JP3837762B2 - Ion exchange resin separation and regeneration method - Google Patents

Ion exchange resin separation and regeneration method Download PDF

Info

Publication number
JP3837762B2
JP3837762B2 JP25782195A JP25782195A JP3837762B2 JP 3837762 B2 JP3837762 B2 JP 3837762B2 JP 25782195 A JP25782195 A JP 25782195A JP 25782195 A JP25782195 A JP 25782195A JP 3837762 B2 JP3837762 B2 JP 3837762B2
Authority
JP
Japan
Prior art keywords
resin
regeneration
exchange resin
ion exchange
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25782195A
Other languages
Japanese (ja)
Other versions
JPH0999244A (en
Inventor
武 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP25782195A priority Critical patent/JP3837762B2/en
Publication of JPH0999244A publication Critical patent/JPH0999244A/en
Application granted granted Critical
Publication of JP3837762B2 publication Critical patent/JP3837762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は混床を形成しているイオン交換樹脂を分離して再生する方法、特に復水脱塩装置に用いられる混床式イオン交換装置の分離、再生に適したイオン交換樹脂の分離、再生方法に関する。
【0002】
【従来の技術】
発電プラントにおいては、復水中の不純物による系統材質の腐食やタービンスケールの防止の点から、給水の水質をより高度に維持する必要がある。このため復水を給水として循環使用するための復水脱塩装置として、高い処理水質が得られる混床式イオン交換脱塩装置が用いられている。
【0003】
混床式イオン交換脱塩装置の処理水質はイオン交換樹脂の再生状態により決定されるが、樹脂の再生状態をより高度にするためには、逆再生をできるだけ生じさせない必要がある。逆再生とは、アニオン交換樹脂の混入したカチオン交換樹脂を塩酸や硫酸など酸溶液で再生する際、アニオン交換樹脂がCl形やSO4形などに再生され、またカチオン交換樹脂の混入したアニオン交換樹脂を水酸化ナトリウムなどのアルカリ溶液で再生する際、カチオン交換樹脂がNa形などに再生されることである。
【0004】
従って、逆再生を生じさせないためには、混床を形成しているイオン交換樹脂を再生するとき、カチオン交換樹脂とアニオン交換樹脂とをできるだけ完全に近い状態に分離し、カチオン交換樹脂中へのアニオン交換樹脂の混入、およびアニオン交換樹脂中へのカチオン交換樹脂の混入を極力減少させる必要がある。
【0005】
復水脱塩装置(混床式イオン交換脱塩装置)は、復水中にイオン交換樹脂の再生剤である酸またはアルカリが混入しないように、脱塩塔と分離、再生塔とは完全に分離されており、再生が必要になったときは、その脱塩塔を主系統から切離し、脱塩塔内の樹脂を加圧水と加圧空気により分離、再生塔に移送して再生している。
【0006】
混床を形成するイオン交換樹脂の分離は、一般に逆洗と呼ばれる上向流通水により樹脂層を展開し、比重差および粒径差によってカチオン交換樹脂とアニオン交換樹脂を分離している。このことは復水脱塩装置に限らず、他の目的で使用される一般の混床式イオン交換装置の場合も同様である。
【0007】
ところで従来よく知られているように、新しいイオン交換樹脂はその表面に強い電荷を持つ。このため新しいカチオン樹脂とアニオン樹脂を再生して、R−H形およびR−OH形の状態で混合すると、電荷の強い吸引力によりイオン交換樹脂の凝集が発生する。このように樹脂が凝集することは、カチオン樹脂とアニオン樹脂が均一によく混合されるため、脱塩のためには好ましいことである。
【0008】
しかし脱塩装置の再生時には、凝集が両樹脂の分離を阻害することとなり、好ましくない。特に新設の脱塩装置では、新しいイオン交換樹脂を使用しているため、その強い表面電荷により樹脂同士が強く凝集する。またその使用の初期には、交換能力を完全に使いきらない内に再生するため、R−H形,R−OH形の交換基が残存しており、強い凝集が起こる。
【0009】
このような凝集が起った状態で逆洗を行っても両樹脂を完全に分離することは困難である。この凝集の強さは、イオン交換樹脂のイオン形、樹脂のタイプ(ゲル型、ポーラス型)などにより変化するが、完全に凝集を破壊して逆洗による樹脂分離を完全に行い、逆再生の発生を防止することは、脱塩装置の処理水質を良好に保つために必要である。
【0010】
再生すべき樹脂が凝集状態の場合、樹脂の凝集を破壊するためには、その表面電荷を中和することが効果的である。従って復水中のクラッドが適量流入した樹脂は、クラッドが樹脂表面に付着し凝集状態が緩和される。
しかし、最新の発電プラントでは、水質管理と材質の改良でクラッドの発生量が少なくなっており、クラッドによる樹脂の凝集状態の破壊は期待できない。
【0011】
樹脂の凝集を破壊するために、樹脂自身の電荷をイオンの負荷により中和する方法がある。通常、塩酸や水酸化ナトリウムが凝集状態を破壊し、樹脂を分離するために用いられる。しかし、加えたイオンはイオン交換樹脂に吸着され、これらのイオンは吸着力が大きいので、これらを脱着するためには、非常に大量の再生剤が必要になる。
【0012】
例えば塩酸を使用すれば、アニオン交換樹脂が塩化物イオン形に転換し、これを脱塩に使用するためのR−OH形に再生するには、多量の再生剤を必要とし不経済である。また水酸化ナトリウムを添加すれば、カチオン交換樹脂がR−Na型となり、このナトリウムは樹脂からリークしやすいため水質悪化の原因となり易く、ボイラ水質を良好に保つためには、Naイオン形の除去のために大量の再生剤を使用し、完全に再生する必要がある。
【0013】
【発明が解決しようとする課題】
本発明の目的は、上記の問題点を解決するため、安価な材料を用いて簡単な操作により樹脂の凝集を破壊することができ、これによりアニオン交換樹脂とカチオン交換樹脂の分離精度を改善するとともに、再生効率を高くして、再生剤の使用量を少なくし、良好な処理水質を得ることが可能なイオン交換樹脂の分離、再生方法を提案することである。
【0014】
【課題を解決するための手段】
本発明は次のイオン交換樹脂の分離、再生方法である。
(1) 混床を形成しているイオン交換樹脂を分離して再生する方法において、
混合状態のイオン交換樹脂を、10容積%以上の二酸化炭素を含有する二酸化炭素含有ガスと接触させ、
逆洗によりカチオン交換樹脂層とアニオン交換樹脂層に分離し、
それぞれの樹脂層を再生剤と接触させて再生することを特徴とするイオン交換樹脂の分離、再生方法。
(2) 二酸化炭素含有ガスの供給量が、前記混合状態のイオン交換樹脂の樹脂量の3〜50容積倍量、かつ供給流量が0.3〜5m −ガス/m −樹脂/分であることを特徴とする上記(1)記載の方法。
(3) 混床を形成しているイオン交換樹脂の分離、再生が、新しい樹脂投入後、あるいは樹脂補給後の最初ないし10回目の分離、再生であることを特徴とする上記(1)または(2)記載の方法。
