JPH0677687B2 - Regeneration method of ion exchange resin - Google Patents

Regeneration method of ion exchange resin

Info

Publication number
JPH0677687B2
JPH0677687B2 JP1292394A JP29239489A JPH0677687B2 JP H0677687 B2 JPH0677687 B2 JP H0677687B2 JP 1292394 A JP1292394 A JP 1292394A JP 29239489 A JP29239489 A JP 29239489A JP H0677687 B2 JPH0677687 B2 JP H0677687B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
clad
regeneration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1292394A
Other languages
Japanese (ja)
Other versions
JPH03154642A (en
Inventor
正弘 萩原
健一 市川
丈志 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1292394A priority Critical patent/JPH0677687B2/en
Publication of JPH03154642A publication Critical patent/JPH03154642A/en
Publication of JPH0677687B2 publication Critical patent/JPH0677687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン交換樹脂の再生方法に関し、復水処理に
より汚染されたイオン交換樹脂からクラッドを効果的に
除去することにより、再生後の復水処理時の懸濁不純物
の除去能力を向上させる再生方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for regenerating an ion exchange resin, and by effectively removing a clad from an ion exchange resin contaminated by a condensate treatment, a recuperation after the regeneration is performed. The present invention relates to a regeneration method for improving the ability to remove suspended impurities during water treatment.

〔従来の技術〕[Conventional technology]

汽力発電設備ではボイラーの内部を常に清浄な状態に維
持しなければならないので、復水器からボイラーへ流入
する復水を復水脱塩器によって浄化処理し、高度に浄化
した後、ボイラー内への冷却水として給水している。
In steam power generation equipment, the inside of the boiler must be kept clean at all times, so the condensate that flows into the boiler from the condenser is purified by a condensate demineralizer, and then highly purified before entering the boiler. Water is supplied as cooling water.

この復水脱塩器は、陽イオン交換樹脂と陰イオン交換樹
脂とが混合して充填されたいわゆる混床式脱塩塔であっ
て、復水中のイオン成分と懸濁固形成分(主に金属酸化
物でクラッドと通称される)とをイオン交換・ろ過及び
吸着によって除去し、復水を浄化するものである。そし
て、イオン交換樹脂に捕捉されたイオン成分及びクラッ
ドは、復水脱塩装置の再生塔で酸及びアルカリによる化
学的再生及び逆洗による物理的洗浄操作により、イオン
交換樹脂から離脱して系外に排出される。それによりイ
オン交換樹脂を清浄化し、イオン成分及びクラッドの除
去能力を回復していた。
This condensate demineralizer is a so-called mixed bed desalting tower in which a cation exchange resin and an anion exchange resin are mixed and packed, and the ionic components and suspended solid components (mainly metal Oxide (commonly called clad) is removed by ion exchange, filtration and adsorption to purify condensate. Then, the ion component and the clad trapped in the ion exchange resin are separated from the ion exchange resin by the chemical regeneration in the regenerator of the condensate demineralizer and the physical washing operation by the backwash and removed from the system. Is discharged to. As a result, the ion exchange resin was cleaned and the ability to remove the ionic components and the clad was restored.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、ボイラー内への冷却水に要求されるクラ
ッドの清浄度が高度化されたために、イオン交換樹脂は
高いクラッド除去能力を持つことが求められるが、前述
した物理的洗浄操作では樹脂層の粒間に付着したクラッ
ドをはく離するだけであり、また化学的再生操作では、
現状の酸及びアルカリとの接触時間が約1〜2時間と短
かいことから、樹脂粒表面に吸着したクラッドや粒内に
吸蔵したクラッドを十分に除去できないため、イオン交
換樹脂を高度に清浄化することができず、通水時のクラ
ッド吸着能力が小さく、クラッド除去の高度化要求には
対応できない現状にある。
However, since the cleanliness of the clad required for cooling water into the boiler has been improved, the ion exchange resin is required to have a high clad removing ability. It only peels off the clad attached between, and in the chemical regeneration operation,
Since the current contact time with acid and alkali is as short as 1 to 2 hours, the clad adsorbed on the resin particle surface and the clad adsorbed inside the particle cannot be removed sufficiently, so the ion exchange resin is highly cleaned. However, the ability to adsorb the clad when passing water is too small to meet the demand for advanced clad removal.

