JPH04150951A - Method for ultrasonic washing and regeneration of ion exchange resin contaminated with organic matter - Google Patents

Method for ultrasonic washing and regeneration of ion exchange resin contaminated with organic matter

Info

Publication number
JPH04150951A
JPH04150951A JP2275979A JP27597990A JPH04150951A JP H04150951 A JPH04150951 A JP H04150951A JP 2275979 A JP2275979 A JP 2275979A JP 27597990 A JP27597990 A JP 27597990A JP H04150951 A JPH04150951 A JP H04150951A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
contaminated
water
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2275979A
Other languages
Japanese (ja)
Other versions
JPH0687985B2 (en
Inventor
Hiroshi Watabe
博 渡部
Masami Endo
遠藤 昌美
Minoru Horikawa
堀川 稔
Takashi Sugimoto
杉本 岳志
Toichi Soma
相馬 東一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2275979A priority Critical patent/JPH0687985B2/en
Publication of JPH04150951A publication Critical patent/JPH04150951A/en
Publication of JPH0687985B2 publication Critical patent/JPH0687985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently treat an ion exchange resin at a low cost without using chemicals by circulating the ion exchange resin contaminated with org. matter along with desalted water to irradiate the same with ultrasonic waves. CONSTITUTION:When an ion exchange resin contaminated with org. matter, especially, the ion exchange resin used in the condensed water desalting apparatus of a thermal power plant is washed, an ultrasonic oscillator 1 is arranged in a water tank 2 and stainless steel piping 3 is arranged above the oscillator 1. Then, desalted water is introduced into a resin storage tank 4 in an amount twice-threefold the amount of the ion exchange resin and the ion exchange resin of the storage tank 3 is sent in the stainless steel piping 3 by a pump 5 through inlet piping 6 and returned to the storage tank 4 from outlet piping. During this period, the ion exchange resin is irradiated with ultrasonic waves to remove the org. matter being a contaminant from the ion exchange resin. By this method, the ion exchange resin is regenerated without using chemicals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機物により汚染されたイオン交換樹脂の超
音波洗浄回生法に係り、特に火力発電所の復水脱塩装置
などで広範囲に使用されているイオン交換樹脂を低コス
トで、効率的に洗浄回生することができる有機物汚染の
イオン交換樹脂の超音波洗浄回生法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic cleaning regeneration method for ion exchange resins contaminated with organic substances, and is particularly applicable to a wide range of applications such as condensate desalination equipment in thermal power plants. The present invention relates to an ultrasonic cleaning regeneration method for organic-contaminated ion exchange resins that can be efficiently cleaned and regenerated at low cost.

〔従来の技術〕[Conventional technology]

火力発電所の貫流ボイラは、腐食防止のため、非常に高
純度の給水が要求されることから、イオン交換樹脂を使
用した復水脱塩装置を設置して、海水漏洩による汚染物
質および腐食生成物などの不純物を除去している。
Once-through boilers in thermal power plants require extremely high-purity water supply to prevent corrosion, so a condensate desalination device using ion exchange resin is installed to prevent contaminants and corrosion generated by seawater leakage. Removes impurities such as substances.

この復水脱塩装置のイオン交換樹脂は、発電プラントの
運転中に系統水に微量に含まれている有機物などによっ
てアニオン樹脂が汚染を受け、いわゆるアニオン樹脂有
機物汚染となる。
The ion exchange resin of this condensate desalination equipment is contaminated by organic matter contained in trace amounts in the system water during operation of the power plant, resulting in so-called anion resin organic matter contamination.

これらの汚染物質の有機物を除去するために、温食塩水
や苛性ソーダ水による洗浄を試みた例もあるが、非常に
除去しずらい性質を有しているため、いずれも洗浄効果
はなく、現在では有効な洗浄技術は確立されていない。
In order to remove these organic contaminants, there have been attempts to clean them with hot salt water or caustic soda water, but these methods have no cleaning effect as they are extremely difficult to remove. No effective cleaning technology has been established.

