JPH0531482A - Condensed water demineralizing method - Google Patents

Condensed water demineralizing method

Info

Publication number
JPH0531482A
JPH0531482A JP21051091A JP21051091A JPH0531482A JP H0531482 A JPH0531482 A JP H0531482A JP 21051091 A JP21051091 A JP 21051091A JP 21051091 A JP21051091 A JP 21051091A JP H0531482 A JPH0531482 A JP H0531482A
Authority
JP
Japan
Prior art keywords
condensate
water
exchange resin
mixed bed
exchange resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21051091A
Other languages
Japanese (ja)
Other versions
JPH0753273B2 (en
Inventor
Takeshi Izumi
丈志 出水
Masahiro Hagiwara
正弘 萩原
Kenichi Ichikawa
健一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP3210510A priority Critical patent/JPH0753273B2/en
Publication of JPH0531482A publication Critical patent/JPH0531482A/en
Publication of JPH0753273B2 publication Critical patent/JPH0753273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To prevent the stress corrosion cracking of reactor constituting materials by previously subjecting the primary cooling water of a BWR type atomic power plant to chemical passage regeneration or lowering the dissolved oxygen concn. in the treated water or lowering a water passage line flow velocity, thereby lowering the concn. of org. impurities. CONSTITUTION:Condensate is introduced from a condensate tank 1 by a pump 3 into a resin column 2 consisting of a mixed bed composed of granular cation exchange resins and anion exchange resins and is circulated through a pipe 6 to the condensate tank 1. The dissolved oxygen concn. in the condensate is lowered to <=100ppb by executing a deaeration operation (a) at the time of treating the condensate with the mixed bed as the purifying operation before starting following the shutdown of the plant by a periodic inspection. The drawn water is charged to many demineralizers to lower the water flow line-flow velocity (b). The cation exchange resins and anion exchange resins are previously subjected to the chemical passage regeneration (c). The mixed bed before the water passage is subjected to the recirculating operation by the deaerated water for a long time as far as possible (d). A plurality of the methods (a) to (d) are combined and executed (e).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、BWR原子力発電プラ
ントの一次冷却水の処理を行う復水脱塩方法に係り、特
に、プラント起動前の浄化運転時の一次冷却水の純度を
高め、原子炉の清浄化を達成するための復水脱塩方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensate desalination method for treating primary cooling water of a BWR nuclear power plant, and more particularly, to improving the purity of the primary cooling water at the time of purification operation before starting the plant, Condensed water desalination method for achieving furnace cleaning.

【0002】[0002]

【従来の技術】BWR原子力発電プラントでは、原子炉
の内部を常に清浄な状態に維持しなければならないの
で、復水器から原子炉内に流入する復水を復水脱塩塔に
よって浄化処理して高度に浄化した後、炉内への冷却水
として利用している。この復水脱塩塔は、粒状陽イオン
交換樹脂と陰イオン交換樹脂とが混合して充填された、
いわゆる混床式脱塩塔であって、復水中の不純物を除去
し、浄化するものである。従来、プラント定期点検後の
起動前には、一次冷却水を原子炉内に供給する前に、復
水循環ラインを用いた浄化運転を実施し、定期点検時に
系内に持ち込まれたイオン性不純物や、配管等で発生し
た鉄酸化物等を除去した後に復水を原子炉へ送るため
に、復水脱塩装置にて復水を処理しているが、その際は
特に何も前処理はせず、また採水する脱塩塔数も必要最
小限としていた。
2. Description of the Related Art In a BWR nuclear power plant, the inside of the reactor must be kept clean at all times. Therefore, the condensate flowing into the reactor from the condenser is purified by a condensate demineralization tower. After being highly purified, it is used as cooling water into the furnace. This condensate demineralization tower was filled with a mixture of granular cation exchange resin and anion exchange resin,
This is a so-called mixed bed desalting tower, which removes and purifies impurities in the condensate. Conventionally, before the start-up after the periodical inspection of the plant, before the primary cooling water is supplied into the reactor, the purification operation using the condensate circulation line is performed to check the ionic impurities brought into the system during the periodic inspection. In order to send the condensate to the reactor after removing the iron oxides generated in the pipes, etc., the condensate is treated by the condensate demineralizer, but in this case, no pretreatment is required. In addition, the number of desalting towers to collect water was set to the minimum necessary.