【0015】
本発明の方法は、アニオン交換樹脂とカチオン交換樹脂とが混合されて混床を形成しているイオン交換樹脂の再生であれば、どのようなイオン交換樹脂の分離、再生にも適用でき、例えば2床3塔混床型の最終段の混床式イオン交換装置などにも適用でき、特に復水脱塩装置に使用されているイオン交換樹脂の分離、再生に適用するのが好ましい。
【0016】
復水脱塩装置では塔外再生する場合が多く、他の混床式イオン交換装置ではイオン交換塔内で再生される場合が多いが、本発明の方法はそのいずれの方法にも適用できる。また分離性を上げるために、中間比重の樹脂を混入する方法、または分離界面付近の中間樹脂を再生工程から除外して次回の再生時に同時に再生したり、あるいは中間樹脂を再生することなく再生後の樹脂と混合して脱塩工程に移送する方法などが採用される場合があるが、本発明の方法はこれらの場合にも適用できる。
【0017】
本発明では、上記のようなカチオン交換樹脂とアニオン交換樹脂を使用する混床式イオン交換装置の樹脂の凝集状態を改善し、樹脂の分離性を高め、逆再生の少ない良好な再生状態を実現することができる。特に、新しい樹脂投入後、あるいは樹脂補給後の最初ないし10回目の樹脂の分離、再生に対して効果的であるが、その後の分離、再生に対しても適用可能である。
【0018】
本発明では、混床式のイオン交換樹脂を用いた脱塩後の逆洗分離に際して、混合状態のイオン交換樹脂を二酸化炭素含有ガスと接触させるが、逆洗分離に先立ち、または逆洗中に二酸化炭素含有ガスを吹き込むのが好ましい。ここで使用する二酸化炭素含有ガスとしては、純二酸化炭素ガスのほか、二酸化炭素と空気、不活性ガス、その他のガスとの混合物であってもよい。このような二酸化炭素含有ガス中の二酸化炭素濃度は10容積%以上、好ましくは50容積%以上とする
【0019】
混床式イオン交換樹脂の再生時の樹脂の逆洗分離には、単に水のみを上向流で流す水逆洗のほかに、水逆洗に先立って、または水逆洗とともに空気を導入して、樹脂層を攪乱させる空気逆洗が行われる場合があるが、本発明ではこのような空気逆洗の代りに、二酸化炭素含有ガスを導入してイオン交換樹脂と接触させることができる。
【0020】
ここで注入された二酸化炭素は水に溶解しやすく、溶解した二酸化炭素は重炭酸イオンとして存在する。再生塔内にはイオン交換能力を多量に持つアニオン交換樹脂が多量に存在するため、これらの重炭酸イオンの一部は交換吸着されてHCO3形となる。これらの式を次に示す。
【化1】
CO2 + H2O → H+ + HCO3 - 〔I〕
+ + HCO3 - + R−OH → R−HCO3 + H2O 〔II〕
【0021】
水中に残留する二酸化炭素は上記〔I〕式のように解離して僅かながらイオンが増加し、塔内に存在する水のpHを低下させる。pHの変化は凝集作用に大きく影響し、樹脂の凝集が破壊される。またアニオン交換樹脂に吸着した重炭酸イオンはアニオン樹脂の表面電荷を中和する作用があると考えられ、同様に樹脂の凝集が破壊される。さらに二酸化炭素が溶解した再生水はそのpHが低く、イオン交換樹脂に吸着したクラッドを効率よく剥離する効果がある。
【0022】
従って混合樹脂層の逆洗分離に先立ち、あるいは水逆洗とともに、樹脂層下方から二酸化炭素含有ガスを供給すると、二酸化炭素は上述のような作用により樹脂の凝集を破壊し、気泡の上昇流により樹脂を攪乱して樹脂粒子を分離するとともに樹脂に付着した鉄クラッドその他の汚れをも剥離する。このときの二酸化炭素含有ガスの供給は任意であるが、樹脂量の3〜50容積倍量とするのが好ましく、流量は0.3〜5m3-ガス/m3-樹脂/分で供給するのが好適である。
【0023】
上記の二酸化炭素含有ガスの供給により凝集破壊および汚れの剥離を行った後、二酸化炭素含有ガスの供給を停止し、水逆洗のみを行うと、再生すべきイオン交換樹脂が比重差により分離し、比重の重いカチオン交換樹脂は下に、比重の軽いアニオン交換樹脂は上に成層される。
【0024】
両樹脂を別の塔で再生する場合は、上記の状態でアニオン交換樹脂をアニオン再生塔に移送し、カチオン交換樹脂はそのまま沈降させる。両樹脂を同一塔内で再生する場合は、そのままの状態で水逆洗を終了して樹脂を沈降させる。
【0025】
このように二酸化炭素含有ガスにより凝集破壊する場合でも、樹脂界面における両樹脂のより完全な分離のため、前述のように中間比重の不活性樹脂を用いたり、あるいは界面付近の樹脂を再生工程から除外することもできる。
【0026】
このような操作を選ばない場合は、カチオン交換樹脂中へのアニオン交換樹脂の混入による弊害とアニオン交換樹脂中へのカチオン交換樹脂の混入による弊害とを、はかりにかけて弊害の少ない前者を選び、分離再生塔にはカチオン交換樹脂層上部に若干のアニオン交換樹脂を残留させ、カチオン交換樹脂のほとんど混入していないアニオン交換樹脂をアニオン再生塔に移送して再生することができる。
【0027】
再生は一般のイオン交換樹脂の再生と同様であり、それぞれの樹脂層を再生剤と接触させる。接触の方法は、それぞれのイオン交換樹脂層に再生剤溶液を通液する方法が好ましい。
【0028】
再生剤はカチオン交換樹脂の場合は、2〜10重量%の硫酸、塩酸等の酸水溶液を用い、アニオン交換樹脂の場合は、2〜10重量%水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を用いる。復水脱塩装置の場合は、硫酸および水酸化ナトリウムを用い、別々の塔で塔外再生を行うのが好ましい。それ以外の一般の混床式イオン交換装置の場合は、塩酸および水酸化ナトリウムを用いる場合が多い。
再生剤の通液速度、押出、水洗等の条件は通常の再生の場合と同様である。
【0029】
本発明では二酸化炭素含有ガスとの接触により、アニオン交換樹脂はHCO3形となっており、このHCO3形の樹脂は水酸化ナトリウムにより容易に再生される。ここで「容易に再生される」とは、アニオン交換樹脂に吸着された重炭酸イオンが水酸化ナトリウムにより容易に脱着されて再生が容易であることのほかに、Cl形から直接水酸化ナトリウムで再生する場合よりも再生効率がよく、少ない再生剤使用量での再生が可能であることを意味する。
【0030】
凝集破壊のために塩酸、硫酸、水酸化ナトリウムを用いて全樹脂がCl形、SO4形、Na形等になる場合は、これをOH形またはH形にするためには多量の再生剤を必要とするが、本発明ではHCO3形をOH形に転換するのは容易で、再生効率もよいことから、少量の再生剤で効率よく再生することができる。
【0031】
【発明の効果】
本発明によれば、混合状態のイオン交換樹脂を、10容積%以上の二酸化炭素を含有する二酸化炭素含有ガスと接触させ、水逆洗により樹脂を分離して再生するようにしたので、安価な材料を用いて簡単な操作により樹脂の凝集を破壊することができ、これによりアニオン交換樹脂とカチオン交換樹脂の分離精度を改善するとともに、再生効率を高くして、再生剤の使用量を少なくし、良好な処理水質を得ることが可能なイオン交換樹脂の分離、再生方法が得られる。
【0032】
【発明の実施の形態】
以下、復水脱塩装置における混床式イオン交換装置のイオン交換樹脂を塔外再生する例を中心に発明の実施の形態を説明する。
【0033】
図1は復水脱塩装置の混床式イオン交換装置におけるイオン交換樹脂の再生工程を示す系統図である。図1において、1は脱塩塔、2はこの脱塩塔1に充填されたイオン交換樹脂、3はカチオン再生塔(樹脂分離兼用)、3a,3b,3cは集散水用のストレーナ、3dは薬注用のストレーナ、3eはコレクタ、4はアニオン再生塔、4a,4bは集散水用のストレーナ、5は中間樹脂貯槽、V1〜V22はバルブである。
【0034】
上記の構成において、復水脱塩装置におけるイオン交換樹脂2の再生は通常次のようにして行われる。まず、バルブV1、V2、V8、V13、V14、V15を開(他のバルブは閉、以下同)の状態にして、流路6から空気、および流路7から水を脱塩塔1に導入することにより、混床を形成しているイオン交換樹脂2を流路8を通してカチオン再生塔3に移送する。このときカチオン再生塔3に導入される水は、カチオン再生塔3の上部の流路9,10から排出する。
