面を被覆して
おけば、陽イオン交換樹脂の酸化分解を抑制することが
できることを見出した。その理由は、該微粒子状酸化金
属の触媒作用で陽イオン交換樹脂の粒の外側で過酸化水
素を分解し、生成する・OHラジカルが陽イオン交換樹
脂の構成ポリマー分子に直接作用する確率を少なくする
からである。
Therefore, the present inventors preliminarily set the fine particles of metal oxide in the ion exchange resin so that the metal inside the cation exchange resin particles acts as a catalyst and promotes the oxidation deterioration thereof. Was found to be able to suppress the oxidative decomposition of the cation exchange resin if it was adhered and its surface was coated. The reason is that the catalytic action of the particulate metal oxide decomposes hydrogen peroxide outside of the cation exchange resin particles and reduces the probability that the generated OH radicals directly act on the constituent polymer molecules of the cation exchange resin. Because you do.

【0022】微粒子状酸化金属は、陽イオン交換樹脂及
び陰イオン交換樹脂の少なくともいずれか一方に付着さ
せて両イオン交換樹脂を混床として用いれば、本発明の
目的を達成することができる。即ち、例えば、陰イオン
交換樹脂のみに微粒子状酸化金属を付着させた場合で
も、当該付着酸化金属の触媒作用で陽イオン交換樹脂の
粒外で過酸化水素等の酸化剤が分解する割合が増え、そ
の結果、陽イオン交換樹脂の酸化劣化する割合も減り、
また、陰イオン交換樹脂への陽イオン交換樹脂の分解生
成物の吸着も陰イオン交換樹脂を覆う付着微粒子状酸化
金属により抑制することができるので、本発明の目的は
達成される。しかし、陽イオン交換樹脂単独又は陽イオ
ン交換樹脂及び陰イオン交換樹脂の両方に微粒子状酸化
金属を付着させて両イオン交換樹脂を混床として用いる
のが好ましいのは言うまでも無い。
The object of the present invention can be achieved by attaching the particulate metal oxide to at least one of a cation exchange resin and an anion exchange resin and using both ion exchange resins as a mixed bed. That is, for example, even when the particulate metal oxide is attached only to the anion exchange resin, the rate of decomposition of the oxidizing agent such as hydrogen peroxide outside of the cation exchange resin due to the catalytic action of the attached metal oxide increases. As a result, the rate of oxidative deterioration of the cation exchange resin also decreases,
In addition, the adsorption of the decomposition product of the cation exchange resin to the anion exchange resin can also be suppressed by the attached particulate metal oxide covering the anion exchange resin, so that the object of the present invention is achieved. However, it is needless to say that it is preferable to use fine particles of metal oxide on the cation exchange resin alone or on both the cation exchange resin and the anion exchange resin to use both ion exchange resins as a mixed bed.

【0023】このような微粒子状酸化金属としては、α
−Fe2 3 、γ−Fe2 3 、Fe3 4 、FeOO
H等の酸化鉄(なお、これらの酸化鉄は、単品でも混合
物でも使用できる)が好ましく、その他には、発電プラ
ントの配管等から溶出する金属類に対応する酸化金属
類、例えば、酸化銅、酸化ニッケル、酸化クロム、酸化
コバルト、酸化アルミニウム等を挙げることができる。
なお、陽イオン交換樹脂の表面への微粒子状酸化金属の
付着は、単なる「付着」のみではなく、物理的な吸着作
用による部分も相当あると思われるが、本明細書では、
このような物理的吸着も含めた概念として「付着」と称
する。
As such a particulate metal oxide, α
-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 , FeOO
Iron oxides such as H (these iron oxides can be used alone or in a mixture) are preferable. In addition, metal oxides corresponding to metals eluted from pipes of a power plant, for example, copper oxide, Examples thereof include nickel oxide, chromium oxide, cobalt oxide, and aluminum oxide.
In addition, the adhesion of the particulate metal oxide to the surface of the cation exchange resin is considered not only to be merely `` adhesion '', but also to a considerable extent due to physical adsorption, but in this specification,
The concept including such physical adsorption is called “adhesion”.