本発明者は、このような現状に鑑み鋭意研究を重ね、本
発明に想到したものであって、本発明はイオン交換樹脂
のクラッド除去能力を常に高い水準に維持し得るイオン
交換樹脂の再生方法に関するものである。
The present inventor has made earnest studies in view of such a current situation and has conceived the present invention. The present invention is a method for regenerating an ion exchange resin capable of always maintaining the clad removing ability of the ion exchange resin at a high level. It is about.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、汽力発電プラントの復水処理により汚染され
た粒状の陽イオン交換樹脂と陰イオン交換樹脂との混合
樹脂を再生する方法において、当該混合樹脂を陽イオン
交換樹脂と陰イオン交換樹脂とに分離し、分離した陽イ
オン交換樹脂を酸性水溶液中に5時間以上浸漬して再生
を行い、また分離した陰イオン交換樹脂を常法により再
生することを特徴とするイオン交換樹脂の再生方法であ
る。
The present invention relates to a method for regenerating a mixed resin of a granular cation exchange resin and an anion exchange resin which is contaminated by condensate treatment of a steam power plant, wherein the mixed resin is a cation exchange resin and an anion exchange resin. In the method for regenerating an ion exchange resin, the separated cation exchange resin is soaked in an acidic aqueous solution for 5 hours or more for regeneration, and the separated anion exchange resin is regenerated by a conventional method. is there.

本発明において、汚染された粒状陽イオン交換樹脂と陰
イオン交換樹脂との混合樹脂を陽イオン交換樹脂と陰イ
オン交換樹脂とに分離する手段としては、比重差を利用
する手段等が例示されるが、特に限定されるものではな
い。
In the present invention, as a means for separating a contaminated mixed resin of a cation exchange resin and an anion exchange resin into a cation exchange resin and an anion exchange resin, a means utilizing a difference in specific gravity is exemplified. However, it is not particularly limited.

具体的には、下からの上層流により、陽イオン交換樹脂
と陰イオン交換樹脂とを比重差により上下二層(陽イオ
ン交換樹脂が下、陰イオン交換樹脂が上)に分離する。
分離された上層部の陰イオン交換樹脂を別置きの塔(陰
イオン交換樹脂再生塔)へ移送する。
Specifically, the cation exchange resin and the anion exchange resin are separated into two upper and lower layers (the cation exchange resin is the lower side and the anion exchange resin is the upper side) due to the difference in specific gravity due to the upper layer flow from the bottom.
The separated upper layer anion exchange resin is transferred to a separate column (anion exchange resin regeneration tower).

これら分離手段は該陽イオン交換樹脂を酸性水溶液中に
て再生処理する手段と別個の装置を用いても同一の装置
を用いても良い。また、該分離処理と再生処理とは、断
続的でも連続的でも良い。更に、該分離処理により分離
された陰イオン交換樹脂は、通常、NaOH溶液によって処
理される。
These separating means may be the same as or different from the means for regenerating the cation exchange resin in an acidic aqueous solution. Further, the separation process and the regeneration process may be intermittent or continuous. Further, the anion exchange resin separated by the separation treatment is usually treated with a NaOH solution.

本発明に用いられる陽イオン交換樹脂と陰イオン交換樹
脂としては、業界公知のものが使用できる。その具体例
を挙げれば、陽イオン交換樹脂としては、強酸性ゲル型
もしくはマクロポーラス型陽イオン交換樹脂等、陰イオ
ン交換樹脂としては、強酸性ゲル型もしくはマクロポー
ラス型陰イオン交換樹脂(I型)等が挙げられる。
As the cation exchange resin and the anion exchange resin used in the present invention, those known in the art can be used. Specific examples thereof include strong acid gel type or macroporous type cation exchange resin as the cation exchange resin, and strong acidic gel type or macroporous type anion exchange resin (I type) as the anion exchange resin. ) And the like.