また、特公昭57−136949号、特公昭6Q−17
7300号、および特公平1−107850号の各公報
には、イオン交換樹脂樹脂表面に付着する酸化鉄を超音
波洗浄器による洗浄除去する装置が開示されているが、
いずれも有機物に汚染されたイオン交換樹脂の洗浄除去
を試みた例はない。ところで現在、超音波を利用した産
業用洗浄の分野では、主に機械部品、電子部品およびガ
ラス類などである。
Also, Special Publication No. 57-136949, Special Publication No. 6Q-17
No. 7300 and Japanese Patent Publication No. 1-107850 disclose an apparatus for cleaning and removing iron oxide adhering to the surface of an ion exchange resin using an ultrasonic cleaner.
There is no attempt to clean and remove ion exchange resins contaminated with organic matter. Currently, in the field of industrial cleaning using ultrasonic waves, cleaning is mainly applied to mechanical parts, electronic parts, glass, etc.

このため、有機物などによって汚染を受けて使用不可能
になったイオン交換樹脂は廃棄処分を行い、新品樹脂に
よる交換あるいは補給を行なって、性能維持をはかって
いるのが現状である。
For this reason, the current practice is to dispose of ion exchange resins that have become unusable due to contamination with organic matter, and to maintain performance by replacing or replenishing them with new resins.

次に、現状における汚染イオン交換樹脂の汚染メカニズ
ムと具体的対策を説明する。
Next, the current contamination mechanism of contaminated ion exchange resins and specific countermeasures will be explained.

火力発電所の系統水は、微量ではあるが微細な有機物お
よび鉄などの汚染物質が含まれている。
System water from thermal power plants contains small amounts of pollutants such as fine organic matter and iron.

この汚染物質である有機物がアニオン樹脂に吸着し、樹
脂の細孔までコーティングする結果、イオン交換樹脂が
本来持っているイオン交換性能を著しく低下させるため
、塩素イオン、硫酸イオンなどの陰イオンが水酸イオン
と交換できず正常な水質が得ることができなくなる現象
が発生する。
These organic contaminants adsorb onto the anion resin and coat the pores of the resin, significantly reducing the ion exchange performance of the ion exchange resin, causing anions such as chlorine ions and sulfate ions to A phenomenon occurs in which water cannot be exchanged with acid ions and normal water quality cannot be obtained.

アニオン樹脂有機物汚染の発生頻度は、系統水の水質に
よって一概にはいえないが、新品樹脂に交換後、早いも
ので3〜4ケ月、遅いもので9〜10ケ月でイオン交換
性能が消失する例もある。
The frequency of occurrence of anion resin organic contamination cannot be determined definitively depending on the water quality of the system water, but there are examples of ion exchange performance disappearing as early as 3 to 4 months and as late as 9 to 10 months after replacing with a new resin. There is also.

以上の事由のため、火力発電所の復水脱塩装置を運転し
ていて汚染を受けたイオン交換樹脂は、アニオン樹脂の
場合で半年〜1年で全量交換あるいは補給(30〜50
%)し、性能維持をはかつているのが現状である。
Due to the above reasons, ion exchange resins that become contaminated during operation of condensate desalination equipment at thermal power plants must be completely replaced or replenished every six months to one year (30 to 50%
%) and are currently trying to maintain performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

系統水に含まれている有機物などによって汚染を受けた
アニオン交換樹脂は、上記のように有効な洗浄技術は開
発されていないため、廃棄処分とし新品樹脂の交換・補
給を実施している。
As mentioned above, effective cleaning technology has not been developed for anion exchange resins that have been contaminated by organic matter contained in system water, so they are disposed of and replaced with new resins.

このため、汚染樹脂は産業廃棄物として処理しなければ
ならず、かつ、コストの高い新品樹脂の購入など経済的
損失が著しく増大している。
Therefore, the contaminated resin must be disposed of as industrial waste, and economic losses such as the purchase of expensive new resin are significantly increased.