【0035】
移送終了後、水および空気の導入を停止し、バルブV5を開いて水抜きし、液面11を低下させて休止する。
その後バルブV8、V12を開き、流路12からストレーナ3cを通して二酸化炭素含有ガスを吹き込み、樹脂層をほぐして、付着物を剥離するとともに、樹脂の凝集を破壊する。
【0036】
二酸化炭素含有ガスの吹込停止後、バルブV1、V8、V11を開いて、流路12から水を導入し、上向流で水逆洗を行って樹脂層を展開させ、剥離した汚水を除去するとともに、カチオン交換樹脂とアニオン交換樹脂を分離する。
【0037】
樹脂層を展開、分離してアニオン交換樹脂層の下部(界面付近の樹脂が混合した中間樹脂層の上部)をコレクタ3eに合わせた状態でバルブV17、V19を開くと、アニオン交換樹脂は流路13からアニオン再生塔4に移送される。
バルブV17、V19を閉じ中間樹脂層の下部(カチオン交換樹脂層の上部)をコレクタ3eに合わせた状態でバルブV16を開くと、中間樹脂層の混合樹脂が流路14から中間樹脂貯槽5に移送される。
【0038】
カチオン再生塔3およびアニオン再生塔4の樹脂層を静止させ、バルブV3、V6、V18、V19を開いて、それぞれ流路15、16から再生剤(酸水溶液またはアルカリ水溶液)を注入して薬注を行い、さらにほぼ同量の水を注入して押出を行ったのち、バルブV7、V10を開いて水洗を行い、カチオンおよびアニオン交換樹脂を再生する。
【0039】
再生終了後、バルブV4、V9、V20、V21を開いて流路17,18から再生済の樹脂を樹脂貯槽(図示せず)へ移送し、混合した状態で貯留する。貯留した樹脂は、次の再生のために樹脂を取出して空になった脱塩塔1に移送して脱塩に供される。
【0040】
一方、中間樹脂貯槽5に貯留した中間樹脂はバルブV1、V2、V22を開くことにより、カチオン再生塔3に移送し、次の再生時に分離、再生される。中間樹脂貯槽5を省略する場合は、引出された中間樹脂は樹脂貯槽へ移送され、再生することなく次の脱塩時に再生済の樹脂とともに脱塩塔1へ移送することができる。
【0041】
以上は復水脱塩装置におけるイオン交換樹脂の再生方法を示す好ましい形態であるが、一般の純水製造装置等における混床式イオン交換装置の再生の場合には、塔外再生を行うことなく、脱塩塔1内でカチオンおよびアニオン交換樹脂の分離再生を行う場合がある。
この場合、ストレーナ1aから二酸化炭素含有ガスを吹き込んで、樹脂を解きほぐし、汚れの剥離および凝集破壊を行った後、水逆洗を行ってカチオンおよびアニオン交換樹脂層を分離する。
【0042】
そして樹脂界面付近に設けたストレーナ1bから排水しながら、塔底からカチオン交換樹脂層に上向流で通水するとともに、ストレーナ1cから再生剤(アルカリ水溶液)を薬注してアニオン交換樹脂層の再生を行い、さらにほぼ同量の水を注入して押出を行う。その後塔上部からアニオン交換樹脂層に下向流で通水するとともに、ストレーナ1aから再生剤(酸水溶液)を薬注してカチオン交換樹脂の再生を行い、さらにほぼ同量の水を注入して押出を行う。
【0043】
さらに両樹脂層を水洗した後、塔底部から空気を吹込んで樹脂層を攪拌し、カチオンおよびアニオン交換樹脂を混合して混床を形成し、再生工程を終る。その後通水を再開してイオン交換工程に移る。
【0044】
上記のような1塔内で再樹脂の分離再生を行う再生を、脱塩塔とは別に設けた再生塔で行う場合もある。この場合は脱塩塔から再生塔に樹脂を移送した後、上記の操作を行い、再生後両樹脂を脱塩塔に戻して混合する。
【0045】
さらに脱塩塔をカチオン再生塔として用い、アニオン交換樹脂を別の再生塔で再生する場合もある。この場合は脱塩塔で、二酸化炭素含有ガスの吹込および逆洗分離を行ったのち、アニオン交換樹脂を再生塔に移送し、それぞれの樹脂を再生する。再生後はアニオン交換樹脂を脱塩塔に戻して混合する。
【0046】
そのほか目的に応じて種々の分離再生方法があるが、いずれの場合も、混合樹脂の逆洗分離の際、二酸化炭素含有ガスを吹き込むことにより、凝集破壊を行い、両樹脂の分離性を改善する。
【0047】
【実施例】
以下、本発明の実施例について説明する。各例中、%は重量%である。
【0048】
比較例1
図1の復水脱塩装置を模擬した以下の仕様の装置で試験した。脱塩塔1は、塔径350mmφ、高さ2.1mの円柱状の塔である。カチオン再生塔3は塔径250mmφ、高さ3.1mの円柱状の塔である。アニオン再生塔4は塔径150mmφ、高さ3.1mの円柱状の塔である。
【0049】
この脱塩塔に再生済の新しいカチオン交換樹脂を85 liter、再生済の新しいアニオン交換樹脂を40 liter充填して混合後、1mg/lのNH3を含む合成復水を10m3/hの流速で7日間通水した後、樹脂をカチオン再生塔3に移送した。そして空気逆洗により樹脂層をほぐすとともに、汚れを剥離した後、水逆洗により両樹脂を分離し、上部のアニオン交換樹脂をアニオン再生塔4に移送した。次いで、中間樹脂として中間樹脂槽にカチオン再生塔に残った樹脂の上部樹脂6 literを移送した。
【0050】
カチオン交換樹脂は硫酸で、アニオン交換樹脂は水酸化ナトリウムで1回目の樹脂再生を行った結果、再生後のカチオン交換樹脂のカチオン交換基全体に対するR−Na形の比率は1.2%、再生後のアニオン交換樹脂のアニオン交換基全体に対するR−Cl形の比率は18%であった。
【0051】
再生後の樹脂を水洗して、脱塩塔1に移送混合して、前サイクルと同様に合成復水を通水した。そして通水後の樹脂を前記と同様に再生塔に移送して2回目の再生操作を同様に行った。
再生後のカチオン交換基全体に対するR−Na形の比率は0.6%、再生後のアニオン交換基全体に対するR−Cl形の比率は15%であった。
【0052】
以下同様に、3回目の再生を行った結果、R−Na形の比率は0.4%、R−Cl形の比率は13%、4回目の再生結果は、R−Na形の比率は0.15%、R−Cl形の比率は10%であった。
このような繰り返しを、10回実施した後の再生では、R−Na型比率は0.15%、R−Cl型比率は6%で9回目の再生結果とほぼ同一値であった。
【0053】
実施例1
比較例1と同一の装置において、樹脂を新樹脂に入れ替え、同一操作を実施した。ただし樹脂を脱塩塔から再生塔に移送した後、比較例1の空気逆洗の代りに100容積%の二酸化炭素を含有する二酸化炭素含有ガスを150N liter/minで7分間注入した後、水逆洗分離操作を実施した。他の操作は比較例1と同様である。
【0054】
1回目の再生を行った結果、再生後のカチオン交換基全体に対するR−Na形の比率は0.4%、再生後のアニオン交換基全体に対するR−Cl形の比率は8%であった。
2回目の再生後のR−Na形の比率は0.3%、R−Cl形の比率は6.5%であった。
【0055】
3回目の再生結果はR−Na形の比率は0.2%、R−Cl形の比率は6%、4回目の再生結果はR−Na型比率0.15%、R−Cl形の比率は6%であり、比較例1で10回実施した後の再生結果と同一の再生状態を4回の再生で得ることができた。
このように実施例1では、比較例1の従来法に比較して、より早くから安定した樹脂の再生状態を得ることができ、二酸化炭素注入により樹脂の分離性が改善され、逆再生が防止されることがわかる。
【0056】
比較例2
2床3塔混床型純水装置の最終段の混床式イオン交換脱塩塔として塔径250mmφ、高さ3.7mの円柱状の塔で試験した。
この塔内に再生済の新しいカチオン交換樹脂を20 liter、再生済の新しいアニオン交換樹脂を44 liter充填して、水道水を11m3通水した後、空気逆洗および水逆洗を行って両樹脂を分離した。そしてカチオン交換樹脂は塩酸で、アニオン交換樹脂は水酸化ナトリウムで1回目の再生を行った結果、再生後のカチオン交換基全体に対するR−Na形の比率は8.2%、再生後のアニオン交換基全体に対するR−Cl形の比率は43%であった。