本発明においては、従来の再生方法、即ち、満水状態の
陽イオン交換樹脂再生塔内の樹脂層上部より注入される
約8%濃度のH2SO4が分配ノズルを経由して樹脂層を上
から下へ流れ、その間再生が行われる方法等に比較し、
酸性水溶液と接触している時間が長いため、樹脂粒表面
に吸着もしくは粒内に吸蔵されたクラッドを効率よく除
去・排出することにより樹脂粒表面を清浄化し、その後
の通水に際し、よりクラッド濃度の低い高純度の水を得
ることができる。またその際に用いる陽イオン交換樹脂
の再生剤として用いる酸性水溶液としては、硫酸、塩酸
または硝酸等の水溶液が適当であり、またそれらの使用
濃度は2重量%以上であれば特に限定されないが、酸に
よる機器の腐食及び経済性を考慮し望ましくは5〜10重
量%とすることにより十分な効果が得られる。
In the present invention, the conventional regeneration method, that is, H 2 SO 4 having a concentration of about 8% injected from the upper portion of the resin layer in the cation exchange resin regeneration tower in a full state is transferred to the resin layer via the distribution nozzle. From the bottom to the bottom, comparing with the method that regeneration is performed during that,
Since it is in contact with the acidic aqueous solution for a long time, the resin particle surface is cleaned by efficiently removing and discharging the clad adsorbed on the resin particle surface or occluded inside the particle, and when the water is passed thereafter, the clad concentration becomes higher. It is possible to obtain high-purity water having a low purity. Further, as the acidic aqueous solution used as the regenerant of the cation exchange resin used at that time, an aqueous solution of sulfuric acid, hydrochloric acid, nitric acid or the like is suitable, and the concentration of those used is not particularly limited as long as it is 2% by weight or more. Considering the corrosion of the equipment due to acid and economical efficiency, a sufficient effect can be obtained by preferably adding 5 to 10% by weight.

(作用) 以下、本発明の作用を図を参照して従来技術と対比して
述べる。
(Operation) Hereinafter, the operation of the present invention will be described with reference to the drawings in comparison with the related art.

第1図は、陽イオン交換樹脂を8重量%硫酸中に浸漬し
た時間を横軸に、表面に吸着したクラッド鉄量を縦軸に
表わしたものであり、これによれば浸漬時間を長くする
ほど吸着したクラッド鉄量が減少することが分かる。従
来の満水状態の陽イオン交換樹脂再生塔内の樹脂層上部
より注入される約8%濃度のH2SO4が分配ノズルを経由
して樹脂層を上から下へ流れ、その間再生が行われる方
法による化学的再生操作では酸性水溶液と接触している
時間は、従来法は、イオン交換能力を回復させることの
みを目的としていたため1〜2時間程度である。一方本
発明は、短時間では溶解・除去しにくいクラッドを除去
することを目的として酸性水溶液に浸漬された段階で通
液を停止するため、5時間以上浸漬することができるの
で、上述の通り吸着したクラッドの陽イオン交換樹脂か
らの脱離量が増大するため、再生後の復水処理時の懸濁
不純物の除去能力は高まる。
FIG. 1 shows the time of immersing the cation exchange resin in 8% by weight sulfuric acid on the horizontal axis and the amount of clad iron adsorbed on the surface on the vertical axis. According to this, the immersion time is lengthened. It can be seen that the amount of clad iron adsorbed decreases. About 8% concentration of H 2 SO 4 injected from the upper part of the resin layer in the conventional cation-exchange resin regeneration tower in a full water state flows from the top to the bottom of the resin layer via the distribution nozzle, and regeneration is performed during that time. In the chemical regeneration operation by the method, the time of contact with the acidic aqueous solution is about 1 to 2 hours because the conventional method was only intended to restore the ion exchange capacity. On the other hand, in the present invention, since the passage is stopped at the stage of being immersed in the acidic aqueous solution for the purpose of removing the clad that is difficult to dissolve and remove in a short time, the immersion can be performed for 5 hours or more. Since the amount of the clad desorbed from the cation exchange resin increases, the ability to remove suspended impurities during the condensate treatment after regeneration increases.