本発明は上記従来の問題点を解決し、苛性ソーダ水や食
塩水などの薬品を用いることなく、また、安全、かつ、
低コストで処理効率の高い有機物汚染イオン交換樹脂の
超音波洗浄回生法を提供することを目的としている。
The present invention solves the above-mentioned conventional problems, does not use chemicals such as caustic soda water or saline solution, and is safe.
The purpose of this invention is to provide an ultrasonic cleaning regeneration method for organic-contaminated ion exchange resins that is low cost and has high treatment efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の有機物汚染のイオ
ン交換樹脂の超音波洗浄回生法は、水槽中に設置された
耐食性管からなる循環配管中を通して有機物汚染のイオ
ン交換樹脂を脱塩水とともに循環させ、該イオン交換樹
脂に超音波を照射して、有機物の汚染物質をイオン交換
樹脂から除去して洗浄することを特徴としている。そし
て水槽の水として温水を用いるのがよい。
In order to achieve the above object, the ultrasonic cleaning regeneration method of organic-contaminated ion-exchange resin of the present invention circulates organic-contaminated ion-exchange resin together with demineralized water through a circulation pipe made of a corrosion-resistant pipe installed in a water tank. The ion exchange resin is then irradiated with ultrasonic waves to remove organic contaminants from the ion exchange resin for cleaning. It is best to use warm water for the aquarium.

〔実施例〕〔Example〕

以下に本発明を図面を参照して詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の有機物汚染イオン交換樹脂の超音波洗
浄回生法を実施するための超音波洗浄装置の構成図であ
る。
FIG. 1 is a block diagram of an ultrasonic cleaning apparatus for carrying out the ultrasonic cleaning regeneration method of organic matter-contaminated ion exchange resin of the present invention.

この超音波洗浄装置において、まず有機物汚染イオン交
換樹脂の洗浄に使用する超音波発振器1を水槽2内に配
置し、その超音波発振器1上方の水中に有機物で汚染さ
れた粒状のイオン交換樹脂を循環させるためのステンレ
ス配管3を設置する。
In this ultrasonic cleaning device, an ultrasonic oscillator 1 used for cleaning ion exchange resin contaminated with organic matter is placed in a water tank 2, and granular ion exchange resin contaminated with organic matter is placed in the water above the ultrasonic oscillator 1. Install stainless steel piping 3 for circulation.

ステンレス管の肉厚は薄いほうが超音波効果が高いため
、1m以下とすることが好ましい。
The thickness of the stainless steel tube is preferably 1 m or less, since the thinner the wall thickness, the higher the ultrasonic effect.

なお、ステンレス管3の他に角形のステンレス箱を循環
装置として用いることもできる。いずれの循環装置でも
中に循環する汚染されたイオン交換樹脂の厚みは約20
はとする。この理由は、循環する該イオン交換樹脂の厚
みが20IIn以上あると循環が不十分になるとともに
超音波の・強度が弱まり、洗浄効果が低下するためであ
る。
In addition to the stainless steel tube 3, a rectangular stainless steel box can also be used as a circulation device. The thickness of the contaminated ion exchange resin circulating in each circulation device is approximately 20
Hatosuru. The reason for this is that if the thickness of the circulating ion exchange resin is 20 IIn or more, the circulation will be insufficient and the intensity of the ultrasonic waves will be weakened, reducing the cleaning effect.

ステンレス配管3は水面下になるように設置し、この時
の水位は超音波発振器表面から約200mnとするが、
超音波のパワーが最大になるように位置調整を行なうこ
とが好ましい。
The stainless steel pipe 3 is installed so that it is below the water surface, and the water level at this time is approximately 200 m from the surface of the ultrasonic oscillator.
It is preferable to adjust the position so that the power of the ultrasonic waves is maximized.