【0024】酸化金属の粒子径は特に限定されるもので
は無いが、酸化金属により被覆処理すべき陽イオン交換
樹脂及び/又は陰イオン交換樹脂の径(大きい場合には
0.8〜0.9mm程度、小さい場合には0.2〜0.
3mm程度)に比べて充分に小さいものであれば良く、
特に10μm以下の粒子径が好ましい。また、イオン交
換樹脂に対する酸化金属の付着量は、酸化金属により被
覆処理すべきイオン交換樹脂の表面を覆うに充分な量で
あれば良く、スクラビング等の被覆処理時間との関連で
適宜に決めることができる。しかし、一般的には、混床
の両イオン交換樹脂に対する微粒子状酸化金属の付着量
が、2〜10g−金属(金属換算)/L(リットル)−
樹脂であるのが好ましい。この量が2g−金属/L−樹
脂より少ないと、本発明の効果が小さくなる。また、こ
の量が10g−金属/L−樹脂を越えると、イオン交換
樹脂のイオン交換容量が小さくなる。
Although the particle diameter of the metal oxide is not particularly limited, the diameter of the cation exchange resin and / or the anion exchange resin to be coated with the metal oxide (0.8 to 0.9 mm when the diameter is large). About 0.2 to 0.
About 3 mm) as long as it is sufficiently smaller than
In particular, a particle diameter of 10 μm or less is preferable. The amount of the metal oxide attached to the ion exchange resin may be an amount sufficient to cover the surface of the ion exchange resin to be coated with the metal oxide, and may be appropriately determined in relation to the coating time such as scrubbing. Can be. However, in general, the attached amount of the particulate metal oxide to both ion exchange resins in the mixed bed is 2 to 10 g-metal (in terms of metal) / L (liter)-.
It is preferably a resin. If the amount is less than 2 g-metal / L-resin, the effect of the present invention is reduced. If this amount exceeds 10 g-metal / L-resin, the ion exchange capacity of the ion exchange resin becomes small.

【0025】[0025]

【発明の実施の形態】次に、本発明の好ましい実施の形
態を説明するが、本発明がこれに限定されるもので無い
ことは言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described, but it goes without saying that the present invention is not limited to these embodiments.

【0026】微粒子状酸化金属とイオン交換樹脂とを
水中でスクラビングする。即ち、微粒子状酸化金属を添
加した水中で、イオン交換樹脂(陽イオン交換樹脂単
独、陰イオン交換樹脂単独、または、陽イオン交換樹脂
と陰イオン交換樹脂との混合イオン交換樹脂)を、空気
や窒素などの気体を用いてスクラビングすることによ
り、上記イオン交換樹脂に微粒子状酸化金属を付着さ
せ、陽イオン交換樹脂への酸化剤の影響を抑制し、ま
た、陰イオン交換樹脂の反応性の低下を抑制する。
The fine metal oxide and the ion exchange resin are scrubbed in water. That is, an ion exchange resin (a cation exchange resin alone, an anion exchange resin alone, or a mixed ion exchange resin of a cation exchange resin and an anion exchange resin) is added to air or water in water to which particulate metal oxide is added. By scrubbing with a gas such as nitrogen, the particulate metal oxide is attached to the ion exchange resin, the influence of the oxidizing agent on the cation exchange resin is suppressed, and the reactivity of the anion exchange resin is reduced. Suppress.

【0027】また、微粒子状酸化金属は水中において超
音波処理して、予め充分に分散させておくと、スクラビ
ングによる陽イオン交換樹脂及び/又は陰イオン交換樹
脂への付着をより効果的に行うことができる。
Further, if the particulate metal oxide is subjected to ultrasonic treatment in water and sufficiently dispersed in advance, it is possible to more effectively adhere to the cation exchange resin and / or the anion exchange resin by scrubbing. Can be.

【0028】この方法によれば、水に殆ど不溶性の酸化
鉄等の酸化金属を用いるため、例えば、H形の陽イオン
交換樹脂に酸化鉄を付着処理したとしても、Fe形の陽
イオン交換樹脂の生成率は2%以下であり、そのため、
付着処理終了後は、陽イオン交換樹脂を単に水で洗浄す
るだけで、このFe形の陽イオン交換樹脂を再度薬品で
再生すること無しに、復水脱塩装置での純水製造に供す
ることができる。
According to this method, since a metal oxide such as iron oxide which is almost insoluble in water is used, for example, even if the iron oxide is attached to the H-type cation exchange resin, the Fe-type cation exchange resin is used. Is less than 2%, so that
After the adhesion treatment, the cation exchange resin is simply washed with water, and the Fe type cation exchange resin is subjected to pure water production in a condensate desalination apparatus without being regenerated with a chemical again. Can be.