【0003】[0003]

【発明が解決しようとする課題】最近、プラントを長寿
命化するために、原子炉内における一次冷却水の水質を
高純度に維持することが要求されるようになり、前述し
た浄化方法にあっては、イオン性不純物については除去
できるものの、有機性不純物(以下、TOCという)の
除去能力については十分ではなく、装置の高純度化要求
に対応できないことがわかった。即ち、前述の除去され
にくい有機性不純物は、系外から持ち込まれたもの、イ
オン交換樹脂自身より溶出してくるものがあり、通常は
非導電性であるが、原子炉内に流入すると中性子照射や
加熱によりイオン性不純物に変わり、図5に示されるよ
うに原子炉水の導電率を上昇させ、原子炉に悪影響を及
ぼす。本発明は、プラント起動前の復水浄化運転の実施
にあたり、有機性不純物の十分少ない復水が得られるよ
うに浄化運転のできる復水脱塩方法を提供することを課
題とするものである。
Recently, in order to prolong the life of the plant, it has become necessary to maintain the quality of the primary cooling water in the nuclear reactor at a high purity, which is the case in the above-mentioned purification method. As a result, although it was possible to remove ionic impurities, it was found that the ability to remove organic impurities (hereinafter referred to as TOC) was not sufficient, and it was not possible to meet the requirement for high purification of the apparatus. That is, the above-mentioned organic impurities that are difficult to remove include those that are brought in from outside the system and those that are eluted from the ion exchange resin itself, and are usually non-conductive, but when they enter the reactor, they are irradiated with neutrons. By heating or by heating, it changes to ionic impurities and increases the conductivity of the reactor water as shown in FIG. 5, which adversely affects the reactor. It is an object of the present invention to provide a condensate desalination method capable of performing a purifying operation so that a condensate having a sufficiently small amount of organic impurities can be obtained when performing a condensate purifying operation before starting a plant.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、BWR型原子力発電プラントの一次冷
却水処理に際し、復水を粒状陽イオン交換樹脂及び陰イ
オン交換樹脂からなる混床式脱塩装置で処理する復水脱
塩方法において、プラント停止後の起動前に復水を脱塩
装置で浄化運転するに当たり、(a)脱気処理して復水
中の溶存酸素濃度を100ppb 以下に低減して浄化運転
を行う方法、(b)脱塩装置に流れる復水の流量を通常
運転時に比較して少なくし通水線流速を下げて浄化運転
を行う方法、(c)事前に脱塩装置の陽イオン交換樹脂
及び陰イオン交換樹脂を通薬再生してから浄化運転を行
う方法、(d)通水前の復水脱塩塔の再循環操作を通常
時に比較して極力長時間行ってから浄化運転を行う方
法、該(a)〜(d)の方法の一種以上を用いて浄化運
転することにより、復水中に流出する有機性不純物を低
減させることを特徴とする復水脱塩方法としたものであ
る。
In order to solve the above-mentioned problems, according to the present invention, in the treatment of primary cooling water of a BWR type nuclear power plant, condensate is mixed with a granular cation exchange resin and an anion exchange resin. In a condensate desalination method that treats with a water type desalination device, (a) deaeration process is performed to purify the condensate before the start-up after plant shutdown and the dissolved oxygen concentration in the condensate is 100 ppb or less. To reduce the flow rate of condensate flowing through the desalination device to a lower level than in normal operation to reduce the water flow velocity to perform the purification operation. A method in which the cation exchange resin and the anion exchange resin of the salt device are regenerated through a recycle, and (d) the recirculation operation of the condensate demineralization tower before water passage is performed as long as possible compared to normal times. A method of performing a purifying operation after the operation, (a) to (d) The method is a condensate demineralization method characterized by reducing organic impurities flowing into condensate by performing a purification operation using one or more of the above methods.