なお、洗浄効果を高めるため、水温を約50℃に保持す
るが、超音波発振器の寿命を考慮して60℃以下とする
Note that in order to enhance the cleaning effect, the water temperature is maintained at about 50°C, but in consideration of the lifespan of the ultrasonic oscillator, the water temperature is kept at 60°C or less.

洗浄に先立ち、循環ポンプで循環させる場合、圧力損失
を出来るだけ少なくするため、洗浄に供される汚染され
たイオン交換樹脂量を、その2〜3倍量の脱塩水を容す
る樹脂貯槽4に入れる。
Prior to cleaning, when circulating with a circulation pump, in order to minimize pressure loss, the amount of contaminated ion exchange resin to be used for cleaning is transferred to a resin storage tank 4 containing 2 to 3 times the amount of demineralized water. put in.

循環ポンプ5で樹脂貯槽4に入っている該イオン交換樹
脂を入口配管6を介してステンレス配管3に送り込み、
出口配管7から樹脂貯槽4に戻しながら循環させ、超音
波発振器1の最大出力で超音波を発生させて、有機物で
汚染されたイオン交換樹脂の洗浄を行なう。
The ion exchange resin contained in the resin storage tank 4 is fed into the stainless steel pipe 3 via the inlet pipe 6 by the circulation pump 5,
The resin is circulated while being returned to the resin storage tank 4 from the outlet pipe 7, and ultrasonic waves are generated at the maximum output of the ultrasonic oscillator 1 to clean the ion exchange resin contaminated with organic matter.

なお、洗浄時間はイオン交換樹脂の汚染状況によって異
なるので、予め試験を行なって決定しておくのが好まし
い。
Note that since the cleaning time varies depending on the contamination status of the ion exchange resin, it is preferable to determine it by conducting a test in advance.

また、超音波洗浄によって除去された汚染物質が、再び
洗浄中のイオン交換樹脂に付着しないように脱塩水を配
管8から樹脂貯槽4に入れ配管9から排出させながら汚
染水を除去する。
Further, in order to prevent the pollutants removed by ultrasonic cleaning from adhering to the ion exchange resin being cleaned again, demineralized water is introduced into the resin storage tank 4 from the pipe 8 and discharged from the pipe 9, while removing the contaminated water.

一方、超音波の周波数と洗浄効果の関係は、般に周波数
が低いほど吸着物を離脱させるキャビテーション強度が
大きいといわれている。現在市販されている超音波発振
器の周波数は、24KH2,28KHzおよび48KH
zの3種類が殆どであるが、今回の洗浄では周波数の低
い24KH2および28KHzの2条件で検討したが、
両者とも洗浄効果は同程度である。
On the other hand, regarding the relationship between the frequency of ultrasonic waves and the cleaning effect, it is generally said that the lower the frequency, the greater the cavitation intensity that causes the adsorbed matter to separate. The frequencies of ultrasonic oscillators currently on the market are 24KH2, 28KHz and 48KH.
Most of the time, there are three types of z, but in this cleaning, we examined two conditions of low frequency, 24KH2 and 28KHz.
Both have similar cleaning effects.

超音波発振器の設置位置は、前述のように上方向照射と
するのが一般的であるが、その地下方向照射、側方向照
射としても洗浄効果は同じである。
The ultrasonic oscillator is generally installed at an upward irradiation position as described above, but the cleaning effect is the same whether the ultrasonic oscillator is irradiated underground or to the side.

また、超音波のパワーは当然のことながら大きいほうが
洗浄効果が上がる。一般に超音波のパワーは超音波の出
力を発振器表面積で除したパワー密度(W/cd)で表
されるが、現在市販されている超音波発振器は、0.5
W/cdおよび1.OW/dの2種類が殆どであるが、
洗浄ではパワー密度の高い1.0W/cdの方が好まし
い。
Also, as a matter of course, the greater the power of the ultrasonic waves, the better the cleaning effect will be. Generally, the power of an ultrasonic wave is expressed as the power density (W/cd), which is the ultrasonic output divided by the oscillator surface area.
W/cd and 1. Most of the time, there are two types: OW/d.
For cleaning, 1.0 W/cd, which has a high power density, is preferable.