【0057】
同様に水道水を通水した後、第2回目の樹脂再生を行った結果、再生後のカチオン樹脂交換基全体に対するR−Na形の比率は7.2%、再生後のアニオン樹脂交換基全体に対するR−Cl形の比率は37%であった。
さらに水道水を通水した後、第3回目の再生を実施した結果は、R−Na形の比率は5%、R−Cl形の比率は31%であった。
【0058】
このような繰り返しを、10回実施した後の再生では、R−Na型比率は3.2%、R−Cl型比率は28%で9回目の再生結果と同一値であった。
上記の通り、通常の混床塔では、混合樹脂の分離、再生を1回行っても、再生されない樹脂がかなり多く残り、10回の分離再生後にようやく再生されない樹脂の割合が一定になることがわかる。
【0059】
実施例2
比較例2と同一の装置において、再生した新しい樹脂に入れ替え、比較例2の空気逆洗に代え、100容積%の二酸化炭素を含有する二酸化炭素含有ガスを80N liter/minで5分間注入した後、水逆洗を行って分離操作を行い、他は比較例2と同条件で試験を行った。
【0060】
すなわち、水道水を11m3通水した後、二酸化炭素を注入し、水逆洗で両樹脂を分離した。そしてカチオン交換樹脂は塩酸で、アニオン交換樹脂は水酸化ナトリウムで1回目の再生を行った結果、再生後のカチオン交換基全体に対するR−Na形の比率は3.5%、再生後のアニオン交換基全体に対するR−Cl形の比率は29.5%であった。
同様に水道水を通水し、2回目の樹脂再生を行った結果、再生後のカチオン交換基全体に対するR−Na形の比率は3.2%、再生後のアニオン樹脂交換基全体に対するR−Cl形の比率は29%であった。
【0061】
さらに水道水を通水した後、3回目の再生を実施した結果は、R−Na形の比率は3.2%、R−Cl形の比率は28.4%であった。
【0062】
このような繰り返しを、10回実施した後の再生では、R−Na型比率は3.2%、R−Cl型比率は27%で3回目の再生結果と同一値であった。
以上のように、1回目の再生で比較例2の従来法の10回再生に近いところまで再生され、ほぼ3回の再生で定常値までになり、二酸化炭素の注入により樹脂の分離性が改善され、逆再生が防止されることがわかる。
【図面の簡単な説明】
【図1】本発明は復水脱塩装置に適用した実施形態を示す系統図である。
【符号の説明】
1 脱塩塔
1a,1b,1c ストレーナ
2 イオン交換樹脂
3 カチオン再生塔
3a,3b,3c,3d ストレーナ
3e コレクタ
4 アニオン再生塔
4a,4b ストレーナ
5 中間樹脂貯槽
1〜V22 バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating and regenerating an ion exchange resin forming a mixed bed, in particular, separation of a mixed bed ion exchange device used in a condensate demineralizer, separation and regeneration of an ion exchange resin suitable for regeneration. Regarding the method.
[0002]
[Prior art]
In a power plant, it is necessary to maintain the water quality of the feed water at a higher level from the viewpoint of corrosion of system materials due to impurities in condensate and prevention of turbine scale. For this reason, as a condensate demineralizer for recirculating and using condensate as feed water, a mixed bed type ion exchange desalination apparatus capable of obtaining high treated water quality is used.
[0003]
The treated water quality of the mixed bed type ion exchange desalting apparatus is determined by the regeneration state of the ion exchange resin, but in order to make the regeneration state of the resin higher, it is necessary to prevent reverse regeneration as much as possible. Reverse regeneration means that when an anion exchange resin is mixed with an acid solution such as hydrochloric acid or sulfuric acid, the anion exchange resin is regenerated into a Cl form or SO 4 form, and the anion exchange is mixed with a cation exchange resin. When the resin is regenerated with an alkali solution such as sodium hydroxide, the cation exchange resin is regenerated to Na form or the like.
[0004]
Therefore, in order to prevent reverse regeneration, when regenerating the ion exchange resin forming the mixed bed, the cation exchange resin and the anion exchange resin are separated as close as possible to each other, It is necessary to reduce the mixing of the anion exchange resin and the mixing of the cation exchange resin into the anion exchange resin as much as possible.
[0005]
The condensate demineralizer (mixed-bed ion exchange demineralizer) is separated from the desalting tower and completely separated from the regeneration tower so that acid or alkali, which is the regenerant of the ion exchange resin, does not enter the condensate. When regeneration is necessary, the desalting tower is separated from the main system, and the resin in the desalting tower is separated by pressurized water and pressurized air and transferred to the regeneration tower for regeneration.