【0005】すなわち、本発明はBWR型原子力発電プ
ラントの一次冷却水処理の際に、復水を粒状陽イオン交
換樹脂及び陰イオン交換樹脂からなる混床にて処理する
復水脱塩方法において、定期点検によるプラント停止後
の起動前の浄化運転の実施に当たり、次の(a)〜
(d)の方法にて運用することで、BWR型原子力発電
プラントの一次冷却水の純度を高め、特に原子炉の清浄
化を図る復水脱塩方法である。 (a)復水を混床にて処理する際に、脱気運転を実施し
復水中の溶存酸素濃度を100ppb 以下、望ましくは5
0ppb 以下に低減し、イオン交換樹脂の酸化劣化を抑止
し、溶出するTOC量を低減する第一の方法。 (b)復水を混床にて処理する際に、多くの脱塩塔を採
水投入することにより、1塔当たりに流れる流量を少な
くし、通水線流速を下げることで、混床でのTOC除去
性能を向上させ、流出するTOC量を低減する第二の方
法。
That is, the present invention provides a condensate desalination method in which condensate is treated with a mixed bed of granular cation exchange resin and anion exchange resin in the treatment of primary cooling water of a BWR type nuclear power plant, In carrying out the cleaning operation before the start after the plant is stopped by the periodic inspection, the following (a) ~
This is a condensate demineralization method for increasing the purity of the primary cooling water of the BWR type nuclear power plant by operating the method of (d), and especially for cleaning the reactor. (A) When the condensate is treated in a mixed bed, a degassing operation is performed so that the dissolved oxygen concentration in the condensate is 100 ppb or less, preferably 5
The first method is to reduce the amount to less than 0 ppb to suppress the oxidative deterioration of the ion exchange resin and reduce the amount of TOC to be eluted. (B) When treating condensate in a mixed bed, by introducing many desalting towers to reduce the flow rate per tower and reduce the water flow velocity, The second method of improving the TOC removal performance and reducing the amount of TOC flowing out.

【0006】(c)復水を混床にて処理する際に、事前
に陽イオン交換樹脂及び陰イオン交換樹脂を通薬再生
し、予め溶出TOCを系外除去し、かつ表面状態を清浄
にしておくことによりTOC除去性能を向上させ、採水
時に流出するTOC量を低減する第三の方法。 (d)通水前の混床に対して脱気水による再循環操作を
極力長く行うことにより陽イオン交換樹脂及び陰イオン
交換樹脂より溶出するTOCを予め上流側に戻し、均等
に脱塩塔にふり分けることにより通水時のTOCのイン
パクトを軽減させる第四の方法。 (e)請求の範囲(a)〜(d)項の方法を複数組み合
わせて実施することにより、TOC量を低減する第五の
方法。
(C) When the condensate is treated in a mixed bed, the cation exchange resin and the anion exchange resin are passed through and regenerated in advance, the dissolved TOC is removed from the system in advance, and the surface condition is cleaned. The third method is to improve the TOC removal performance and reduce the amount of TOC that flows out when water is collected. (D) The TOC eluted from the cation exchange resin and the anion exchange resin is returned to the upstream side in advance by performing the recirculation operation using degassed water for the mixed bed before water flow as long as possible, and the desalting tower is evenly distributed. The fourth method to reduce the impact of TOC when passing water by dividing it into (E) A fifth method for reducing the TOC amount by carrying out a combination of a plurality of methods according to claims (a) to (d).

【0007】[0007]

【作用】本発明では、BWR型原子力発電プラントの一
次冷却水を復水脱塩装置で処理する際に、採水前に予め
通薬再生を実施するか、通水時には処理水中の溶存酸素
濃度を下げるか、又は通水線流速を下げることにより、
処理水中の有機性不純物濃度を低減するものである。
According to the present invention, when the primary cooling water of the BWR type nuclear power plant is treated by the condensate demineralizer, the regenerator is regenerated before the water is collected, or the dissolved oxygen concentration in the treated water is reduced when the water is passed. Or lowering the water flow velocity,
It reduces the concentration of organic impurities in the treated water.