本発明においては、表面に吸着したクラッドの除去能力
や運転操作上の問題を考慮し、好ましくは10〜15時間の
範囲で浸漬再生処理するのがよい。
In the present invention, the immersion regeneration treatment is preferably performed for 10 to 15 hours in consideration of the ability to remove the clad adsorbed on the surface and problems in operation.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明するが、本発
明はこの実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

第3図は本発明に使用する陽イオン交換樹脂の再生処理
装置の一具体例を示した断面概略図であり、1はスクラ
ピング空気弁、2は逆洗水弁、3は酸入口弁、4はフリ
ーボードドレン弁、5はフリーボードドレン管逆洗用空
気弁、6はオーバーフロー弁、7は洗浄水弁、8は加圧
空気弁、9はベント弁、10は廃液ドレン弁、11は再生
塔、12は空気及び水供給管、13は酸供給管、14はフリー
ボードドレン管、15はオーバーフロー管を示す。
FIG. 3 is a schematic cross-sectional view showing a specific example of a cation exchange resin regeneration treatment apparatus used in the present invention, wherein 1 is a scraping air valve, 2 is a backwash water valve, 3 is an acid inlet valve, 4 Is a freeboard drain valve, 5 is a freeboard drain pipe backwash air valve, 6 is an overflow valve, 7 is a wash water valve, 8 is a pressurized air valve, 9 is a vent valve, 10 is a drain drain valve, and 11 is a regeneration valve. A tower, 12 is an air and water supply pipe, 13 is an acid supply pipe, 14 is a freeboard drain pipe, and 15 is an overflow pipe.

汚染混合樹脂から比重差により陰、陽イオン交換樹脂を
分離し、水に懸濁した汚染陽イオン交換樹脂すなわち汚
染樹脂のスラリーを再生塔11に導入し、酸供給管13の下
方のレベルまで樹脂を収容する。次に、加圧空気弁8及
び廃液ドレン弁10を開き他の弁は全閉して再生塔11内の
水を抜き取り、酸入口弁3及びベンド弁9を開き他の弁
は全閉して汚染樹脂の入った状態で酸供給管13より酸性
水溶液を供給し汚染樹脂を浸漬する。次いで酸入口弁3
を全閉にした状態で保管する。所定時間(5時間以上、
望ましくは10〜15時間)浸漬を行なって汚染樹脂に吸着
したクラッドを酸性水溶液中に離脱させた後、加圧空気
弁8及び廃液ドレン弁10を開き他の弁を全閉してクラッ
ドを含む酸性水溶液すなわち廃液を排出させる。次に、
ベンド弁9及び洗浄水弁7を開き他の弁は全閉して再生
塔11に水張りを行なった後、洗浄水弁7及び廃液ドレン
弁10を開き他の弁は全閉して洗浄した樹脂に付着してい
る酸の洗浄を行なう。この操作において、汚染樹脂のク
ラッド汚染が著しい場合には、上記酸性水溶液による洗
浄を複数回繰り返して効果を向上させることができる。
The anion and cation exchange resins are separated from the contaminated resin by the difference in specific gravity, and the contaminated cation exchange resin suspended in water, that is, the slurry of the contaminated resin, is introduced into the regeneration tower 11, and the resin is lowered to a level below the acid supply pipe 13. To house. Next, the pressurized air valve 8 and the waste liquid drain valve 10 are opened and the other valves are fully closed to drain the water in the regeneration tower 11, the acid inlet valve 3 and the bend valve 9 are opened, and the other valves are fully closed. An acidic aqueous solution is supplied from the acid supply pipe 13 with the contaminated resin contained, and the contaminated resin is immersed. Then acid inlet valve 3
Store in a fully closed position. Predetermined time (5 hours or more,
After dipping for 10 to 15 hours) to remove the clad adsorbed on the contaminated resin from the acidic aqueous solution, the pressurized air valve 8 and the waste liquid drain valve 10 are opened and the other valves are fully closed to include the clad. The acidic aqueous solution, that is, the waste liquid is discharged. next,
After the bend valve 9 and the wash water valve 7 are opened and the other valves are fully closed to fill the regeneration tower 11 with water, the wash water valve 7 and the waste liquid drain valve 10 are opened and the other valves are fully closed to wash the resin. Wash the acid adhering to the. In this operation, when the clad contamination of the contaminated resin is significant, the effect can be improved by repeating the washing with the acidic aqueous solution a plurality of times.

次に、上記再生処理装置で汚染混合樹脂から分別した陽
イオン交換樹脂を12時間浸漬再生を行ない、陰イオン交
換樹脂はアルカリ性水溶液を下方流にて1時間通液する
従来通りの方法にて処理し、これら両イオン交換樹脂か
らなる混合樹脂を混床脱塩塔に充填し、再生後の復水処
理時の混床脱塩塔出口のクラッド鉄濃度の推移を測定し
た。この結果を第2図に示す。
Next, the cation exchange resin separated from the contaminated mixed resin is immersed and regenerated for 12 hours in the above regeneration treatment apparatus, and the anion exchange resin is treated by a conventional method in which an alkaline aqueous solution is passed downward for 1 hour. Then, a mixed resin composed of these both ion exchange resins was filled in a mixed bed desalting tower, and the transition of the clad iron concentration at the outlet of the mixed bed desalting tower during the condensate treatment after regeneration was measured. The results are shown in FIG.

又、比較として、上記と同一汚染混合樹脂を前述した従
来の化学的再生操作である酸性水溶液を樹脂層上部より
下方流にて1時間再生処理した以外は、上記と同様にし
て、再生後の復水処理時の混床脱塩塔出口のクラッド鉄
濃度の推移を測定した。この結果も第2図に示した。
For comparison, the same contaminated mixed resin as described above was regenerated after the regeneration in the same manner as above except that an acidic aqueous solution, which was the conventional chemical regeneration operation described above, was regenerated at a downward flow from the upper part of the resin layer for 1 hour. The transition of the clad iron concentration at the outlet of the mixed bed desalination tower during the condensate treatment was measured. This result is also shown in FIG.

上記、実施例および比較例から、本発明の再生方法によ
りクラッドの除去性能が著しく向上することが確認され
た。
From the above-mentioned Examples and Comparative Examples, it was confirmed that the reclaiming method of the present invention markedly improves the clad removing performance.

なお、第3図に示した装置は、通常行なわれている純水
と空気による物理的洗浄に使用されている装置と同型の
ものであり、本発明はこのような既設の洗浄設備を利用
して極めて簡単に実施できるという利点を有している。
The apparatus shown in FIG. 3 is of the same type as the apparatus used for physical cleaning that is normally performed with pure water and air, and the present invention utilizes such existing cleaning equipment. It has the advantage of being extremely simple to implement.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明においてはイオン交換樹脂に
てクラッドを除去する能力が従来技術と比較して著しく
優れているため、復水中のクラッドを復水脱塩器によっ
て高度に浄化することができ、ボイラー内部を常に清浄
な状態に維持することが可能となり、構成機器の健全性
を維持することができる。
As described above, in the present invention, the ability to remove the clad with the ion exchange resin is remarkably excellent as compared with the prior art, so that the clad in the condensate can be highly purified by the condensate demineralizer. Therefore, the inside of the boiler can be always kept clean, and the soundness of the constituent equipment can be maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図は酸性水溶液中への浸漬時間と樹脂粒表面に吸着
したクラッド量との関係を示したグラフであり、クラッ
ド量は浸漬前の表面吸着クラッド鉄量を1に規格化して
示した。第2図は従来技術である比較例と本発明の実施
例における汚染混合樹脂の再生後の復水処理時の脱塩塔
出口のクラッド鉄濃度の経時変化を示したグラフ、第3
図は本発明に使用する装置の一具体例を示した断面概略
図である。 1…スクラピング空気弁 2…逆洗水弁 3…酸入口弁 4…フリーボードドレン弁 5…フリーボードドレン管逆洗用空気弁 6…オーバーフロー弁 7…洗浄水弁 8…加圧空気弁 9…ベント弁 10…廃液ドレン弁 11…再生塔 12…空気及び水供給管
FIG. 1 is a graph showing the relationship between the immersion time in an acidic aqueous solution and the amount of clad adsorbed on the surface of resin particles. The clad amount is shown by normalizing the surface adsorbed clad iron amount before immersion to 1. FIG. 2 is a graph showing the change over time in the clad iron concentration at the outlet of the desalting tower during the condensate treatment after regeneration of the contaminated mixed resin in the conventional comparative example and the example of the present invention.
The figure is a schematic sectional view showing a specific example of the apparatus used in the present invention. 1 ... Scraping air valve 2 ... Backwash water valve 3 ... Acid inlet valve 4 ... Freeboard drain valve 5 ... Freeboard drain pipe backwash air valve 6 ... Overflow valve 7 ... Wash water valve 8 ... Pressurized air valve 9 ... Vent valve 10 ... Waste liquid drain valve 11 ... Regeneration tower 12 ... Air and water supply pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】汽力発電プラントの復水処理により汚染さ
れた粒状の陽イオン交換樹脂と陰イオン交換樹脂との混
合樹脂を再生する方法において、当該混合樹脂を陽イオ
ン交換樹脂と陰イオン交換樹脂とに分離し、分離した陽
イオン交換樹脂を酸性水溶液中に5時間以上浸漬して再
生を行い、また分離した陰イオン交換樹脂を常法により
再生することを特徴とするイオン交換樹脂の再生方法。
1. A method for regenerating a mixed resin of a granular cation exchange resin and an anion exchange resin, which is contaminated by condensate treatment of a steam power plant, wherein the mixed resin is a cation exchange resin and an anion exchange resin. And the separated cation exchange resin is immersed in an acidic aqueous solution for 5 hours or more for regeneration, and the separated anion exchange resin is regenerated by a conventional method. .
【請求項2】酸性水溶液が硫酸、塩酸または硝酸水溶液
であることを特徴とする請求項1記載のイオン交換樹脂
の再生方法。
2. The method for regenerating an ion exchange resin according to claim 1, wherein the acidic aqueous solution is an aqueous solution of sulfuric acid, hydrochloric acid or nitric acid.
JP1292394A 1989-11-13 1989-11-13 Regeneration method of ion exchange resin Expired - Lifetime JPH0677687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292394A JPH0677687B2 (en) 1989-11-13 1989-11-13 Regeneration method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292394A JPH0677687B2 (en) 1989-11-13 1989-11-13 Regeneration method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPH03154642A JPH03154642A (en) 1991-07-02
JPH0677687B2 true JPH0677687B2 (en) 1994-10-05

Family

ID=17781223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292394A Expired - Lifetime JPH0677687B2 (en) 1989-11-13 1989-11-13 Regeneration method of ion exchange resin

Country Status (1)

Country Link
JP (1) JPH0677687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427739A (en) * 2015-03-17 2017-12-01 唐纳森公司 Water bag hydrocarbon purifies anion exchange system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113180A (en) * 1999-10-20 2001-04-24 Sumika Chemical Analysis Service Ltd Method for manufacturing carbonyl compound capturing tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427739A (en) * 2015-03-17 2017-12-01 唐纳森公司 Water bag hydrocarbon purifies anion exchange system

Also Published As

Publication number Publication date
JPH03154642A (en) 1991-07-02

Similar Documents

Publication Publication Date Title
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
US2773829A (en) Process and apparatus for subsurface washing
US4379855A (en) Method of ion exchange regeneration
JPH0677687B2 (en) Regeneration method of ion exchange resin
JPS595015B2 (en) How to clean ion exchange resin
JPH0747371A (en) Treatment of fluoride-containing water
JPH0478344B2 (en)
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP3963025B2 (en) Ion exchange resin separation and regeneration method
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JPS5815016B2 (en) How to clean ion exchange resin
JP2881107B2 (en) Regeneration method of mixed bed type ion exchange tower
US5428074A (en) Method for separating ion exchange resins and for removing metallic foulants from the resins
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP2654053B2 (en) Condensate desalination equipment
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
KR100345315B1 (en) Recycling apparatus and Method of Waste Acid
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JP3472658B2 (en) Regeneration method of anion exchange resin
JPS5940063B2 (en) Ion exchange resin cleaning method and device
JPS6259979B2 (en)
JPH10216536A (en) Regeneration or anion exchange resin
JPH0138553B2 (en)
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JP2543767B2 (en) Condensate desalination method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 16