[0006]
Separation of the ion exchange resin forming the mixed bed is performed by developing the resin layer with upward circulating water called backwashing, and separating the cation exchange resin and the anion exchange resin by the difference in specific gravity and the difference in particle diameter. This is not limited to the condensate demineralizer, and the same applies to a general mixed-bed ion exchanger used for other purposes.
[0007]
As is well known, new ion exchange resins have a strong charge on their surfaces. For this reason, when a new cation resin and an anion resin are regenerated and mixed in the RH and R—OH forms, the ion exchange resin agglomerates due to a strong attractive force. The aggregation of the resin in this manner is preferable for desalting because the cationic resin and the anionic resin are uniformly and well mixed.
[0008]
However, at the time of regeneration of the desalting apparatus, the aggregation hinders separation of both resins, which is not preferable. In particular, since the new desalination apparatus uses a new ion exchange resin, the resins strongly aggregate due to the strong surface charge. In addition, in the initial stage of the use, the regeneration is performed before the exchange capacity is completely used, so that the RH and R—OH type exchange groups remain, and strong aggregation occurs.
[0009]
Even if backwashing is performed in a state where such agglomeration occurs, it is difficult to completely separate both resins. The strength of this agglomeration varies depending on the ion form of the ion exchange resin, the type of resin (gel type, porous type), etc., but completely destroys the agglomeration and completely separates the resin by backwashing. Preventing the occurrence is necessary to keep the water quality of the desalinizer good.
[0010]
When the resin to be regenerated is in an agglomerated state, neutralizing the surface charge is effective for destroying the agglomeration of the resin. Therefore, the resin into which an appropriate amount of the clad in the condensate has flowed is attached to the resin surface, and the aggregation state is relaxed.
However, in the latest power plants, the amount of clad generated has been reduced due to water quality management and material improvements, and it cannot be expected that the clad resin will break down due to the clad.
[0011]
In order to destroy the aggregation of the resin, there is a method in which the charge of the resin itself is neutralized by an ion load. Usually, hydrochloric acid or sodium hydroxide is used to break up the aggregated state and separate the resin. However, the added ions are adsorbed on the ion exchange resin, and these ions have a large adsorbing power. Therefore, a very large amount of regenerant is required to desorb them.
[0012]
For example, if hydrochloric acid is used, the anion exchange resin is converted into a chloride ion form, and regenerating it into an R-OH form for use in desalting requires a large amount of a regenerant and is uneconomical. Moreover, if sodium hydroxide is added, the cation exchange resin becomes R-Na type, and this sodium easily leaks from the resin, which is likely to cause deterioration of water quality. In order to keep the boiler water quality good, the Na ion form must be removed. For this reason, it is necessary to use a large amount of regenerant and completely regenerate it.
[0013]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems, and can break up the aggregation of the resin by a simple operation using an inexpensive material, thereby improving the separation accuracy between the anion exchange resin and the cation exchange resin. At the same time, it is to propose a method for separating and regenerating an ion exchange resin that can increase the regeneration efficiency, reduce the amount of the regenerant used, and obtain good treated water quality.
[0014]
[Means for Solving the Problems]
The present invention is a method for separating and regenerating the following ion exchange resin.
(1) In a method for separating and regenerating an ion exchange resin forming a mixed bed,
Contacting the ion exchange resin in a mixed state with a carbon dioxide-containing gas containing 10% by volume or more of carbon dioxide ;
Separated into a cation exchange resin layer and an anion exchange resin layer by backwashing,
A method for separating and regenerating an ion exchange resin, wherein each resin layer is regenerated by contacting with a regenerant.
(2) The supply amount of the carbon dioxide-containing gas is 3 to 50 volume times the resin amount of the ion exchange resin in the mixed state, and the supply flow rate is 0.3 to 5 m 3 −gas / m 3 −resin / min. The method according to (1) above, wherein
(3) The above (1) or (1), wherein the separation and regeneration of the ion exchange resin forming the mixed bed is the first to tenth separation and regeneration after the addition of a new resin or after the replenishment of the resin. 2) The method described.
[0015]
The method of the present invention can be applied to separation and regeneration of any ion exchange resin as long as it is a regeneration of an ion exchange resin in which an anion exchange resin and a cation exchange resin are mixed to form a mixed bed. It can also be applied to a mixed bed type ion exchanger of the final stage of a two-bed / three-column mixed bed type, and is particularly preferably applied to separation and regeneration of an ion exchange resin used in a condensate demineralizer.
[0016]
The condensate demineralizer often regenerates outside the tower, and other mixed bed ion exchangers often regenerate inside the ion exchange tower, but the method of the present invention can be applied to any of these methods. In addition, in order to improve the separation property, a method in which a resin having an intermediate specific gravity is mixed, or an intermediate resin near the separation interface is excluded from the regeneration process and regenerated at the next regeneration, or after regeneration without regenerating the intermediate resin. In some cases, a method of mixing with the above resin and transferring to the desalting step may be employed, but the method of the present invention can also be applied to these cases.
[0017]
In the present invention, the resin agglomeration state of the mixed bed type ion exchange apparatus using the cation exchange resin and the anion exchange resin as described above is improved, the separation property of the resin is improved, and a good regeneration state with little reverse regeneration is realized. can do. In particular, it is effective for the first to tenth resin separation and regeneration after the addition of a new resin or after the replenishment of the resin, but it can also be applied to subsequent separation and regeneration.
[0018]
In the present invention, in the backwash separation after the desalting using the mixed bed type ion exchange resin, the mixed ion exchange resin is brought into contact with the carbon dioxide-containing gas, but prior to the backwash separation or during the backwash. It is preferable to blow in a carbon dioxide-containing gas. The carbon dioxide-containing gas used here may be a mixture of carbon dioxide and air, an inert gas, or other gas in addition to pure carbon dioxide gas. Such carbon dioxide concentration of carbon dioxide-containing gas is 10 volume% or higher, preferably 50 volume% or more.
[0019]
For backwashing separation of resin during regeneration of mixed bed type ion exchange resin, air is introduced prior to water backwashing or with water backwashing in addition to water backwashing in which only water flows upward. In some cases, air backwashing that disturbs the resin layer is performed. In the present invention, instead of such air backwashing, a carbon dioxide-containing gas can be introduced and brought into contact with the ion exchange resin.
[0020]
The carbon dioxide injected here is easily dissolved in water, and the dissolved carbon dioxide exists as bicarbonate ions. Since a large amount of anion exchange resin having a large amount of ion exchange capability exists in the regeneration tower, a part of these bicarbonate ions is exchanged and adsorbed to form HCO 3 . These equations are shown below.
[Chemical 1]
CO 2 + H 2 O → H + + HCO 3 [I]
H + + HCO 3 + R—OH → R—HCO 3 + H 2 O [II]
[0021]
Carbon dioxide remaining in the water dissociates as shown in the above formula [I], and ions are slightly increased, thereby lowering the pH of the water present in the tower. The change in pH greatly affects the aggregating action, and the agglomeration of the resin is destroyed. The bicarbonate ions adsorbed on the anion exchange resin are considered to have an action of neutralizing the surface charge of the anion resin, and the aggregation of the resin is similarly destroyed. Furthermore, the regenerated water in which carbon dioxide is dissolved has a low pH and has an effect of efficiently peeling off the clad adsorbed on the ion exchange resin.