【0029】さらに、酸化鉄等の酸化金属は、分子間引
力や静電気的引力等によってイオン交換樹脂表面に強く
付着されているため、水で洗浄後は、通常使用される6
00mm以上の樹脂層高での通水状態でも、処理水中に
リークしてくることは無い。
Further, since metal oxides such as iron oxide are strongly adhered to the surface of the ion-exchange resin due to intermolecular attraction, electrostatic attraction, etc., they are usually used after washing with water.
Even in a water flowing state with a resin layer height of 00 mm or more, there is no leakage into the treated water.

【0030】発電プラントの実装置で、前置フィルタ
ーをバイパスさせて復水脱塩装置に復水を通水すること
により、上記復水脱塩装置中の混床の混合イオン交換樹
脂に復水中に含まれる微粒子状酸化金属を付着させる。
即ち、本発明の目的を達成するために、発電プラントの
実装置の復水脱塩装置に装荷後のイオン交換樹脂につい
ては、前置フィルターをバイパスさせて復水を復水脱塩
装置に通水させることにより、該実装置の復水中に含ま
れている微粒子状酸化鉄を主とする酸化金属類をイオン
交換樹脂に付着させてもよい。新品イオン交換樹脂は、
その表面に微粒子状酸化金属を付着させ易いため、上記
の様な操作を行っても、復水中に含まれている微粒子状
酸化鉄等の微粒子状酸化金属類の除去効果(吸着・付着
効果)が高く、得られる処理復水中の酸化金属濃度も低
く抑えることができる。
In the actual equipment of the power plant, the condensate is passed through the condensate desalination apparatus by bypassing the pre-filter, and condensed into the mixed ion exchange resin of the mixed bed in the condensate desalination apparatus. Is attached.
That is, in order to achieve the object of the present invention, for the ion exchange resin loaded in the condensate desalination unit of the actual power plant, the condensate is passed to the condensate desalination unit by bypassing the pre-filter. By immersing in water, metal oxides mainly containing particulate iron oxide contained in the condensate of the actual device may be attached to the ion exchange resin. New ion exchange resin
The effect of removing particulate metal oxides such as particulate iron oxide contained in condensate water even when the above operation is carried out (adsorption / adhesion effect) because the particulate metal oxide is easily attached to the surface. And the concentration of metal oxide in the condensed water obtained can be kept low.

【0031】[0031]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこの実施例により限定されるものでは無
い。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0032】先ず、イオン交換樹脂への付着金属(実施
例1では、鉄〔Fe〕)量の測定方法を説明する。 (1)金属を付着したイオン交換樹脂20mlを、同量
の純水と共にコニカルビーカーに入れる。 (2)超音波洗浄器を用い、コニカルビーカーに10分
間の超音波振動を与え、イオン交換樹脂に付着している
微粒子状酸化金属を洗い落として、洗浄水を得る。 (3)予め、内部を塩酸で洗って金属類を除去した20
0mlメスフラスコに7重量%塩酸を5ml入れ、更
に、(2)で得られた洗浄水を入れて洗浄水中の酸化金
属を塩酸で溶解する。 (4)上記コニカルビーカーに新たに純水20mlを加
え、(2)の操作を行い、得られた洗浄水を(3)に記
載のメスフラスコに加える。このような操作を(2)の
操作後の洗浄水が目視で透明になるまで繰り返す。 (5)最後に、少量の純水でイオン交換樹脂とコニカル
ビーカーに残った金属を洗い出し、その洗浄水を上記メ
スフラスコに入れ、メスフラスコ内に溜まった液に合わ
せる。 (6)純水をメスフラスコに加え、メスフラスコ内の液
量が200mlになるように液面をメスフラスコのメス
に合わせ、微粒子状酸化金属が溶解して生成した金属イ
オン量を定法(例えば、比色法や原子吸光光度法等)に
より定量する。 (7)定量された金属イオン量をイオン交換樹脂量で割
り、樹脂1L(リットル)当たりの付着金属量を求め
る。なお、イオンの形でイオン交換樹脂に吸着している
金属は、超音波洗浄では溶離しない。
First, a method for measuring the amount of metal (iron [Fe] in Example 1) adhering to the ion exchange resin will be described. (1) 20 ml of the ion-exchange resin to which the metal is attached is put into a conical beaker together with the same amount of pure water. (2) Ultrasonic vibration is applied to the conical beaker for 10 minutes using an ultrasonic cleaning device to wash off the particulate metal oxide adhering to the ion exchange resin to obtain cleaning water. (3) The inside was washed beforehand with hydrochloric acid to remove metals.
5 ml of 7% by weight hydrochloric acid is placed in a 0 ml volumetric flask, and the washing water obtained in (2) is further added to dissolve the metal oxide in the washing water with hydrochloric acid. (4) 20 ml of pure water is newly added to the conical beaker, the operation of (2) is performed, and the obtained washing water is added to the measuring flask described in (3). Such an operation is repeated until the washing water after the operation (2) becomes visually transparent. (5) Finally, the ion-exchange resin and the metal remaining in the conical beaker are washed out with a small amount of pure water, and the washing water is poured into the volumetric flask, and is adjusted to the liquid accumulated in the volumetric flask. (6) Add pure water to the volumetric flask, adjust the liquid level to the volumetric flask so that the volume in the volumetric flask becomes 200 ml, and determine the amount of metal ions generated by dissolving the particulate metal oxide (for example, , Colorimetric method or atomic absorption spectrophotometric method). (7) The determined amount of metal ions is divided by the amount of ion-exchange resin to determine the amount of deposited metal per liter (L) of the resin. The metal adsorbed on the ion exchange resin in the form of ions is not eluted by the ultrasonic cleaning.