【0008】[0008]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 本実施例の混床樹脂による有機性不純物の溶出挙動は、
図1の試験装置を用いて行った。図1において、1は復
水タンクで、2は混床樹脂カラム(30mmφ、樹脂量1
00ml)であり、復水はタンク1からポンプ3によっ
て管5を通り、樹脂カラム2に導入され、管6を通り、
タンク1に循環される。復水タンク1には、N2 導入管
8と、真空装置に連結する管7が設けられており、復水
中の酸素濃度を調整できるようになっている。4は流量
計で、9はサンプリング用の採水管である。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited to these examples. Example 1 The elution behavior of organic impurities by the mixed bed resin of this example is as follows.
The test apparatus shown in FIG. 1 was used. In FIG. 1, 1 is a condensate tank, 2 is a mixed bed resin column (30 mmφ, resin amount 1
00 ml), and the condensate is introduced from the tank 1 by the pump 3 through the pipe 5, into the resin column 2, and through the pipe 6,
It is circulated to the tank 1. The condensate tank 1 is provided with a N 2 introduction pipe 8 and a pipe 7 connected to a vacuum device so that the oxygen concentration in the condensate can be adjusted. Reference numeral 4 is a flow meter, and 9 is a sampling pipe for sampling.

【0009】上記の装置を用い、以下の条件により試験
を行った。 使用樹脂量:強酸性ゲル型陽イオン交換樹脂61.5m
lと強塩基性陰イオン交換樹脂38.5mlを混床にて
使用 通水線流速:40m/h 溶存酸素濃度:20〜8000ppb 上記の条件にて通水試験を行い、処理水中のTOC濃度
を測定した結果は図2の通りとなり、溶存酸素濃度が低
い方が溶出するTOC濃度を下げることができる。
A test was conducted using the above apparatus under the following conditions. Amount of resin used: Strongly acidic gel type cation exchange resin 61.5m
1 and 38.5 ml of strongly basic anion exchange resin are used in a mixed bed Water flow velocity: 40 m / h Dissolved oxygen concentration: 20 to 8000 ppb A water passage test is conducted under the above conditions to determine the TOC concentration in the treated water. The measurement result is as shown in FIG. 2, and the TOC concentration eluted can be lowered when the dissolved oxygen concentration is lower.

【0010】実施例2 本実施例の混床樹脂による有機性不純物の溶出挙動は、
図1の試験装置を用い、以下の条件により試験を行っ
た。 使用樹脂量:強酸性ゲル型陽イオン交換樹脂61.5m
lと強塩基性陰イオン交換樹脂38.5mlを混床にて
使用 通水線流速:40〜80m/h 溶存酸素濃度:8ppm 上記の条件にて通水試験を行い、処理水中のTOC濃度
を測定した結果は図3の通りとなり、通水線流速が低い
方が溶出するTOC濃度を下げることができる。
Example 2 The elution behavior of organic impurities by the mixed bed resin of this example is as follows.
Using the test apparatus of FIG. 1, a test was conducted under the following conditions. Amount of resin used: Strongly acidic gel type cation exchange resin 61.5m
1 and 38.5 ml of strongly basic anion exchange resin are used in a mixed bed Water flow velocity: 40 to 80 m / h Dissolved oxygen concentration: 8 ppm A water flow test is conducted under the above conditions to determine the TOC concentration in the treated water. The measurement result is as shown in FIG. 3, and the TOC concentration to be eluted can be lowered when the water flow velocity is low.

【0011】実施例3 本実施例の混床樹脂による有機性不純物の溶出挙動は、
図1の試験装置を用い、以下の条件により試験を行っ
た。 使用樹脂:酸(H2 SO4 ,HClなど)により通薬再
生した陽イオン交換樹脂及びアルカリ(NaOH,KO
Hなど)により通薬再生した陰イオン交換樹脂と、未再
生品。 使用樹脂量:強酸性ゲル型陽イオン交換樹脂61.5m
lと強塩基性陰イオン交換樹脂38.5mlを混床にて
使用 通水線流速:80m/h 溶存酸素濃度:8ppm 上記の条件にて通水試験を行い、処理水中のTOC濃度
を測定した結果は図4の通りとなり、通薬再生を実施し
た場合の方が溶出するTOC濃度を下げることができ
る。
Example 3 The elution behavior of organic impurities by the mixed bed resin of this example is as follows.
Using the test apparatus of FIG. 1, a test was conducted under the following conditions. Resins used: Cation exchange resin regenerated by acid (H 2 SO 4 , HCl, etc.) and alkali (NaOH, KO)
Anion exchange resin that has been regenerated by using H) and an unregenerated product. Amount of resin used: Strongly acidic gel type cation exchange resin 61.5m
1 and 38.5 ml of strongly basic anion exchange resin are used in a mixed bed Water flow velocity: 80 m / h Dissolved oxygen concentration: 8 ppm A water passage test is conducted under the above conditions to measure the TOC concentration in the treated water. The results are shown in FIG. 4, and the TOC concentration to be eluted can be lowered when the regenerant regeneration is carried out.

【0012】[0012]

【発明の効果】本発明によれば、BWR原子力発電プラ
ントの一次冷却水の処理で行われる復水の脱塩方法にお
いて、復水中のTOC濃度を低減することが可能とな
り、プラント起動時における原子炉水導電率を第5図の
ごとく下げ、純度を高めることができる。これにより、
原子炉構成材料の応力腐食割れ(SCC)を防止し、プ
ラントを長寿命化させることができる。
According to the present invention, the TOC concentration in the condensate can be reduced in the desalination method of the condensate which is performed in the treatment of the primary cooling water of the BWR nuclear power plant. The reactor water conductivity can be lowered as shown in FIG. 5 to increase the purity. This allows
It is possible to prevent stress corrosion cracking (SCC) of the constituent material of the nuclear reactor and to extend the life of the plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた試験装置の概略図であ
る。
FIG. 1 is a schematic diagram of a test apparatus used in an example of the present invention.

【図2】TOC濃度と溶存酸素濃度の関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between TOC concentration and dissolved oxygen concentration.

【図3】TOC濃度と通水線流速の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between TOC concentration and water flow linear velocity.

【図4】通薬再生処理のTOC濃度の低減効果を示すグ
ラフである。
FIG. 4 is a graph showing the effect of reducing the TOC concentration in the common drug regeneration process.

【図5】原子炉水導電率とTOC濃度の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between reactor water conductivity and TOC concentration.

【符号の説明】[Explanation of symbols]

1:復水タンク、2:混床樹脂カラム、3:ポンプ、
4:流量計、5,6:循環管、7:真空装置連結管、
8:N2 供給管、9:サンプリング管
1: Condensate tank, 2: Mixed bed resin column, 3: Pump,
4: Flow meter, 5, 6: Circulation pipe, 7: Vacuum device connecting pipe,
8: N 2 supply pipe, 9: sampling pipe

Claims (1)

【特許請求の範囲】 【請求項1】 BWR型原子力発電プラントの一次冷却
水処理に際し、復水を粒状陽イオン交換樹脂及び陰イオ
ン交換樹脂からなる混床式脱塩装置で処理する復水脱塩
方法において、プラント停止後の起動前に復水を脱塩装
置で浄化運転するに当たり、 (a)脱気処理して復水中の溶存酸素濃度を100ppb
以下に低減して浄化運転を行う方法、 (b)脱塩装置に流れる復水の流量を通常運転時に比較
して少なくし通水線流速を下げて浄化運転を行う方法、 (c)事前に脱塩装置の陽イオン交換樹脂及び陰イオン
交換樹脂を通薬再生してから浄化運転を行う方法、 (d)通水前の復水脱塩塔の再循環操作を通常時に比較
して極力長時間行ってから浄化運転を行う方法、該
(a)〜(d)の方法の一種以上を用いて浄化運転する
ことにより、復水中に流出する有機性不純物を低減させ
ることを特徴とする復水脱塩方法。
Claim: What is claimed is: 1. Condensate dewatering in which a condensate is treated with a mixed bed desalination apparatus comprising granular cation exchange resin and anion exchange resin in the treatment of primary cooling water of a BWR nuclear power plant. In the salt method, when the condensate is purified by the desalination device before the start-up after the plant is stopped, (a) degassing treatment is performed to adjust the dissolved oxygen concentration in the condensate to 100 ppb.
(B) A method of performing the purification operation by reducing the flow rate of the condensate flowing in the desalination device as compared with the normal operation to reduce the water flow velocity, and (c) beforehand. A method of purifying the cation exchange resin and anion exchange resin of the desalting equipment after regenerating the same, (d) recirculation operation of the condensate demineralization tower before water passage is longer than usual. Condensate characterized by reducing the organic impurities flowing out into the condensate by performing the purifying operation using one or more of the methods (a) to (d) after performing the purifying operation after a certain period of time. Desalination method.
JP3210510A 1991-07-29 1991-07-29 Condensate desalination method Expired - Lifetime JPH0753273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210510A JPH0753273B2 (en) 1991-07-29 1991-07-29 Condensate desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210510A JPH0753273B2 (en) 1991-07-29 1991-07-29 Condensate desalination method

Publications (2)

Publication Number Publication Date
JPH0531482A true JPH0531482A (en) 1993-02-09
JPH0753273B2 JPH0753273B2 (en) 1995-06-07

Family

ID=16590568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210510A Expired - Lifetime JPH0753273B2 (en) 1991-07-29 1991-07-29 Condensate desalination method

Country Status (1)

Country Link
JP (1) JPH0753273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate
CN109166636A (en) * 2018-08-06 2019-01-08 广东核电合营有限公司 A kind of system and method that compacted clay liners primary Ioops uninterruptedly purify

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227491A (en) * 1986-03-31 1987-10-06 Toshiba Corp Apparatus for washing resin of atomic power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227491A (en) * 1986-03-31 1987-10-06 Toshiba Corp Apparatus for washing resin of atomic power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058832A (en) * 2009-09-07 2011-03-24 Ebara Corp System and method for demineralizing condensate
CN109166636A (en) * 2018-08-06 2019-01-08 广东核电合营有限公司 A kind of system and method that compacted clay liners primary Ioops uninterruptedly purify
CN109166636B (en) * 2018-08-06 2023-08-25 广东核电合营有限公司 System and method for uninterrupted purification of primary circuit of pressurized water reactor nuclear motor unit

Also Published As

Publication number Publication date
JPH0753273B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP2009240891A (en) Method for producing ultrapure water
JP4931178B2 (en) Condensate desalination method and apparatus
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JPH11352283A (en) Condensate processing method and condensate demineralization device
JPH0531482A (en) Condensed water demineralizing method
JP4346088B2 (en) Ion-exchange resin drug regeneration method and apparatus
JPH09276862A (en) Condensed water desalting apparatus
JP3043199B2 (en) Method and apparatus for treating recovered water to obtain reused water
JP4383091B2 (en) Condensate desalination method and apparatus
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2007105558A (en) Method and apparatus for demineralizing recovered water
JPH04150951A (en) Method for ultrasonic washing and regeneration of ion exchange resin contaminated with organic matter
JP3472658B2 (en) Regeneration method of anion exchange resin
JP3045911B2 (en) Water treatment method for nuclear power plant
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
KR100290643B1 (en) CCP Process for SG Molar Ratio Control in NPP and CPP device of the same
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JP2851442B2 (en) Method and apparatus for evaluating performance of ion exchange resin used in ion exchange apparatus
JP2965806B2 (en) Regeneration method of condensate desalination equipment
JP2005296748A (en) Condensate demineralizer and its regeneration method
JP2776722B2 (en) Operation method of ammonia type condensate desalination equipment
JP3598798B2 (en) Regeneration method of mixed bed type desalination equipment
JP2543767B2 (en) Condensate desalination method
JP2016191619A (en) Condensate demineralization apparatus and condensate demineralization method
JP3709645B2 (en) Regeneration method of condensate demineralizer