[0022]
Therefore, when carbon dioxide-containing gas is supplied from the bottom of the resin layer prior to the backwash separation of the mixed resin layer or with water backwash, the carbon dioxide destroys the aggregation of the resin due to the above-described action, and the upward flow of bubbles The resin is disturbed to separate the resin particles, and the iron clad and other dirt attached to the resin are also peeled off. The supply of the carbon dioxide-containing gas at this time is optional, but it is preferably 3 to 50 times the volume of the resin, and the flow rate is 0.3 to 5 m 3 -gas / m 3 -resin / min. Is preferred.
[0023]
After cohesive failure and removal of dirt by supplying the carbon dioxide-containing gas described above, if the supply of carbon dioxide-containing gas is stopped and only water backwashing is performed, the ion exchange resin to be regenerated is separated due to the difference in specific gravity. The cation exchange resin having a high specific gravity is laminated on the bottom, and the anion exchange resin having a low specific gravity on the top.
[0024]
When both resins are regenerated in separate towers, the anion exchange resin is transferred to the anion regeneration tower in the above state, and the cation exchange resin is allowed to settle as it is. When both resins are regenerated in the same tower, the water backwashing is finished in the same state, and the resin is allowed to settle.
[0025]
In this way, even when cohesive failure is caused by carbon dioxide-containing gas, in order to achieve a more complete separation of both resins at the resin interface, an inert resin with an intermediate specific gravity is used as described above, or the resin near the interface is recovered from the regeneration process. It can also be excluded.
[0026]
If you do not choose this type of operation, select the former with less harmful effects by weighing the harmful effects of mixing the anion exchange resin into the cation exchange resin and the harmful effects of mixing the cation exchange resin into the anion exchange resin. In the regeneration tower, some anion exchange resin is left on the upper part of the cation exchange resin layer, and the anion exchange resin hardly mixed with the cation exchange resin can be transferred to the anion regeneration tower for regeneration.
[0027]
The regeneration is the same as the regeneration of a general ion exchange resin, and each resin layer is brought into contact with a regenerant. The contact method is preferably a method in which a regenerant solution is passed through each ion exchange resin layer.
[0028]
In the case of a cation exchange resin, the regenerant is an acid aqueous solution such as 2 to 10% by weight sulfuric acid or hydrochloric acid. In the case of an anion exchange resin, an alkaline aqueous solution such as 2 to 10% by weight sodium hydroxide or potassium hydroxide is used. Use. In the case of a condensate demineralizer, it is preferable to use sulfuric acid and sodium hydroxide and perform regeneration outside the tower in separate towers. In the case of other general mixed bed type ion exchangers, hydrochloric acid and sodium hydroxide are often used.
Conditions such as the flow rate of the regenerant, extrusion, and water washing are the same as in the case of normal regeneration.
[0029]
In the present invention, the anion exchange resin is in the HCO 3 form by contact with the carbon dioxide-containing gas, and the HCO 3 form resin is easily regenerated by sodium hydroxide. Here, “easy to be regenerated” means that the bicarbonate ion adsorbed on the anion exchange resin is easily desorbed by sodium hydroxide and is easy to regenerate, and also from sodium chloride directly with sodium hydroxide. This means that the regeneration efficiency is better than that in the case of regeneration, and regeneration with a small amount of regenerant is possible.
[0030]
If the total resin becomes Cl, SO 4 , Na, etc. using hydrochloric acid, sulfuric acid, or sodium hydroxide for cohesive failure, a large amount of regenerant must be added to make this form OH or H. Although it is necessary, in the present invention, it is easy to convert the HCO 3 form to the OH form and the regeneration efficiency is good, so that it can be efficiently regenerated with a small amount of regenerant.
[0031]
【The invention's effect】
According to the present invention, the ion exchange resin in a mixed state is brought into contact with a carbon dioxide-containing gas containing 10% by volume or more of carbon dioxide, and the resin is separated and regenerated by backwashing with water. The material can be used to break the resin agglomeration by a simple operation, thereby improving the separation accuracy between the anion exchange resin and the cation exchange resin, increasing the regeneration efficiency, and reducing the amount of regenerant used. Thus, it is possible to obtain a method for separating and regenerating an ion exchange resin capable of obtaining good treated water quality.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the invention will be described focusing on an example in which an ion exchange resin of a mixed bed ion exchange apparatus in a condensate demineralizer is regenerated outside the tower.
[0033]
FIG. 1 is a system diagram showing an ion exchange resin regeneration process in a mixed bed ion exchange apparatus of a condensate demineralizer. In FIG. 1, 1 is a desalting tower, 2 is an ion exchange resin packed in the desalting tower 1, 3 is a cation regeneration tower (also used for resin separation), 3a, 3b and 3c are strainers for collecting water, 3d is strainer for dosing, 3e collector, 4 anion regeneration tower, 4a, the 4b strainer for collection and distribution of water, the intermediate resin storage tank 5, V 1 ~V 22 is valve.
[0034]
In the above configuration, the regeneration of the ion exchange resin 2 in the condensate demineralizer is usually performed as follows. First, the valves V 1 , V 2 , V 8 , V 13 , V 14 , V 15 are opened (the other valves are closed, the same applies hereinafter), and air is supplied from the flow path 6 and water is supplied from the flow path 7. By introducing into the desalting tower 1, the ion exchange resin 2 forming the mixed bed is transferred to the cation regeneration tower 3 through the flow path 8. At this time, the water introduced into the cation regeneration tower 3 is discharged from the flow paths 9 and 10 at the top of the cation regeneration tower 3.
[0035]
After transfer completion of the introduction of water and air is stopped, by opening the valve V 5 and drain pauses by lowering the liquid surface 11.
Thereafter, the valves V 8 and V 12 are opened, a gas containing carbon dioxide is blown from the flow path 12 through the strainer 3c, the resin layer is loosened, and the deposits are peeled off and the aggregation of the resin is destroyed.
[0036]
After stopping the blowing of carbon dioxide-containing gas, the valves V 1 , V 8 , V 11 are opened, water is introduced from the flow path 12, the water is backwashed in an upward flow, the resin layer is developed, and the separated sewage And the cation exchange resin and the anion exchange resin are separated.
[0037]
Opening and separating the resin layer and opening the valves V 17 and V 19 with the lower part of the anion exchange resin layer (the upper part of the intermediate resin layer mixed with the resin near the interface) aligned with the collector 3e, the anion exchange resin is It is transferred from the channel 13 to the anion regeneration tower 4.
When the valve V 16 is opened with the valves V 17 and V 19 closed and the lower part of the intermediate resin layer (the upper part of the cation exchange resin layer) aligned with the collector 3e, the mixed resin in the intermediate resin layer is transferred from the flow path 14 to the intermediate resin storage tank. 5 is transferred.
[0038]
The resin layers of the cation regeneration tower 3 and the anion regeneration tower 4 are stopped, the valves V 3 , V 6 , V 18 , V 19 are opened, and a regenerant (acid aqueous solution or alkali aqueous solution) is injected from the channels 15, 16, respectively. Then, a chemical injection is carried out, and further, the same amount of water is injected and extrusion is performed. Then, the valves V 7 and V 10 are opened and washed with water to regenerate the cation and anion exchange resin.