本発明の主たる用途は、火力発電所の復水脱塩装置に使
用しているイオン交換樹脂の洗浄であるが、工業用水の
脱塩装置および化プラントの脱塩装置に使用しているイ
オン交換樹脂への応用も可能である。
The main application of the present invention is cleaning ion exchange resins used in condensate desalination equipment in thermal power plants, but it also applies to ion exchange resins used in industrial water desalination equipment and desalination equipment in chemical plants. Application to resin is also possible.

次に前記超音波洗浄装置を用いて、本発明による有機物
汚染のイオン交換樹脂の超音波洗浄回生法を実施した一
実施例について説明する。なお、以下に実施例を挙げて
、本発明をより具体的に説明するが、これらにより、本
発明が制約されるものではない。
Next, an example will be described in which the ultrasonic cleaning apparatus according to the present invention is used to perform an ultrasonic cleaning regeneration method for an ion exchange resin contaminated with organic matter. In addition, although an Example is given below and this invention is demonstrated more concretely, this invention is not restricted by these.

有機物汚染のイオン交換樹脂の洗浄に使用する超音波発
振器1は、表面積600dの投げ込み式(パワー密度:
1.C1’/csf、周波数:28KH2、出力1,2
00W)の仕様のもので、それを水槽2に入れて、その
上方に該樹脂循環用のステンレス配管3(外径Low、
厚み1m+、長さ7゜9m、内表面積2,0OOa#)
を設置した。
The ultrasonic oscillator 1 used for cleaning ion exchange resin contaminated with organic matter is an immersion type (power density:
1. C1'/csf, frequency: 28KH2, output 1, 2
00W), put it in the water tank 2, and above it there is a stainless steel pipe 3 (outer diameter Low,
Thickness 1m+, length 7゜9m, inner surface area 2,0OOa#)
was installed.

洗浄に供される有機物汚染イオン交換樹脂6Qと脱塩水
18Qを樹脂貯槽4に入れて、循環ポンプ5にてステン
レス配管3内を循環させた。
Organic-contaminated ion exchange resin 6Q and demineralized water 18Q to be used for cleaning were placed in resin storage tank 4 and circulated in stainless steel piping 3 by circulation pump 5.

循環は毎分600mQで行ない、超音波は定格まで出力
を上げ、水槽温度を50”C1洗浄時間を60分間の条
件で超音波洗浄を実施した。
Circulation was performed at a rate of 600 mQ/min, the ultrasonic output was increased to the rated value, and ultrasonic cleaning was performed at a water tank temperature of 50"C1 and a cleaning time of 60 minutes.

この時の水槽内での投げ込み式超音波発振器表面からス
テンレス管上端までの水位は約160馬とした。前述の
超音波の条件及び洗浄条件を第1表にまとめて示す。
At this time, the water level in the water tank from the surface of the immersion type ultrasonic oscillator to the top end of the stainless steel tube was approximately 160 horses. The aforementioned ultrasonic conditions and cleaning conditions are summarized in Table 1.

第 表 以上の洗浄条件で超音波洗浄を実施すると有機物などで
汚染されたアニオン樹脂は、再使用可能な範囲まで性能
を回生し、高純度の水質を得ることができる。
When ultrasonic cleaning is performed under the cleaning conditions shown in Table 1, the performance of anionic resin contaminated with organic substances can be regenerated to the extent that it can be reused, and high-purity water quality can be obtained.

有機物汚染のイオン交換樹脂の性能が、再使用可能な範
囲まで回生されたか否かの評価方法を次に示す。
The following is a method for evaluating whether the performance of an ion exchange resin contaminated with organic matter has been recovered to a level where it can be reused.