【0033】また、下記の表1に記載された陰イオン交
換樹脂の脱塩率を求める方法を次に説明する。陰イオン
交換樹脂2mlを10mm(1cm)の層高で充填した
カラムに電気伝導度40μS/cmとなるような濃度の
塩化ナトリウム水溶液を20L/hの流量で通水し、得
られるイオン交換処理水の電気伝導度を測定し、この電
気伝導度から該処理水のCl- イオン濃度を算出し、
「(入口Cl- イオン濃度−出口Cl- イオン濃度)/
入口Cl- イオン濃度」をもって脱塩率とする。混床の
場合は、通水後の混床から陰イオン交換樹脂を分離し
て、その脱塩率を求める。
A method for determining the desalting rate of the anion exchange resin described in Table 1 below will be described below. A column packed with 2 ml of anion exchange resin at a layer height of 10 mm (1 cm) is passed with an aqueous solution of sodium chloride having a concentration of electric conductivity of 40 μS / cm at a flow rate of 20 L / h to obtain ion exchange treated water. the electrical conductivity was measured in, Cl of the treated water from the electric conductivity - to calculate the ion concentration,
"(Inlet Cl - ion concentration-outlet Cl - ion concentration) /
Inlet Cl - with ion concentration "and salt rejection. In the case of a mixed bed, the anion exchange resin is separated from the mixed bed after passing water, and the desalting rate is determined.

【0034】実施例1 金属(Fe)を含む水中にH形陽イオン交換樹脂アンバ
ーライトIR120B(ローム・アンド・ハース社製)
を浸漬し、エアスクラビングを行い、金属を付着あるい
は吸着させた。イオンFeはFeSO4 ・7H2 O、微
粒子状FeはFe3 4 (株式会社高純度化学研究所
製、粒径約1〜3μm)を用いた。この様にして金属を
付着あるいは吸着させた陽イオン交換樹脂207mlと
OH形陰イオン交換樹脂アンバーライトIRA400T
(ローム・アンド・ハース社製)207mlとを混合
し、両樹脂容量比1:1の混床としてカラムに充填し、
37〜40℃の水温及び通水流速40m/hで70時間
の通水試験を行った。この試験では、H2 2 濃度6.
7ppmの過酸化水素含有水を最初に5時間通水し、そ
の後、純水の通水を行った。また、同様にして、OH形
陰イオン交換樹脂アンバーライトIRA400Tに上記
と同じ微粒子状のFe3 4 を付着させ、この陰イオン
交換樹脂と金属の付着も吸着も無しのH形陽イオン交換
樹脂アンバーライトIR120Bとを混合して、カラム
に充填して、上記と同じ条件で通水試験を行った。比較
のため、金属の付着も吸着も無しのH形陽イオン交換樹
脂とOH形陰イオン交換樹脂との混床の場合について
も、上記の通水試験を行った。行った試験に用いられた
混床は、下記の通りである。
Example 1 H-type cation exchange resin Amberlite IR120B (manufactured by Rohm and Haas) in water containing metal (Fe)
Was immersed and air scrubbed to adhere or adsorb the metal. Ions Fe is FeSO 4 · 7H 2 O, particulate Fe is Fe 3 O 4 (produced by Kojundo Chemical Laboratory Co., Ltd., particle size of about 1 to 3 [mu] m) was used. 207 ml of the cation exchange resin to which the metal is adhered or adsorbed in this way and the OH type anion exchange resin Amberlite IRA400T
(Manufactured by Rohm and Haas Company) and packed in a column as a mixed bed having a resin volume ratio of 1: 1.
A 70-hour water flow test was performed at a water temperature of 37 to 40 ° C. and a water flow rate of 40 m / h. In this test, an H 2 O 2 concentration of 6.
Water containing 7 ppm of hydrogen peroxide was first passed for 5 hours, and then pure water was passed. In the same manner, the same fine-particle Fe 3 O 4 as described above is adhered to the OH-type anion exchange resin Amberlite IRA400T, and the H-type cation exchange resin having no adhesion or adsorption of metal to the anion exchange resin. Amberlite IR120B was mixed, packed in a column, and subjected to a water flow test under the same conditions as described above. For comparison, the above-mentioned water-flow test was also performed for a mixed bed of an H-type cation exchange resin and an OH-type anion exchange resin without adhesion and adsorption of metal. The mixed beds used in the tests performed are as follows.

【0035】試験1:0g−Fe/L−R(樹脂を表
す)の陽イオン交換樹脂+0g−Fe/L−Rの陰イオ
ン交換樹脂 試験2:2g−イオンFe/L−Rの陽イオン交換樹脂
+0g−Fe/L−Rの陰イオン交換樹脂 試験3:4g−イオンFe/L−Rの陽イオン交換樹脂
+0g−Fe/L−Rの陰イオン交換樹脂 試験4:(4g−イオン+2g−微粒子状)Fe/L−
Rの陽イオン交換樹脂+0g−Fe/L−Rの陰イオン
交換樹脂 試験5:2g−微粒子状Fe/L−Rの陽イオン交換樹
脂+0g−Fe/L−Rの陰イオン交換樹脂 試験6:0g−Fe/L−Rの陽イオン交換樹脂+2g
−微粒子状Fe/L−Rの陰イオン交換樹脂
Test 1: 0 g-Fe / LR (representing resin) cation exchange resin + 0 g-Fe / LR anion exchange resin Test 2: 2 g-ion Fe / LR cation exchange Resin +0 g-Fe / LR anion exchange resin Test 3: 4 g-ion Fe / LR cation exchange resin +0 g-Fe / LR anion exchange resin Test 4: (4 g-ion + 2 g- Fine particles) Fe / L-
R cation exchange resin + 0 g-Fe / LR anion exchange resin Test 5: 2 g-particulate Fe / LR cation exchange resin + 0 g-Fe / LR anion exchange resin Test 6: 0 g-Fe / LR cation exchange resin + 2 g
-Fine particle Fe / LR anion exchange resin

【0036】結果を表1及び図1に示す。なお、表1
で、脱塩率は合計70時間の通水後の陰イオン交換樹脂
の脱塩率であり、また、新品の陰イオン交換樹脂の単床
で、過酸化水素含有水の通水無しで試験1〜6と同じ7
0時間の純水の通水を行った後の陰イオン交換樹脂の脱
塩率も併せて示す(試験7)。図1で、各線を示す1〜
6の数字は、試験1〜6にそれぞれ対応する。
The results are shown in Table 1 and FIG. Table 1
The desalting rate is the desalting rate of the anion exchange resin after passing water for a total of 70 hours, and the test 1 was conducted using a single bed of a new anion exchange resin without passing water containing hydrogen peroxide. 7 same as ~ 6
The desalting rate of the anion exchange resin after passing pure water for 0 hours is also shown (Test 7). In FIG.
The number 6 corresponds to tests 1 to 6, respectively.

【0037】[0037]

【表1】 ────────────────────────────────── H2 2 通水時の H2 2 通水後純水 通水後 試験 ピークTOC濃度 通水50時間時点の 脱塩率 (ppb) TOC濃度(ppb) (%) ────────────────────────────────── 1 2 0.6 29 2 13 2.0 26 3 113 2.4 24 4 91 2.4 26 5 3 0.5 29 6 7 1.7 28 7 − − 30 ──────────────────────────────────[Table 1] H H 2 O 2 when passing H 2 O 2 Pure water after water flow Test after water flow Peak TOC concentration Desalination rate at 50 hours water flow (ppb) TOC concentration (ppb) (%) ────────────────── 1 12 0.6 292 13 2.0 263 3 113 2.4 244 91 264 265 30.5 297 67 1. 728 7 − − 30 ──────────────────────────────────

【0038】これらの結果から、次のことが分かる。 (1)イオン鉄を吸着させた陽イオン交換樹脂を用いた
試験2と3では、過酸化水素含有水の通水によりTOC
濃度が急上昇し、陽イオン交換樹脂の分解生成物が生じ
たことを示している。また、過酸化水素含有水の通水後
に、純水を通水しても、過酸化水素含有水の通水前のT
OC濃度レベルには回復していない。陰イオン交換樹脂
の反応性を示す脱塩率も低下している。
From these results, the following can be understood. (1) In Tests 2 and 3 using a cation exchange resin adsorbing ionic iron, the TOC was measured by passing water containing hydrogen peroxide.
The concentration jumped, indicating the formation of decomposition products of the cation exchange resin. Also, even if pure water is passed after the passage of the hydrogen peroxide-containing water, the T
It has not recovered to the OC concentration level. The desalting rate, which indicates the reactivity of the anion exchange resin, is also reduced.

【0039】(2)イオン鉄吸着量(4g−イオンFe
/L−R)が同じ陽イオン交換樹脂を用いた試験3と4
とを比べると、2g−微粒子状Fe/L−Rの量の微粒
子状鉄(Fe3 4 )を更に付着させた陽イオン交換樹
脂を用いた試験4の方が、過酸化水素含有水の通水によ
るTOC濃度の上昇は低く、陰イオン交換樹脂の脱塩率
も高い。
(2) Ionic iron adsorption (4 g-ion Fe
/ LR) Tests 3 and 4 using the same cation exchange resin
Test 4 using a cation exchange resin to which fine particles of iron (Fe 3 O 4 ) in an amount of 2 g-particulate Fe / LR were further attached showed that hydrogen peroxide-containing water was used. The increase in the TOC concentration due to the passage of water is low, and the desalting rate of the anion exchange resin is high.

【0040】(3)イオン鉄無しで微粒子状鉄(Fe3
4 )のみを付着した陽イオン交換樹脂を用いた試験5
では、過酸化水素含有水の通水時も、過酸化水素含有水
の通水後の純水の通水50時間の時点でも、TOC濃度
が0g−イオンFe/L−Rの陽イオン交換樹脂を用い
た試験1とほぼ同等で、酸化触媒として作用し得る金属
(鉄)の存在にも拘わらず(但し、陽イオン交換樹脂粒
の表面上に鉄は存在)、陽イオン交換樹脂の酸化劣化が
抑制されていることを示した。
(3) Particulate iron (Fe 3 ) without ionic iron
Test 5 using cation exchange resin with only O 4 ) attached
The cation exchange resin having a TOC concentration of 0 g-ion Fe / LR both at the time of passing the hydrogen peroxide-containing water and at the time of passing 50 hours of pure water after the passage of the hydrogen peroxide-containing water. Oxidative degradation of the cation exchange resin despite the presence of a metal (iron) that can act as an oxidation catalyst (but iron is present on the surface of the cation exchange resin particles). Was suppressed.

【0041】(4)微粒子状鉄を陰イオン交換樹脂のみ
に付着させた試験6においても、微粒子状鉄を陽イオン
交換樹脂のみに付着させた試験5に比べると若干劣る
が、陽イオン交換樹脂の酸化劣化及び陰イオン交換樹脂
の脱塩性能の低下が抑制されている。
(4) Test 6 in which particulate iron was attached only to anion exchange resin was slightly inferior to Test 5 in which particulate iron was attached only to cation exchange resin. And the deterioration of the desalination performance of the anion exchange resin are suppressed.

【0042】なお、試験2〜6において、鉄溶出量は、
0.5ppb以下であった。
In Tests 2 to 6, the amount of iron eluted was
It was 0.5 ppb or less.

【0043】[0043]

【発明の効果】本発明によれば、過酸化水素等の酸化剤
が復水に流入した時も、復水脱塩装置の陽イオン交換樹
脂の酸化分解を抑制することができ、陽イオン交換樹脂
の分解生成物であるポリスチレンスルホン酸による陰イ
オン交換樹脂の汚染に起因する陰イオン交換樹脂の反応
性低下も抑制することができる。このため、復水脱塩装
置により得られる処理復水は、良好な水質を維持するこ
とができる。
According to the present invention, even when an oxidizing agent such as hydrogen peroxide flows into the condensate, the oxidative decomposition of the cation exchange resin of the condensate desalination apparatus can be suppressed. It is also possible to suppress a decrease in reactivity of the anion exchange resin due to contamination of the anion exchange resin by polystyrene sulfonic acid which is a decomposition product of the resin. Therefore, the treated condensate obtained by the condensate desalination apparatus can maintain good water quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1の通水試験の結果を示すグラ
フ図である。
FIG. 1 is a graph showing the results of a water flow test of Example 1.

【図2】図2は、沸騰水型原子力発電所の蒸気・復水系
と原子炉水浄化系の概要を示すシステムフロー図であ
る。
FIG. 2 is a system flow diagram showing an outline of a steam / condensation system and a reactor water purification system of a boiling water nuclear power plant.

【符号の説明】[Explanation of symbols]

11 原子炉 12 炉水脱塩装置 13 高圧タービン 14 低圧タービン 15 復水器 16 前置濾過装置 17 復水脱塩装置 18 低圧給水加熱器 19 高圧給水加熱器 20 復水タンク 21 イオン交換樹脂再生設備 22 ポンプ DESCRIPTION OF SYMBOLS 11 Nuclear reactor 12 Reactor water desalination device 13 High pressure turbine 14 Low pressure turbine 15 Condenser 16 Pre-filtration device 17 Condensate desalination device 18 Low pressure feedwater heater 19 High pressure feedwater heater 20 Condensate tank 21 Ion exchange resin regeneration equipment 22 pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂及び/又は陰イオン交
換樹脂に微粒子状酸化金属の付着を行い、両イオン交換
樹脂を混床として用いることにより、陽イオン交換樹脂
の過酸化水素等の酸化剤による酸化分解の抑制と陰イオ
ン交換樹脂の反応性低下の抑制とを図ることを特徴とす
る陽イオン交換樹脂の酸化剤による酸化劣化の防止処理
方法。
1. An oxidizing agent such as hydrogen peroxide of a cation exchange resin by adhering particulate metal oxide to a cation exchange resin and / or an anion exchange resin and using both ion exchange resins as a mixed bed. A method for preventing oxidative degradation of a cation exchange resin by an oxidizing agent, wherein the oxidative decomposition of the cation exchange resin and the decrease in reactivity of the anion exchange resin are suppressed.
【請求項2】 陽イオン交換樹脂及び/又は陰イオン交
換樹脂からなるイオン交換樹脂が浸漬されている微粒子
状酸化金属含有水中に、空気や窒素等の気体を吹き込ん
で前記イオン交換樹脂と前記微粒子状酸化金属とを攪拌
混合し、前記イオン交換樹脂に微粒子状酸化金属を付着
させることを特徴とする請求項1に記載の陽イオン交換
樹脂の酸化剤による酸化劣化の防止処理方法。
2. A method in which a gas such as air or nitrogen is blown into finely particulate metal oxide-containing water in which an ion exchange resin comprising a cation exchange resin and / or an anion exchange resin is immersed. The method for preventing oxidative deterioration of a cation exchange resin by an oxidizing agent according to claim 1, wherein the particulate metal oxide is adhered to the ion exchange resin by stirring and mixing with the metal oxide.
【請求項3】 復水脱塩装置に復水を通水するに際し、
前置フィルターをバイパスさせて復水を復水脱塩装置に
通水することにより、前記復水脱塩装置中の陽イオン交
換樹脂と陰イオン交換樹脂の混床に復水中に含まれてい
る微粒子状酸化金属類を付着させることを特徴とする請
求項1に記載の陽イオン交換樹脂の酸化剤による酸化劣
化の防止処理方法。
3. When the condensate is passed through the condensate desalination apparatus,
The condensate is contained in the condensed water in the mixed bed of the cation exchange resin and the anion exchange resin in the condensate desalination apparatus by passing the condensate through the condensate desalination apparatus by bypassing the pre-filter. The method for preventing oxidative deterioration of a cation exchange resin by an oxidizing agent according to claim 1, wherein the particulate metal oxides are adhered.
【請求項4】 前記両イオン交換樹脂に対する微粒子状
酸化金属の付着量が、2〜10g−金属(金属換算)/
L(リットル)−樹脂であることを特徴とする請求項1
から3のいずれかに記載の陽イオン交換樹脂の酸化剤に
よる酸化劣化の防止処理方法。
4. The amount of the particulate metal oxide attached to both ion exchange resins is 2 to 10 g-metal (in terms of metal) /
2. An L (liter) -resin.
4. A method for preventing oxidative deterioration of a cation exchange resin by an oxidizing agent according to any one of the above items.
【請求項5】 前記微粒子状酸化金属が、α−Fe2
3 、γ−Fe2 3、Fe3 4 、FeOOH等の酸化
鉄であることを特徴とする請求項1から4のいずれかに
記載の陽イオン交換樹脂の酸化剤による酸化劣化の防止
処理方法。
5. The method according to claim 1, wherein the particulate metal oxide is α-Fe 2 O.
3. The cation exchange resin according to claim 1, wherein the cation exchange resin is an iron oxide such as γ-Fe 2 O 3 , Fe 3 O 4 or FeOOH. Method.
JP10032402A 1998-01-30 1998-01-30 Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent Pending JPH11216372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10032402A JPH11216372A (en) 1998-01-30 1998-01-30 Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10032402A JPH11216372A (en) 1998-01-30 1998-01-30 Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent

Publications (1)

Publication Number Publication Date
JPH11216372A true JPH11216372A (en) 1999-08-10

Family

ID=12357974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10032402A Pending JPH11216372A (en) 1998-01-30 1998-01-30 Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent

Country Status (1)

Country Link
JP (1) JPH11216372A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004810A (en) * 2000-06-19 2002-01-09 Japan Organo Co Ltd Method of treating condensate
JP2007518559A (en) * 2004-01-21 2007-07-12 アラップ・ケー・センガプタ Method of making and using a hybrid anion exchanger for the selective removal of contaminant ligands from a liquid
JP2014131791A (en) * 2012-12-07 2014-07-17 Fumio Maekawa Method for efficiently removing hazardous component in contaminated water
CN106024087A (en) * 2015-03-31 2016-10-12 株式会社荏原制作所 Condensate demineralization apparatus and condensate demineralization method
CN115121296A (en) * 2022-07-05 2022-09-30 国家电投集团平顶山热电有限公司 Method for treating heavy organic matter pollution of anion exchange resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004810A (en) * 2000-06-19 2002-01-09 Japan Organo Co Ltd Method of treating condensate
JP2007518559A (en) * 2004-01-21 2007-07-12 アラップ・ケー・センガプタ Method of making and using a hybrid anion exchanger for the selective removal of contaminant ligands from a liquid
JP2014131791A (en) * 2012-12-07 2014-07-17 Fumio Maekawa Method for efficiently removing hazardous component in contaminated water
CN106024087A (en) * 2015-03-31 2016-10-12 株式会社荏原制作所 Condensate demineralization apparatus and condensate demineralization method
JP2016191619A (en) * 2015-03-31 2016-11-10 株式会社荏原製作所 Condensate demineralization apparatus and condensate demineralization method
CN115121296A (en) * 2022-07-05 2022-09-30 国家电投集团平顶山热电有限公司 Method for treating heavy organic matter pollution of anion exchange resin
CN115121296B (en) * 2022-07-05 2023-09-05 国家电投集团河南电力有限公司平东发电分公司 Method for treating severe organic matter pollution of anion exchange resin

Similar Documents

Publication Publication Date Title
US5397477A (en) Ion exchange resin having dual morphology
US6633624B1 (en) Condensate demineralization
JP6077250B2 (en) Water treatment method and apparatus in nuclear power plant
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP2002361245A (en) Method and device for regenerating ion exchange resin in condensate demineralizer
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP4383091B2 (en) Condensate desalination method and apparatus
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPH09262486A (en) Regenerating method of ion exchange resin in desalting device for condensate
JP3834715B2 (en) Organic acid decomposition catalyst and chemical decontamination method
JP3598798B2 (en) Regeneration method of mixed bed type desalination equipment
JP2898125B2 (en) Regeneration method of cation exchange resin in condensate desalination equipment
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP3472658B2 (en) Regeneration method of anion exchange resin
JP3709645B2 (en) Regeneration method of condensate demineralizer
JPH10216536A (en) Regeneration or anion exchange resin
JP2001314858A (en) Method for operating condensed water desalting apparatus
JPS61234951A (en) Regenerating method for anion exchange resin in mixed bed type condensate desalting method
JPH04150951A (en) Method for ultrasonic washing and regeneration of ion exchange resin contaminated with organic matter
JP2019132774A (en) Method for desalting condensed water or waste water in nuclear power plant
KR20240055814A (en) Resin production method, ultrapure water production method, and ultrapure water production device
JPH0677687B2 (en) Regeneration method of ion exchange resin
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JPH11216373A (en) Method for regenerating ion exchange resin for desalting condensed water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808