[0039]
After completion of the regeneration, the valves V 4 , V 9 , V 20 and V 21 are opened, and the regenerated resin is transferred from the flow paths 17 and 18 to a resin storage tank (not shown) and stored in a mixed state. The stored resin is taken out for the next regeneration and transferred to the emptied desalting tower 1 to be desalted.
[0040]
On the other hand, the intermediate resin stored in the intermediate resin storage tank 5 is transferred to the cation regeneration tower 3 by opening the valves V 1 , V 2 and V 22 , and separated and regenerated at the next regeneration. When the intermediate resin storage tank 5 is omitted, the drawn intermediate resin is transferred to the resin storage tank and can be transferred to the desalting tower 1 together with the regenerated resin at the next desalting without being regenerated.
[0041]
The above is a preferred embodiment showing a method for regenerating the ion exchange resin in the condensate demineralizer, but in the case of regeneration of the mixed bed type ion exchanger in a general pure water production apparatus or the like, without regeneration outside the tower. The cation and anion exchange resin may be separated and regenerated in the desalting tower 1 in some cases.
In this case, carbon dioxide-containing gas is blown from the strainer 1a to unravel the resin, and after removing the dirt and cohesive failure, backwashing with water is performed to separate the cation and anion exchange resin layer.
[0042]
And while draining from the strainer 1b provided in the vicinity of the resin interface, water flows upward from the tower bottom to the cation exchange resin layer, and a regenerant (alkaline aqueous solution) is poured from the strainer 1c to pour the anion exchange resin layer. Regeneration is performed, and extrusion is performed by injecting substantially the same amount of water. Thereafter, water flows downward from the upper part of the tower to the anion exchange resin layer, and a regenerant (acid aqueous solution) is poured from the strainer 1a to regenerate the cation exchange resin. Further, almost the same amount of water is injected. Extrude.
[0043]
After washing both resin layers with water, air is blown from the bottom of the tower to stir the resin layer, and a mixed bed is formed by mixing the cation and anion exchange resin, and the regeneration process is completed. Thereafter, the water flow is resumed and the ion exchange process is started.
[0044]
The regeneration for separating and regenerating the resin in one tower as described above may be performed in a regeneration tower provided separately from the desalting tower. In this case, after transferring the resin from the desalting tower to the regeneration tower, the above operation is performed, and after regeneration, both resins are returned to the desalting tower and mixed.
[0045]
In some cases, the desalting tower is used as a cation regeneration tower, and the anion exchange resin is regenerated in another regeneration tower. In this case, after blowing the carbon dioxide-containing gas and backwashing separation in the desalting tower, the anion exchange resin is transferred to the regeneration tower, and each resin is regenerated. After regeneration, the anion exchange resin is returned to the desalting tower and mixed.
[0046]
In addition, there are various separation and regeneration methods depending on the purpose, but in any case, when backwashing the mixed resin, carbon dioxide-containing gas is blown to cause cohesive failure and improve the separation of both resins. .
[0047]
【Example】
Examples of the present invention will be described below. In each example,% is% by weight.
[0048]
Comparative Example 1
The test was conducted with an apparatus having the following specifications simulating the condensate desalination apparatus of FIG. The desalting tower 1 is a columnar tower having a tower diameter of 350 mmφ and a height of 2.1 m. The cation regeneration tower 3 is a columnar tower having a tower diameter of 250 mmφ and a height of 3.1 m. The anion regeneration tower 4 is a columnar tower having a tower diameter of 150 mmφ and a height of 3.1 m.
[0049]
This demineralization tower is filled with 85 liters of freshly regenerated cation exchange resin and 40 liters of freshly regenerated anion exchange resin, mixed and mixed with a synthetic condensate containing 1 mg / l NH 3 at a flow rate of 10 m 3 / h. Then, the resin was transferred to the cation regeneration tower 3. Then, the resin layer was loosened by air backwashing, and after removing the dirt, both resins were separated by water backwashing, and the upper anion exchange resin was transferred to the anion regeneration tower 4. Subsequently, the upper resin 6 liter of the resin remaining in the cation regeneration tower was transferred to the intermediate resin tank as an intermediate resin.
[0050]
As a result of the first regeneration of the resin with sulfuric acid as the cation exchange resin and sodium hydroxide as the anion exchange resin, the ratio of the R-Na form to the total cation exchange groups of the regenerated cation exchange resin was 1.2%. The ratio of the R—Cl form to the total anion exchange groups of the later anion exchange resin was 18%.
[0051]
The regenerated resin was washed with water, transferred to the desalting tower 1 and mixed, and the synthetic condensate was passed through in the same manner as in the previous cycle. The resin after passing water was transferred to the regeneration tower in the same manner as described above, and the second regeneration operation was performed in the same manner.
The ratio of the R—Na form to the whole cation exchange group after regeneration was 0.6%, and the ratio of the R—Cl form to the whole anion exchange group after regeneration was 15%.
[0052]
Similarly, as a result of the third regeneration, the R-Na form ratio is 0.4%, the R-Cl form ratio is 13%, and the fourth regeneration result is that the R-Na form ratio is 0. .15%, R-Cl form ratio was 10%.
In the reproduction after 10 times of such repetition, the R—Na type ratio was 0.15% and the R—Cl type ratio was 6%, which was almost the same value as the ninth reproduction result.
[0053]
Example 1
In the same apparatus as Comparative Example 1, the resin was replaced with a new resin, and the same operation was performed. However, after the resin was transferred from the desalting tower to the regeneration tower, a carbon dioxide- containing gas containing 100% by volume of carbon dioxide was injected at 150 N liter / min for 7 minutes instead of the air backwashing in Comparative Example 1, and then water was added. A backwash separation operation was performed. Other operations are the same as those in Comparative Example 1.
[0054]
As a result of the first regeneration, the ratio of the R—Na form to the entire cation exchange group after regeneration was 0.4%, and the ratio of the R—Cl form to the entire anion exchange group after regeneration was 8%.
The ratio of the R—Na form after the second regeneration was 0.3%, and the ratio of the R—Cl form was 6.5%.
[0055]
The third regeneration result is the ratio of R-Na type is 0.2%, the ratio of R-Cl type is 6%, the fourth regeneration result is the ratio of R-Na type 0.15%, the ratio of R-Cl type Was 6%, and the same reproduction state as the reproduction result after 10 executions in Comparative Example 1 could be obtained by 4 reproductions.
Thus, in Example 1, compared with the conventional method of Comparative Example 1, a stable resin regeneration state can be obtained earlier, and the separation of the resin is improved by carbon dioxide injection, and reverse regeneration is prevented. I understand that
[0056]
Comparative Example 2
As a mixed bed type ion exchange desalting tower in the final stage of a two-bed / three-column mixed-pure water purifier, a cylindrical tower having a tower diameter of 250 mmφ and a height of 3.7 m was tested.
The tower is filled with 20 liters of newly regenerated cation exchange resin and 44 liter of freshly regenerated anion exchange resin, and after passing 11 m 3 of tap water, both air backwashing and water backwashing are performed. The resin was separated. As a result of the first regeneration with cation exchange resin with hydrochloric acid and the anion exchange resin with sodium hydroxide, the ratio of the R-Na form to the entire cation exchange group after regeneration was 8.2%, and the anion exchange after regeneration was performed. The ratio of the R—Cl form to the total group was 43%.