前述のようにアニオン樹脂の有機物汚染は、イオン交換
速度を著しく低下させるため、陰イオンがリークして正
常な水質が得られなくなる現象であり、硫酸ナトリウム
溶液による負荷試験により判定される。
As mentioned above, organic contamination of the anion resin significantly reduces the ion exchange rate, which is a phenomenon in which anions leak and normal water quality cannot be obtained, and is determined by a loading test with a sodium sulfate solution.

第2図は有機物汚染されたアニオン樹脂について、超音
波洗浄前後における硫酸ナトリウム溶液による負荷試験
結果を示す。試験方法は、イオン交換樹脂(アニオン樹
脂:100mR、カチオン樹脂:200m12)をイオ
ン交換用カラム(25φx800mo)に入れて、硫酸
および苛性ソーダで再生して十分洗浄する。次に電気伝
導率が0.5μS / amの脱塩水、次いで電気伝導
率が5μS/lの硫酸ナトリウム溶液、最後に電気伝導
率が20μS / cxnの硫酸ナトリウム溶液を通水
して負荷をかけて、イオン交換用カラム出口の電気伝導
率を測定してイオン交換性能を測定するものである。
FIG. 2 shows the results of a load test using a sodium sulfate solution before and after ultrasonic cleaning for an anion resin contaminated with organic matter. The test method is to put an ion exchange resin (anion resin: 100 mR, cation resin: 200 m12) into an ion exchange column (25 φ x 800 mo), regenerate it with sulfuric acid and caustic soda, and thoroughly wash it. Next, demineralized water with an electrical conductivity of 0.5 μS/am, then a sodium sulfate solution with an electrical conductivity of 5 μS/l, and finally a sodium sulfate solution with an electrical conductivity of 20 μS/cxn were passed through and a load was applied. The ion exchange performance is measured by measuring the electrical conductivity at the outlet of the ion exchange column.

なお、この試験方法の再生および通水の条件は実際の復
水脱塩装置で定格運転条件を模擬したものである。
Note that the regeneration and water flow conditions in this test method simulate the rated operating conditions of an actual condensate desalination equipment.

第2図の負荷試験結果から、有機物汚染イオン交換樹脂
の超音波洗浄前では、5μs/allおよび20μS 
/ anの硫酸ナトリウム溶液を通水した場合、イオン
交換用カラム出口の電気伝導率は0゜17μS/cs、
0.87μS / rxまで上昇し、火力発電所の復水
脱塩装置出口の水質基準値である0、15μs/αを超
えるため、発電プラントの運転に支障がでる。ところが
、超音波洗浄後では汚染イオン交換樹脂に付着していた
有機物および微細鉄などの汚染物質が洗浄除去されたこ
とから、5μS / amおよび20μS / cmの
硫酸ナトリウム溶液を通水してもイオン交換用カラム出
口の電気電導率は0.07μS/an、0.11μS/
anと殆ど上昇せず、硫酸ナトリウム溶液中の陰イオン
である硫酸イオンは速かに水素イオンと交換が可能とな
る。
From the load test results shown in Figure 2, before ultrasonic cleaning of the organic-contaminated ion exchange resin, 5 μs/all and 20 μS
When a sodium sulfate solution of /an is passed through, the electrical conductivity at the outlet of the ion exchange column is 0°17μS/cs,
This rises to 0.87 μS/rx, exceeding the water quality standard value of 0.15 μs/α at the outlet of a condensate desalination device in a thermal power plant, thereby interfering with the operation of the power plant. However, after ultrasonic cleaning, contaminants such as organic matter and fine iron that had adhered to the contaminated ion exchange resin were washed away. The electrical conductivity at the outlet of the replacement column is 0.07μS/an, 0.11μS/an.
The sulfate ions, which are anions in the sodium sulfate solution, can be quickly exchanged with hydrogen ions.

したがって、復水脱塩装置出口の水質基準値である06
15μS / cxs以下を十分クリアし、有機物汚染
アニオン交換樹脂は運転可能な範囲まで回生できること
が判明した。
Therefore, the water quality standard value at the outlet of the condensate desalination equipment is 06
It was found that the organic matter-contaminated anion exchange resin could be regenerated to the extent that it could be operated by sufficiently clearing 15μS/cxs or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、本発明の有機物汚染のイオン交換樹脂
の超音波洗浄回生法を、水槽中に設置された循環配置中
を通して有機物汚染のイオン交換樹脂を脱塩水とともに
循環させ、超音波を照射して有機物の汚染物質を除去、
洗浄するものとしたので、従来使用不可能とされてきた
有機物汚染のイオン交換樹脂を薬品を使用することなく
安全に回生でき、回生されたイオン交換樹脂により高純
度の水質を得ることができる。
According to the present invention, in the ultrasonic cleaning regeneration method of an ion exchange resin contaminated with organic matter of the present invention, the ion exchange resin contaminated with organic matter is circulated together with demineralized water through a circulation arrangement installed in an aquarium, and irradiated with ultrasonic waves. to remove organic contaminants,
Since the ion exchange resin is washed, organic-contaminated ion exchange resin, which has been considered unusable in the past, can be safely regenerated without using chemicals, and highly purified water can be obtained from the regenerated ion exchange resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機物汚染のイオン交換樹脂の超音波
洗浄回生法を実施するための超音波洗浄装置、第2図は
本発明による超音波洗浄前後におけるイオン交換樹脂の
負荷試験結果を比較する図である。 1・・・超音波発振器、2・・・水槽、3・・・ステン
レス配管、4・・・樹脂水槽、5・・・循環ポンプ。 第 図
Figure 1 shows an ultrasonic cleaning device for carrying out the ultrasonic cleaning regeneration method of organic-contaminated ion exchange resin according to the present invention, and Figure 2 compares the load test results of ion exchange resin before and after ultrasonic cleaning according to the present invention. This is a diagram. 1... Ultrasonic oscillator, 2... Water tank, 3... Stainless steel piping, 4... Resin water tank, 5... Circulation pump. Diagram

Claims (1)

【特許請求の範囲】 1、系統水に含有される有機物の汚染物質の吸着で汚染
された有機物汚染のイオン交換樹脂の洗浄回生処理にあ
たって、水槽中に設置された耐食性管からなる循環配管
中を通して有機物汚染のイオン交換樹脂を脱塩水ととも
に循環させ、該イオン交換樹脂に超音波を照射して、有
機物の汚染物質をイオン交換樹脂から除去して洗浄する
ことを特徴とする有機物汚染のイオン交換樹脂の超音波
洗浄回生法。 2、前記水槽の水として温水を用いることを特徴とする
請求項1記載の有機物汚染のイオン交換樹脂の超音波洗
浄回生法。
[Scope of Claims] 1. In cleaning and regenerating ion exchange resin contaminated with organic matter due to adsorption of organic contaminants contained in system water, it is passed through circulation piping consisting of a corrosion-resistant pipe installed in a water tank. An ion exchange resin free from organic matter pollution, characterized in that the ion exchange resin contaminated with organic matter is circulated together with demineralized water, and the ion exchange resin is irradiated with ultrasonic waves to remove organic contaminants from the ion exchange resin for cleaning. ultrasonic cleaning regeneration method. 2. The ultrasonic cleaning regeneration method for ion exchange resin contaminated with organic matter according to claim 1, characterized in that warm water is used as water in the water tank.
JP2275979A 1990-10-15 1990-10-15 Ultrasonic cleaning regeneration method of ion-exchange resin contaminated with organic substances Expired - Lifetime JPH0687985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2275979A JPH0687985B2 (en) 1990-10-15 1990-10-15 Ultrasonic cleaning regeneration method of ion-exchange resin contaminated with organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275979A JPH0687985B2 (en) 1990-10-15 1990-10-15 Ultrasonic cleaning regeneration method of ion-exchange resin contaminated with organic substances

Publications (2)

Publication Number Publication Date
JPH04150951A true JPH04150951A (en) 1992-05-25
JPH0687985B2 JPH0687985B2 (en) 1994-11-09

Family

ID=17563087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275979A Expired - Lifetime JPH0687985B2 (en) 1990-10-15 1990-10-15 Ultrasonic cleaning regeneration method of ion-exchange resin contaminated with organic substances

Country Status (1)

Country Link
JP (1) JPH0687985B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040938A1 (en) * 1996-04-25 1997-11-06 Aquasonic Trust, Reg. Process and device to treat and modify ion exchange material, and to improve the environmentally-friendly nature of ion exchange processes
CN110927052A (en) * 2019-11-28 2020-03-27 武汉大学 Dynamic coupon test method for red copper
CN114768889A (en) * 2022-04-07 2022-07-22 南京工业大学 Gel type anion-cation exchange resin recovery device and recovery method
CN115121296A (en) * 2022-07-05 2022-09-30 国家电投集团平顶山热电有限公司 Method for treating heavy organic matter pollution of anion exchange resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040938A1 (en) * 1996-04-25 1997-11-06 Aquasonic Trust, Reg. Process and device to treat and modify ion exchange material, and to improve the environmentally-friendly nature of ion exchange processes
CN110927052A (en) * 2019-11-28 2020-03-27 武汉大学 Dynamic coupon test method for red copper
CN114768889A (en) * 2022-04-07 2022-07-22 南京工业大学 Gel type anion-cation exchange resin recovery device and recovery method
CN114768889B (en) * 2022-04-07 2023-08-22 南京工业大学 Gel type anion-cation exchange resin recovery device and recovery method
CN115121296A (en) * 2022-07-05 2022-09-30 国家电投集团平顶山热电有限公司 Method for treating heavy organic matter pollution of anion exchange resin
CN115121296B (en) * 2022-07-05 2023-09-05 国家电投集团河南电力有限公司平东发电分公司 Method for treating severe organic matter pollution of anion exchange resin

Also Published As

Publication number Publication date
JPH0687985B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JP5044178B2 (en) Radionuclide-containing waste liquid treatment method and apparatus
JP2003245616A (en) Chemical washing method
KR20210130807A (en) Systems and methods for regenerating and restoring kinetic properties of resins
EP0265031B1 (en) Apparatus and method for conditioning water
JPH04150951A (en) Method for ultrasonic washing and regeneration of ion exchange resin contaminated with organic matter
JPS613095A (en) Method of removing contaminant on surface of metal in cooling system of nuclear reactor
JP4927210B2 (en) Methods for chemical dissolution of corrosion products
JP3043199B2 (en) Method and apparatus for treating recovered water to obtain reused water
JPH04244289A (en) Treatment of washing water
JP2968809B2 (en) Cleaning water circulation treatment equipment for solder dip machine
JP2671068B2 (en) Equipment for reducing radioactively contaminated water resulting from decontamination of radioactive pollutants
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPS5815016B2 (en) How to clean ion exchange resin
JP6137972B2 (en) Method and apparatus for inhibiting corrosion of nuclear reactor structure
JPH0753273B2 (en) Condensate desalination method
JPS59206054A (en) Process for removing iron and regeneration of ion exchange resin
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JP3671454B2 (en) Performance recovery method for anion exchange resin in condensate demineralizer
JPS6222680B2 (en)
KR810000051B1 (en) Washing method for ion-exchanged resin in mixed-bed desalting device
Applebaum Discussion:“Demineralized Make-Up for 1250-PSI Installation at East Millinocket Mill of Great Northern Paper Company”(Davidson, EF, 1956, Trans. ASME, 78, pp. 875–879)
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JPS591687A (en) Removing method of iron oxide
JP2001162276A (en) Method for treating organic matter-containing water