[0057]
Similarly, after the tap water was passed through, the second resin regeneration was performed. As a result, the ratio of the R-Na form to the entire cation resin exchange group after the regeneration was 7.2%, and the whole anion resin exchange group after the regeneration. The ratio of the R-Cl form to 37% was 37%.
Further, after running tap water, the third regeneration was performed. As a result, the ratio of the R-Na form was 5% and the ratio of the R-Cl form was 31%.
[0058]
In the reproduction after 10 times of such repetition, the R-Na type ratio was 3.2% and the R-Cl type ratio was 28%, which was the same value as the ninth reproduction result.
As described above, in a normal mixed-bed tower, even if the separation and regeneration of the mixed resin is performed once, a large amount of the resin that cannot be regenerated remains, and the ratio of the resin that is not finally regenerated after 10 separation and regeneration may become constant. Recognize.
[0059]
Example 2
In the same apparatus as in Comparative Example 2, after replacing the regenerated new resin and replacing with the air backwashing in Comparative Example 2, a carbon dioxide containing gas containing 100% by volume of carbon dioxide was injected at 80 N liter / min for 5 minutes. The test was performed under the same conditions as in Comparative Example 2 except that the water was washed back and the separation operation was performed.
[0060]
That is, after passing 11 m 3 of tap water, carbon dioxide was injected, and both resins were separated by backwashing with water. As a result of the first regeneration with cation exchange resin with hydrochloric acid and the anion exchange resin with sodium hydroxide, the ratio of the R-Na form to the entire cation exchange group after regeneration was 3.5%, and the anion exchange after regeneration was performed. The ratio of the R—Cl form to the total group was 29.5%.
Similarly, tap water was passed through and the resin was regenerated for the second time. As a result, the ratio of the R-Na form to the entire cation exchange group after regeneration was 3.2%, and the ratio of R-Na to the whole anion resin exchange group after regeneration was The proportion of Cl form was 29%.
[0061]
Further, after passing tap water, the third regeneration was performed. As a result, the ratio of the R-Na form was 3.2%, and the ratio of the R-Cl form was 28.4%.
[0062]
In the regeneration after 10 repetitions, the R-Na type ratio was 3.2% and the R-Cl type ratio was 27%, which was the same value as the third regeneration result.
As described above, in the first regeneration, the regeneration is performed up to a point close to the 10th regeneration in the conventional method of Comparative Example 2, and reaches a steady value in almost three regenerations, and the resin separability is improved by injecting carbon dioxide. It can be seen that reverse reproduction is prevented.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment in which the present invention is applied to a condensate demineralizer.
[Explanation of symbols]
1 demineralizer 1a, 1b, 1c strainer 2 ion exchange resin 3 cation regeneration tower 3a, 3b, 3c, 3d strainer 3e collector 4 anion regenerator 4a, 4b strainer 5 intermediate resin storage tank V 1 ~V 22 valve

Claims (3)

混床を形成しているイオン交換樹脂を分離して再生する方法において、
混合状態のイオン交換樹脂を、10容積%以上の二酸化炭素を含有する二酸化炭素含有ガスと接触させ、
逆洗によりカチオン交換樹脂層とアニオン交換樹脂層に分離し、
それぞれの樹脂層を再生剤と接触させて再生することを特徴とするイオン交換樹脂の分離、再生方法。
In the method of separating and regenerating the ion exchange resin forming the mixed bed,
Contacting the ion exchange resin in a mixed state with a carbon dioxide-containing gas containing 10% by volume or more of carbon dioxide ;
Separated into a cation exchange resin layer and an anion exchange resin layer by backwashing,
A method for separating and regenerating an ion exchange resin, wherein each resin layer is regenerated by contacting with a regenerant.
二酸化炭素含有ガスの供給量が、前記混合状態のイオン交換樹脂の樹脂量の3〜50容積倍量、かつ供給流量が0.3〜5mThe supply amount of the carbon dioxide-containing gas is 3 to 50 times the amount of the ion exchange resin in the mixed state, and the supply flow rate is 0.3 to 5 m. 3 −ガス/m-Gas / m 3 −樹脂/分であることを特徴とする請求項1記載の方法。The method according to claim 1, characterized in that the resin / min. 混床を形成しているイオン交換樹脂の分離、再生が、新しい樹脂投入後、あるいは樹脂補給後の最初ないし10回目の分離、再生であることを特徴とする請求項1または2記載の方法。The method according to claim 1 or 2, wherein the separation and regeneration of the ion exchange resin forming the mixed bed is the first to tenth separation and regeneration after the introduction of a new resin or after the replenishment of the resin.
JP25782195A 1995-10-04 1995-10-04 Ion exchange resin separation and regeneration method Expired - Fee Related JP3837762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25782195A JP3837762B2 (en) 1995-10-04 1995-10-04 Ion exchange resin separation and regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25782195A JP3837762B2 (en) 1995-10-04 1995-10-04 Ion exchange resin separation and regeneration method

Publications (2)

Publication Number Publication Date
JPH0999244A JPH0999244A (en) 1997-04-15
JP3837762B2 true JP3837762B2 (en) 2006-10-25

Family

ID=17311597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25782195A Expired - Fee Related JP3837762B2 (en) 1995-10-04 1995-10-04 Ion exchange resin separation and regeneration method

Country Status (1)

Country Link
JP (1) JP3837762B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551152B2 (en) * 2004-07-27 2010-09-22 三井金属鉱業株式会社 Specific gravity sorter and specific gravity sorting method
JP6089888B2 (en) * 2013-03-29 2017-03-08 栗田工業株式会社 Separation and regeneration method of mixed bed ion exchange resin
JP6407734B2 (en) * 2015-01-13 2018-10-17 オルガノ株式会社 Operation method of electric deionized water production apparatus and pure water production system provided with electric deionized water production apparatus
JP7215094B2 (en) * 2018-11-09 2023-01-31 栗田工業株式会社 Ion exchange resin regeneration device

Also Published As

Publication number Publication date
JPH0999244A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
US4564455A (en) Three component resin system and method for purifying aqueous solutions
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
US2841550A (en) Process of operating a demineralizing installation
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JP3963025B2 (en) Ion exchange resin separation and regeneration method
CA1166618A (en) Methods of ion exchange countercurrent regeneration
JPH0686976A (en) Preparation of super pure water
JP2002361247A (en) Method for manufacturing pure water
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP2007105558A (en) Method and apparatus for demineralizing recovered water
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2940651B2 (en) Pure water production equipment
US4163717A (en) Removal of silica from mixed bed demineralizer
CN217103410U (en) Device for removing ammonia nitrogen from manganese ore leachate
JP7184152B1 (en) Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same
JPH0380543B2 (en)
JP2742975B2 (en) Regeneration method of ion exchange device
KR100499644B1 (en) Method and apparatus for recycling ion-exchange resin of condensate polishing plants
JPH0363439B2 (en)
JP2003190947A (en) Method and apparatus for treating vanadium-containing water
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPH026893A (en) Condensate desalting device
JPH0557201A (en) Regenerating method for mixed bed ion exchanging equipment
JP2514052Y2 (en) Ion exchange equipment
JP3852487B2 (en) Regeneration method of ion exchange resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees