JP2742976B2 - Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus - Google Patents

Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus

Info

Publication number
JP2742976B2
JP2742976B2 JP5127847A JP12784793A JP2742976B2 JP 2742976 B2 JP2742976 B2 JP 2742976B2 JP 5127847 A JP5127847 A JP 5127847A JP 12784793 A JP12784793 A JP 12784793A JP 2742976 B2 JP2742976 B2 JP 2742976B2
Authority
JP
Japan
Prior art keywords
water
ion exchange
mixed
bed type
type ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5127847A
Other languages
Japanese (ja)
Other versions
JPH06315683A (en
Inventor
孝 松島
誠太郎 長谷川
Original Assignee
整水工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 整水工業株式会社 filed Critical 整水工業株式会社
Priority to JP5127847A priority Critical patent/JP2742976B2/en
Publication of JPH06315683A publication Critical patent/JPH06315683A/en
Application granted granted Critical
Publication of JP2742976B2 publication Critical patent/JP2742976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は混床式イオン交換装置並びにこ
の混床式イオン交換装置を使用した純水及び超純水の製
造方法に係り、その目的は、一次純水装置の後段に用い
られる混床塔、又は二次純水装置として使用される混床
ポリッシャーにおいて、処理水中に充填樹脂からのイオ
ンリークをほとんど生じさせず、高度化されてきた半導
体工業において好適に使用される極めて純度の高い処理
水を得ることのできる混床式イオン交換装置並びに純水
及び超純水の製造方法の提供にある。
The present invention relates to a mixed bed type ion exchange apparatus and a method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus. In a mixed-bed polisher used as a tower or a secondary pure water device, it hardly causes ion leakage from the filling resin in the treated water, and is an extremely pure treatment suitably used in the advanced semiconductor industry. It is an object of the present invention to provide a mixed-bed ion exchange apparatus capable of obtaining water and a method for producing pure water and ultrapure water.

【0002】[0002]

【発明の背景】LSI製造プロセスの洗浄工程において
は、使用する洗浄水中にイオンや微粒子、有機物等がご
く微量でも存在していると、ウエハーに組み込まれる酸
化膜や多結晶膜、配線などに悪影響を及ぼし、結果とし
てLSIの電気特性の不良を起こしてしまう。従って、
半導体工業が要求する洗浄水には高純度の水質が要求さ
れ、含有される各イオンは数ppt〜数十ppt、有機
炭素ですら5ppb以下とされる超純水が要求されてい
る。しかしながら、近年、半導体デバイスの高集積化、
微細化が進むにつれて、要求される水質レベルがppb
からpptのレベルへと向かっており、さらに高純度化
された超純水が要求されるようになってきている。
BACKGROUND OF THE INVENTION In the cleaning process of an LSI manufacturing process, if a very small amount of ions, fine particles, organic substances, etc. are present in cleaning water to be used, an adverse effect on oxide films, polycrystalline films, wiring, etc. incorporated in a wafer. As a result, the electrical characteristics of the LSI are deteriorated. Therefore,
High purity water quality is required for cleaning water required by the semiconductor industry, and ultrapure water is required, in which each ion contained is several ppt to several tens of ppt, and even organic carbon is 5 ppb or less. However, in recent years, high integration of semiconductor devices,
As the miniaturization progresses, the required water quality level becomes ppb
To the level of ppt, and ultrapure water with even higher purity has been required.

【0003】[0003]

【従来の技術】一般に半導体工業において使用される超
純水は、前処理装置、一次純水装置、二次純水装置及び
配管等によって構成される超純水製造装置によって得ら
れる。前処理装置では、上水、地下水などの原水を凝
集、沈殿、濾過し、懸濁物質などが除去され、次いでイ
オン交換装置や逆浸透膜から構成される一次純水装置に
よって原水成分の99〜99.99%が除去されて一次
純水とされる。このように精製処理された一次純水は、
さらに二次純水装置によって、残留するごく微量のイオ
ンやコロイド成分が除去され、超純水とされる。
2. Description of the Related Art Ultrapure water generally used in the semiconductor industry is obtained by an ultrapure water producing apparatus including a pretreatment device, a primary pure water device, a secondary pure water device, and piping. In the pretreatment device, raw water such as tap water and groundwater is flocculated, settled, and filtered to remove suspended solids and the like. Then, 99 to 90% of raw water components are collected by an ion exchange device and a primary pure water device including a reverse osmosis membrane. 99.99% is removed to make primary pure water. The primary purified water thus purified is:
Further, a very small amount of remaining ions and colloid components are removed by the secondary pure water apparatus, and the water is converted into ultrapure water.

【0004】このような超純水の製造工程においては、
原水中のイオンの除去は、主としてイオン交換装置によ
り行なわれている。イオン交換装置としては、カチオン
交換樹脂、アニオン交換樹脂をそれぞれ単床として用い
る多床式のイオン交換装置や、カチオン、アニオンの両
樹脂を混合状態で用いる混床式のイオン交換装置が用い
られている。特に混床式イオン交換装置は、被処理水中
のカチオン、アニオンとを同一塔内で繰り返し交換させ
ることができるため、被処理水を高度に精製する目的で
使用されている。この混床式のイオン交換装置は、被処
理水の通水後にイオン交換樹脂の再生処理を行なう必要
のある再生型混床塔、或いはカチオン交換樹脂、アニオ
ン交換樹脂をそれぞれ再生処理した後、特別に精製し、
一定割合で混合充填した非再生型のカートリッジポリッ
シャーがそれぞれ存在する。再生型の混床塔は、2床3
塔型等の多床式イオン交換装置の後段工程として一次純
水装置に使用され、またカートリッジポリッシャーは二
次純水装置の一つとして、超純水の水質維持を目的とし
て使用されている。
[0004] In the production process of such ultrapure water,
The removal of ions in raw water is mainly performed by an ion exchange device. As the ion exchange device, a multi-bed type ion exchange device using a cation exchange resin and an anion exchange resin as a single bed, and a mixed bed type ion exchange device using both cation and anion resins in a mixed state are used. I have. In particular, the mixed-bed type ion exchange apparatus can repeatedly exchange cations and anions in the water to be treated in the same column, and is therefore used for the purpose of highly purifying the water to be treated. This mixed-bed type ion exchange apparatus is a regenerative mixed-bed tower that needs to regenerate the ion-exchange resin after passing the water to be treated, or specially regenerates the cation-exchange resin and the anion-exchange resin. Refined to
There are non-regenerative cartridge polishers mixed and filled at a fixed ratio. Regeneration type mixed bed tower has 2 beds 3
It is used in a primary water purifier as a subsequent step of a multi-bed ion exchanger of a tower type or the like, and a cartridge polisher is used as one of the secondary water purifiers for the purpose of maintaining the water quality of ultrapure water.

【0005】以上のような再生型、非再生型の混床式イ
オン交換装置(M)は、一般に図10に示すように、内
部にカチオン交換樹脂とアニオン交換樹脂との混合樹脂
(R)を充填させ、上部に被処理水(H0 )を供給する
供給部(S)を備え、被処理水(H0 )を下向流で混合
樹脂(R)中に通水させるとともに、得られる処理水を
イオン交換装置(M)の最下部に設けた集水部(G)に
より集水する構成とされていた。また、このような混床
式イオン交換装置(M)を用いて、純水を製造する場合
には、図11乃至図12に示すように、前工程(A)か
ら供給される被処理水(H0 )を、イオン交換装置
(M)の上部の供給部(S)より下向流で通水し、カチ
オン、アニオンの混合樹脂(R)中を通過させてイオン
交換処理を行い、脱塩された処理水(H1 )を最下部の
集水部(G)にて集水し、一本の集水管(P)を通じて
流出させ、次工程へと移行させる方法で製造されてい
た。この様な技術としては、特開昭59−69187号
公報や特開昭63−315189号公報に記載の「復水
処理方法」がある。これらの技術は、混床塔に集水装置
を通水方向の上流側および下流側に2段に設け、処理水
中にヒドラジンが漏出し始めるまで又は漏出する直前ま
では下流側の集水装置から処理水を取り出し、その後は
上流側の集水装置から処理水を取り出す方法(特開昭5
9−69187号)であり、同一の脱塩塔に前記混床式
イオン交換樹脂層を、前段の上層樹脂層と後段の下層樹
脂層として充填すると共に、流入する復水中の海水リー
ク検知機構を設け、平常時においては前記前段の上層樹
脂層のみに通水して処理し、アンモニアサイクルで復水
脱塩を続行し、復水中に海水リークが検知されたときに
は、自動弁の開閉操作により直ちに前記前段の上層樹脂
層からの流出水を前記後段の下層樹脂層にも通水を開始
し、引き続いて処理水を得る方法である。上記の方法
は、単に復水を処理するだけではなく、処理装置の下方
に集水管を上下に二つ設けて、集水管からの処理水中の
不純物等のリークに対応して、二つの集水管を使い分け
て、処理水中に不純物がリークしないようにしたイオン
交換処理方法である。
As shown in FIG. 10, the regenerative and non-regenerating mixed-bed ion exchange apparatuses (M) generally contain a mixed resin (R) of a cation exchange resin and an anion exchange resin therein, as shown in FIG. is filled, the supply unit for supplying water to be treated (H 0) at the top provided with a (S), with is passed through in the mixed resin in downflow treatment water (H 0) (R), obtained processing Water was collected by a water collecting part (G) provided at the lowermost part of the ion exchange device (M). When pure water is produced using such a mixed bed type ion exchange apparatus (M), as shown in FIGS. 11 and 12, the water to be treated supplied from the previous step (A) is used as shown in FIGS. H 0 ) is passed in a downward flow from the supply section (S) at the top of the ion exchange device (M), passed through a mixed resin (R) of cation and anion, and subjected to ion exchange treatment, thereby desalting. The treated water (H 1 ) collected in the lowermost water collecting section (G) is drained through one water collecting pipe (P), and is then transferred to the next step. As such a technique, there is a "condensation treatment method" described in JP-A-59-69187 and JP-A-63-315189. In these technologies, the water collecting device is installed in the mixed bed tower in two stages on the upstream side and the downstream side in the water flow direction, and from the downstream water collecting device until hydrazine starts to leak into the treated water or until immediately before the hydrazine leaks. A method of taking out treated water and then taking out treated water from an upstream water collecting device (Japanese Patent Laid-Open No.
No. 9-69187), and the same desalination tower is filled with the mixed bed type ion exchange resin layer as an upper resin layer in the former stage and a lower resin layer in the latter stage. In normal times, water is passed through only the upper resin layer of the preceding stage to treat it, and condensate desalination is continued in the ammonia cycle, and when a seawater leak is detected during condensate, the automatic valve is opened and closed immediately to operate. This is a method in which water flowing out from the upper resin layer of the former stage is also passed through the lower resin layer of the latter stage, and subsequently treated water is obtained. The above method does not merely treat condensate water, but also provides two water collection pipes below the treatment device and responds to the leakage of impurities and the like in the treated water from the water collection pipes. This is an ion exchange treatment method in which impurities are prevented from leaking into the treated water by properly using.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記し
たような混床式イオン交換装置(M)や製造方法では、
イオン交換装置(M)よりSO4 - イオンがリークして
処理水中に混入し、そのまま次工程へと移行されてしま
うため、高純度の処理水を得ることができないという課
題が存在した。すなわち、再生型イオン交換装置におい
ては混合樹脂(R)の再生処理に際して、混合されてい
るカチオン、アニオン両樹脂を分離させる必要がある。
通常、この分離、再生作業は、図13に示すように、イ
オン交換装置の下部(U)より洗浄水を上昇流で注入し
て、内部の混合樹脂(R)を逆洗した後、図14に示す
ように樹脂の比重によって、上層部にアニオン交換樹脂
(R1 )、下層部にカチオン交換樹脂(R2 )をそれぞ
れ分離させ、この状態で下部から酸を、上部からアルカ
リといった再生剤を注入して再生処理を行なう。再生処
理終了後は樹脂を水洗し、エアー又は窒素ガス等を樹脂
層内に注入して、分離されたカチオン、アニオンの両交
換樹脂を再び混合させる。ところが、この再生処理に際
して、カチオン、アニオンの両樹脂の混合を、水洗やエ
アー又は窒素ガスによって充分に行なった場合でも、比
重の重いカチオン交換樹脂は沈降してしまい、イオン交
換装置の最下部に集積してしまいやすい傾向にあった。
このため、混床式イオン交換装置の最下部においては、
カチオン交換樹脂より分離して生じるSO4 - イオン
が、アニオン交換樹脂によって捕捉されない状態となる
ため、樹脂層よりリークされて溶出してしまうといった
問題が生じていた。従って、このような下層部分より処
理水の集水を行なうと、リークされたSO4 - イオンが
処理水とともに流出されて次工程へ移行されてしまうと
いう問題が存在した。
However, in the mixed bed type ion exchange apparatus (M) and the manufacturing method described above,
There was a problem that high-purity treated water could not be obtained because SO 4 - ions leaked from the ion exchange device (M) and mixed into the treated water and were transferred to the next step as it was. That is, in the regenerative ion exchange apparatus, it is necessary to separate the mixed cation and anion resins during the regeneration treatment of the mixed resin (R).
Normally, as shown in FIG. 13, this separation and regeneration operation is carried out by injecting washing water from the lower part (U) of the ion exchange device in an upward flow to backwash the mixed resin (R) inside. According to the specific gravity of the resin, an anion exchange resin (R 1 ) is separated in the upper layer and a cation exchange resin (R 2 ) is separated in the lower layer, and a regenerant such as an acid from the bottom and an alkali from the top in this state. The injection process is performed. After completion of the regeneration treatment, the resin is washed with water, and air or nitrogen gas or the like is injected into the resin layer to mix the separated cation and anion exchange resins again. However, at the time of this regeneration treatment, even if the mixing of both the cation and the anion resin is sufficiently performed by washing with water or air or nitrogen gas, the cation exchange resin having a high specific gravity is settled, and is located at the bottom of the ion exchange device. They tended to accumulate.
For this reason, at the bottom of the mixed bed type ion exchange device,
Since SO 4 ions generated by separation from the cation exchange resin are not captured by the anion exchange resin, there has been a problem that they are leaked and eluted from the resin layer. Therefore, when collecting the treated water from such a lower layer portion, there is a problem that the leaked SO 4 - ions flow out together with the treated water and are transferred to the next step.

【0007】一方、非再生型のカートリッジポリッシャ
ーの場合においては、再生処理したアニオン、カチオン
の両交換樹脂を一定割合でイオン交換装置に混合、充填
する際、或いは再生処理したイオン交換樹脂を混合、充
填して使用場所まで運搬し、配管に接続させる際の振動
等により、やはり比重の重いカチオン交換樹脂がイオン
交換装置の最下部に集まりやすい傾向にあった。このた
め、前記再生型イオン交換装置と同様に、最下部に集ま
ったカチオン交換樹脂より分離して生じるSO4 - イオ
ンが、アニオン交換樹脂によって除去されずに、わずか
にリークされて溶出し、処理水とともに集水部から流出
して次工程へ移行されてしまう結果となっていた。
On the other hand, in the case of a non-regenerating type cartridge polisher, both of the regenerated anion and cation exchange resins are mixed and filled into the ion exchange apparatus at a fixed ratio, or the regenerated ion exchange resin is mixed. The cation exchange resin having a high specific gravity also tends to collect at the lowermost portion of the ion exchange device due to vibration or the like at the time of filling and transporting to the place of use and connecting to the pipe. For this reason, similarly to the regenerative ion exchange apparatus, SO 4 ions generated separately from the cation exchange resin collected at the lowermost part are not removed by the anion exchange resin, but are slightly leaked and eluted. As a result, the water flowed out of the water collecting section and was transferred to the next process.

【0008】このように混床式イオン交換装置を経て流
出されたSO4 - イオンは、そのまま除去されずに次工
程へと移行されるため、得られる純水又は超純水中に微
量のSO4 - イオンが存在してしまい、pptレベルと
いう半導体工業が要求するような極めて高純度の処理水
を得ることはできないという課題が存在した。
[0008] Since the SO 4 - ions which have flowed out through the mixed-bed type ion exchange apparatus are transferred to the next step without being removed as they are, a small amount of SO 4 - ion is added to the obtained pure water or ultrapure water. 4 - ions will be present, a problem that the semiconductor industry that ppt level can not obtain a very high purity of the treated water so as to request exists.

【0009】この課題は、図1に示した如く、処理水出
口をイオン交換槽の最下層よりも上部に設け、カチオン
交換樹脂のみからなる層を処理水が通過しないようにす
ることにより解決されるかに見える。なお、図1はより
良い純水を得るためのイオン交換装置の実験例を示す模
式図である。この例では、混床式イオン交換装置(M)
上部に設けられた供給部(S)から被処理水(H0 )を
混合樹脂(R)中に通水させ、得られる処理水(H1
を、イオン交換装置(M)の下部のカチオン交換樹脂が
沈降集積している部分の直上方に設けられた集水部
(G)で集水させる構成とされている。しかしながら、
前記の方法によると、集水部(G)よりも下に流入した
被処理水(H0 )が逆流して集水部(G)で集水され、
得られる処理水(H1 )のSO4 - イオン濃度が上昇し
てしまう危険性があった。そこで業界では、高集積化、
高密度化されている半導体工業の要望に応じるべく、極
めて純度の高い処理水を効率よく得るために、被処理水
中の微量イオンを除去する際に、充填樹脂からのイオン
リークが極めて少ない再生、非再生型の混床式イオン交
換装置並びに純水及び超純水の優れた製造方法の創出が
望まれていた。
This problem can be solved by providing a treated water outlet above the lowermost layer of the ion exchange tank as shown in FIG. 1 so that treated water does not pass through a layer consisting of only the cation exchange resin. It looks like. FIG. 1 is a schematic diagram showing an experimental example of an ion exchange device for obtaining better pure water. In this example, a mixed-bed ion exchange device (M)
The water to be treated (H 0 ) is passed through the mixed resin (R) from the supply section (S) provided at the upper portion, and the treated water (H 1 ) obtained is obtained.
Is collected in a water collecting portion (G) provided directly above a portion where the cation exchange resin is settled and accumulated below the ion exchange device (M). However,
According to the above method, the water to be treated (H 0 ) flowing below the water collecting part (G) flows backward and is collected in the water collecting part (G),
There was a risk that the SO 4 - ion concentration of the obtained treated water (H 1 ) would increase. In the industry, high integration,
In response to the demands of the semiconductor industry, which has become more dense, in order to efficiently obtain extremely high-purity treated water, when removing trace ions in the water to be treated, regeneration with very little ion leakage from the filling resin, It has been desired to create a non-regenerative mixed-bed ion exchanger and an excellent method for producing pure water and ultrapure water.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明は
内部にカチオン交換樹脂とアニオン交換樹脂との混合樹
脂を充填してなる混床式イオン交換装置において、上部
に被処理水を通水する供給部が設けられてなるととも
に、その下部がカチオン交換樹脂貯留部とされ、このカ
チオン交換樹脂貯留部より上部に第1集水部が設けら
れ、第1集水部の下部に第2集水部が設けられ、第2集
水部から得られる処理水を前工程に戻す還水路が設けら
れてなることを特徴とする混床式イオン交換装置であ
る。請求項2に記載の発明は下部にカチオン交換樹脂貯
留部を有する混床式イオン交換装置を使用し、前段工程
からの処理水を前記混床式イオン交換装置の上部より下
向流で通水させるとともに、得られた処理水をカチオン
交換樹脂貯留部よりも上部に設けた第1集水部と、第1
集水部の下部に設けた第2集水部によってそれぞれ集水
し、第1集水部によって得られた処理水は次工程へと移
行させ、第2集水部より得られた処理水は前段工程へと
戻してなることを特徴とする純水及び超純水の製造方法
である。上記の発明を提供することにより、前記従来の
課題を悉く解消する。
According to a first aspect of the present invention, there is provided a mixed bed type ion exchange apparatus in which a mixed resin of a cation exchange resin and an anion exchange resin is filled. A water supply section is provided, and a lower portion thereof is a cation exchange resin storage section. A first water collection section is provided above the cation exchange resin storage section, and a second water collection section is provided below the first water collection section. A mixed-bed ion exchange apparatus comprising: a water collecting portion; and a return water passage for returning treated water obtained from the second water collecting portion to a previous step. The invention according to claim 2 uses a mixed bed type ion exchange device having a cation exchange resin storage section at a lower portion, and passes treated water from a preceding step in a downward flow from an upper portion of the mixed bed type ion exchange device. And a first water collecting section provided above the cation exchange resin storage section and a first water collecting section.
Water is respectively collected by the second water collecting section provided at the lower part of the water collecting section, and the treated water obtained by the first water collecting section is shifted to the next step, and the treated water obtained from the second water collecting section is A method for producing pure water and ultrapure water, wherein the method returns to the previous step. By providing the above invention, all of the conventional problems are solved.

【0011】[0011]

【作用】混床式イオン交換装置においては、内部に充填
されている混床樹脂を充分に攪拌、混合しても、比重の
重いカチオン交換樹脂は樹脂塔の最下部に集まりやすく
なっている。しかし、混床式イオン交換装置の下部をカ
チオン交換樹脂貯留部とし、処理水の集水部をカチオン
交換樹脂貯留部の直上方に設けることによって、樹脂層
下部より溶出されるSO4 - イオンを処理水中に混入さ
せることなく、処理水を集水させることができる。さら
に、純水及び超純水の製造工程において、混床式イオン
交換装置に通水された処理水を、イオン交換装置の下層
部の、上段の第1集水部と下段の第2集水部によってそ
れぞれ集水し、第1集水部より得られた処理水のみを次
工程へと移行させ、第2集水部より得られた処理水は、
前段工程へとリターンさせる製造方法を採用することに
より、カチオン交換樹脂より分離されたSO4 - イオン
を処理水中に溶出させてしまうことがない。また、カチ
オン交換樹脂貯留部には第1集水部から第2集水部へ向
かう下向流が形成されるため、カチオン交換樹脂貯留部
に流入した被処理水が第1集水部から回収されることが
なく、極めて純度の高い純水及び超純水を製造すること
ができる。
In the mixed bed type ion exchange apparatus, even if the mixed bed resin filled therein is sufficiently stirred and mixed, the cation exchange resin having a high specific gravity tends to gather at the bottom of the resin tower. However, the lower part of the mixed bed type ion exchange device is used as a cation exchange resin storage part, and the treated water collecting part is provided directly above the cation exchange resin storage part, so that SO 4 - ions eluted from the lower part of the resin layer can be removed. The treated water can be collected without being mixed into the treated water. Further, in the production process of pure water and ultrapure water, the treated water passed through the mixed bed type ion exchange device is divided into an upper first water collection portion and a lower second water collection portion in a lower portion of the ion exchange device. The water is collected by the respective sections, and only the treated water obtained from the first collecting section is transferred to the next step, and the treated water obtained from the second collecting section is
By adopting the production method in which the process returns to the preceding step, the SO 4 ions separated from the cation exchange resin are not eluted into the treated water. Further, since a downward flow from the first water collecting section to the second water collecting section is formed in the cation exchange resin storage section, the water to be treated flowing into the cation exchange resin storage section is recovered from the first water collection section. And pure water and ultrapure water of extremely high purity can be produced.

【0012】[0012]

【発明の構成】以下、この発明に係る混床式イオン交換
装置並びにこの混床式イオン交換装置を使用した純水及
び超純水の製造方法の構成について詳述する。なお、図
中(1)は混床式イオン交換装置、(2)はカチオン交
換樹脂とアニオン交換樹脂の混合樹脂、(3)は被処理
水(H0 )を通水させる供給部、(4)は集水部、
(5)は還水路、(6)はカチオン交換樹脂貯留部であ
る。また、(41)は第1集水部、(42)は第2集水
部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a mixed-bed ion exchange apparatus according to the present invention and a method for producing pure water and ultrapure water using the mixed-bed ion exchange apparatus will be described below in detail. In the figure, (1) is a mixed bed type ion exchange apparatus, (2) is a mixed resin of a cation exchange resin and an anion exchange resin, (3) is a supply unit for passing water to be treated (H 0 ), and (4) ) Is the catchment section,
(5) is a return water channel, and (6) is a cation exchange resin storage unit. Further, (41) is a first water collecting part, and (42) is a second water collecting part.

【0013】図2は、この発明に係る混床式イオン交換
装置(1)の第1実施例を示す模式説明図であり、この
第1実施例においては、イオン交換装置(1)の下部が
カチオン交換樹脂貯留部(6)とされ、このカチオン交
換樹脂貯留部(6)より上部に第1集水部(41)が設
けられ、カチオン交換樹脂貯留部(6)の最下部に第2
集水部(42)が設けられている。また、この第1実施
例は第1集水部(41)で得られた処理水(H1 )のみ
を精製処理水として次工程へと移行させ、下段の第2集
水部(42)で得られた処理水(H2 )は還水路(5)
を通って前工程に戻され、再びこのイオン交換装置
(1)に通水させる構成とされている。図示するような
混床式イオン交換装置(1)においては、内部に充填さ
れている混合樹脂(2)が充分に混合され、アニオン交
換樹脂及びカチオン交換樹脂が分散されていても、比重
の大きいカチオン交換樹脂はややもすると最下部に沈降
することがあり、特に長時間通水するとその傾向が強く
なる。カチオン交換樹脂が沈降集積する位置は、充填さ
れているアニオン交換樹脂とカチオン交換樹脂との混合
比や、使用されるイオン交換装置(1)の内径、樹脂の
充填高さ等によって異なってくるが、内径120cmの
イオン交換装置の場合、最下部より1〜30cm上方部
分までカチオン交換樹脂が沈降集積しやすい傾向にある
ため、カチオン交換樹脂貯留部(6)は前記部分、即ち
最下部からその1〜30cm上方部分まで、に設定すれ
ばよい。この発明においては、混床式イオン交換装置
(1)の下層部に以上のような集水部(4)を設ける構
成が採用されるが、集水部(4)としては特に限定はさ
れず、適宜任意の集水装置が使用されればよい。この混
床式イオン交換装置(1)においては第2集水部(4
2)がイオン交換装置(1)の最下部に設けられている
ため、イオン交換樹脂は無駄なく使用される。また、第
1集水部(41)と第2集水部(42)の間には下向流
が形成されるため、カチオン交換樹脂貯留部(6)に流
入した被処理水(H0 )が第1集水部(41)から回収
されるおそれがない。
FIG. 2 is a schematic explanatory view showing a first embodiment of a mixed bed type ion exchange apparatus (1) according to the present invention. In the first embodiment, the lower part of the ion exchange apparatus (1) is A cation exchange resin storage section (6), a first water collection section (41) is provided above the cation exchange resin storage section (6), and a second water collection section (41) is provided at the bottom of the cation exchange resin storage section (6).
A water collecting part (42) is provided. In the first embodiment, only the treated water (H 1 ) obtained in the first water collecting section (41) is transferred to the next step as purified treated water, and the second water collecting section (42) in the lower stage. The obtained treated water (H 2 ) is returned to the return channel (5).
Through the ion exchange device (1). In the mixed bed type ion exchange apparatus (1) as shown in the figure, even if the mixed resin (2) filled therein is sufficiently mixed and the anion exchange resin and the cation exchange resin are dispersed, the specific gravity is large. The cation exchange resin may settle at the lowermost part if it is slightly, and the tendency is particularly increased when the water is passed for a long time. The position at which the cation exchange resin sediments and accumulates depends on the mixing ratio of the charged anion exchange resin and the cation exchange resin, the inner diameter of the ion exchange device (1) used, the filling height of the resin, and the like. In the case of an ion exchange device having an inner diameter of 120 cm, the cation exchange resin tends to settle and accumulate from 1 to 30 cm above the lowermost portion. What is necessary is just to set to up to 30 cm above. In the present invention, a configuration in which the water collecting section (4) as described above is provided in the lower layer of the mixed bed type ion exchange device (1) is adopted, but the water collecting section (4) is not particularly limited. Any water collecting device may be used as appropriate. In this mixed bed type ion exchange apparatus (1), the second water collecting section (4
Since 2) is provided at the bottom of the ion exchange device (1), the ion exchange resin is used without waste. Further, since a downward flow is formed between the first water collecting part (41) and the second water collecting part (42), the water to be treated (H 0 ) flowing into the cation exchange resin storage part (6). Is not likely to be collected from the first water collecting part (41).

【0014】図3は、この発明に係る混床式イオン交換
装置(1)の第2実施例を示す模式説明図である。図示
する実施例では、上段に第1集水部(41)及び下段に
第2集水部(42)を配設した二重集水管(4)が取り
付けられている。この実施例では、イオン交換装置
(1)の上部に、供給水(被処理水)(H0)を下向流で
通水させる供給部(3)が設けられ、混合樹脂によって
処理された処理水(H1)(H2)を二重集水管(4)によ
ってそれぞれ異なる位置で集水し、上昇流で流出させ、
第1集水部(41)から得られた処理水(H1)のみを次
工程に移行させ、第2集水部(42)から得られた処理
水(H2)は還水路(5)を通って前工程に戻る構成とな
っている。
FIG. 3 is a schematic explanatory view showing a second embodiment of the mixed bed type ion exchange apparatus (1) according to the present invention. In the embodiment shown in the figure, a double water collecting pipe (4) having a first water collecting part (41) in the upper part and a second water collecting part (42) in the lower part is attached. In this embodiment, a supply section (3) for supplying supply water (water to be treated) (H 0 ) in a downward flow is provided above the ion exchange apparatus (1), and a treatment section treated with a mixed resin is provided. Water (H 1 ) (H 2 ) is collected at different positions by the double collecting pipe (4), and is discharged in an upflow.
Only the treated water (H 1 ) obtained from the first water collecting part (41) is transferred to the next step, and the treated water (H 2 ) obtained from the second water collecting part (42) is returned to the return waterway (5). And return to the previous process.

【0015】次に、この発明に係る純水及び超純水の製
造方法について説明する。図4乃至図5はこの発明に係
る純水及び超純水の製造方法の一実施例を示す模式説明
図である。図中(A)は前段工程によって得られた一次
純水を充填した一次純水タンク、(1)は混床式イオン
交換装置、(2)はカチオン交換樹脂とアニオン交換樹
脂の混合樹脂、(3)は被処理水(H0 )を通水させる
供給部、(4)は集水部であり、この集水部はイオン交
換装置(1)下層部に、上段の第1集水部(41)と下
段の第2集水部(42)との二段に分かれて設けられて
いる。この実施例において、一次純水タンク(A)より
被処理水(H0)が混床式イオン交換装置(1)の上部
より供給されて、内部の混合樹脂(2)に下向流で通水
される。この混合樹脂(2)に通水させることによっ
て、被処理水中のアニオン、カチオン両樹脂がそれぞれ
吸着・除去される。
Next, a method for producing pure water and ultrapure water according to the present invention will be described. 4 and 5 are schematic explanatory views showing one embodiment of the method for producing pure water and ultrapure water according to the present invention. In the figure, (A) is a primary pure water tank filled with primary pure water obtained in the previous step, (1) is a mixed bed type ion exchange device, (2) is a mixed resin of a cation exchange resin and an anion exchange resin, 3) is a supply unit for passing the water to be treated (H 0 ), and (4) is a water collecting unit. This water collecting unit is provided in the lower part of the ion exchange device (1) and in the upper first water collecting unit ( 41) and a lower second water collecting part (42). In this embodiment, the water to be treated (H 0 ) is supplied from the upper part of the mixed bed type ion exchange device (1) from the primary pure water tank (A) and passes through the internal mixed resin (2) in a downward flow. Be watered. By passing water through the mixed resin (2), both anionic and cationic resins in the water to be treated are respectively adsorbed and removed.

【0016】イオン交換処理がなされた処理水は、それ
ぞれイオン交換装置(1)下層部に設けられた第1集水
部(41)と第2集水部(42)との集水部によってそ
れぞれ集水される。第1集水部(41)によって集水さ
れた処理水(H1)は、次いでさらに高度精製される次
工程(図示せず)へと送られる。一方、第2集水部(4
2)によって集水された処理水(H2)は、前段工程、
図示する実施例においては、一次純水タンク(A)へと
戻される構成とされている。この発明において、集水部
(4)としては特に限定はされず、適宜任意のコレクタ
ー等を用い、それぞれ所定のラインへ接続する構成が適
宜採用できる。また、処理水を移行させる工程について
も、第1集水部(41)によって集水された処理水(H
1)のみを次の高度精製ラインへと接続し、第2集水部
(42)によって集水された処理水(H2)は前段工
程、つまり一次純水タンク(A)又はイオン交換装置
(1)前段の任意のポンプ入口(図示せず)へ戻される
構成とされればよく、特に限定されるものではない。
The treated water subjected to the ion exchange treatment is respectively collected by a first water collecting section (41) and a second water collecting section (42) provided in the lower part of the ion exchange device (1). Water is collected. The treated water (H 1 ) collected by the first water collecting section (41) is then sent to the next step (not shown), which is further highly purified. On the other hand, the second catchment section (4
The treated water (H 2 ) collected by 2 ) is subjected to the first step,
In the illustrated embodiment, the structure is such that the water is returned to the primary pure water tank (A). In the present invention, the water collecting section (4) is not particularly limited, and a configuration in which an arbitrary collector or the like is used as appropriate and connected to predetermined lines, respectively, can be appropriately adopted. Also, in the step of transferring the treated water, the treated water (H) collected by the first water collecting section (41) is used.
1 ) is connected to the next high-purification line, and the treated water (H 2 ) collected by the second water collecting section (42) is subjected to the former step, that is, the primary pure water tank (A) or the ion exchange device ( 1) The configuration is not particularly limited as long as it is configured to return to an arbitrary pump inlet (not shown) at the preceding stage.

【0017】上記したように、混床式イオン交換装置
(1)に通水させた処理水のうち、上段の第1集水部
(41)により集水した処理水のみを次工程へと移行さ
せる方法を採用することにより、カチオン交換樹脂より
リークされやすいSO4 - イオンの次工程への流出を防
ぐことが可能となる。すなわち、混床式イオン交換装置
(1)においては、その最下部に比重の大きいカチオン
交換樹脂が集まりやすくなっている。このようにカチオ
ン交換樹脂が最下部に集まってしまうと、カチオン交換
樹脂より分離されたSO4 - イオンが、アニオン交換樹
脂によって捕捉されずに溶出してしまうが、次工程へと
移行させる処理水を、イオン交換装置(1)下層部のう
ち、カチオン交換樹脂とアニオン交換樹脂との割合が良
好な状態にある上段の第1集水部(41)により集水し
た処理水に限定してしまうことによって、リークされた
SO4 - イオンを含まない処理水のみを次工程へと移行
させることができる。つまり、上段集水部(41)付近
では、逆洗や空気又は窒素ガス等の流入によって混合さ
れたカチオン交換樹脂とアニオン交換樹脂とが良好な状
態で存在しており、カチオン交換樹脂より分離されたS
4 - イオンがアニオン交換樹脂によって捕捉されてし
まうため、処理水中にイオンをリークさせてしまうこと
なく集水させることができる。また、SO4 - イオンが
リークされやすい下段の第2集水部(42)により集水
された処理水は、前段工程へと戻される構成とされるた
め、再び混床式イオン交換装置(1)へ通水され、SO
4 - イオンが除去され、次工程へと移行される。
As described above, of the treated water passed through the mixed bed type ion exchange device (1), only the treated water collected by the first water collecting section (41) in the upper stage is transferred to the next step. By adopting this method, it is possible to prevent SO 4 - ions, which are more likely to leak than the cation exchange resin, from flowing to the next step. That is, in the mixed bed type ion exchange device (1), a cation exchange resin having a large specific gravity tends to gather at the lowermost portion. When the cation exchange resin collects at the lowermost portion as described above, SO 4 ions separated from the cation exchange resin are eluted without being captured by the anion exchange resin, but the treated water is transferred to the next step. Is limited to the treated water collected by the upper first water collecting portion (41) in the lower layer portion of the ion exchange device (1) in which the ratio between the cation exchange resin and the anion exchange resin is in a favorable state. As a result, only the treated water containing no leaked SO 4 - ions can be transferred to the next step. In other words, in the vicinity of the upper water collecting section (41), the cation exchange resin and the anion exchange resin mixed by backwashing or the inflow of air or nitrogen gas exist in a good state, and are separated from the cation exchange resin. S
Since the O 4 - ions are trapped by the anion exchange resin, the water can be collected without causing the ions to leak into the treated water. Further, the treated water collected by the lower second water collecting section (42) in which SO 4 - ions are liable to leak is returned to the previous step, so that the mixed bed type ion exchange device (1) ) And the SO
4 -The ions are removed and moved to the next step.

【0018】この発明において、混床式イオン交換装置
(1)の下層部に設けられる集水部(4)の位置として
は、イオン交換樹脂の充填高さや、イオン交換装置の内
径、混合されるカチオン交換樹脂及びアニオン交換樹脂
の割合によって適宜任意に設定されればよいが、少なく
とも下段の第2集水部(42)は、混合樹脂(2)の最
下部付近に、上段の第1集水部(41)は、カチオン交
換樹脂が沈降集積する部分の直上方に設けられる。具体
的にはイオン交換装置最下部から5〜30cm上方に第
1集水部(41)が設けられ、この第1集水部(41)
から3〜10cm下方位置に下段の第2集水部(42)
を設けられることが、純度の高い処理水を得る観点から
好ましいが特に限定されるものではない。尚、この発明
において、混床式イオン交換装置(1)としては、特に
限定はされず、一次純水装置として使用される再生型の
混床塔、二次純水装置として使用される非再生型のカー
トリッジポリッシャー等、カチオン交換樹脂とアニオン
交換樹脂を混合して充填した混床式のイオン交換装置全
てを指す。充填されるイオン交換樹脂の割合についても
特に限定はされず、被処理水の成分や使用目的等に応じ
て適宜任意の割合の混合樹脂が好適に使用される。ま
た、この混床式イオン交換装置の前段工程としても、特
に限定はされずに、原水を濾過、沈殿、凝集させる工
程、或いは一次純水工程等任意の工程が全て含まれる。
In the present invention, the position of the water collecting part (4) provided in the lower part of the mixed bed type ion exchange device (1) is the filling height of the ion exchange resin, the inner diameter of the ion exchange device, and the mixing. It may be set arbitrarily according to the ratio of the cation exchange resin and the anion exchange resin, but at least the lower second water collecting portion (42) is located near the lowermost portion of the mixed resin (2), and the upper first water collecting portion is provided. The portion (41) is provided immediately above a portion where the cation exchange resin sediments and accumulates. Specifically, a first water collecting portion (41) is provided 5 to 30 cm above the lowermost portion of the ion exchange device, and the first water collecting portion (41) is provided.
2nd water collecting part (42) at the lower stage 3 to 10 cm below
Is preferred from the viewpoint of obtaining high-purity treated water, but is not particularly limited. In the present invention, the mixed bed type ion exchange apparatus (1) is not particularly limited, and is a regeneration type mixed bed tower used as a primary pure water apparatus, and a non-regeneration apparatus used as a secondary pure water apparatus. It refers to all types of mixed-bed ion exchange devices, such as a cartridge polisher of a mold type, in which a cation exchange resin and an anion exchange resin are mixed and filled. The ratio of the ion exchange resin to be filled is not particularly limited, and a mixed resin having an arbitrary ratio is suitably used according to the components of the water to be treated, the purpose of use, and the like. In addition, the pre-stage of the mixed bed type ion exchange apparatus is not particularly limited, but includes any process such as a process of filtering, precipitating and coagulating raw water, or a process of primary pure water.

【0019】[0019]

【実施例】以下、この発明に係る混床式イオン交換装置
並びにこの混床式イオン交換装置を使用した純水及び超
純水の製造方法の効果を、実施例、比較例を挙げること
により、一層明確にする。但し、この発明は以下の実施
例により何ら限定されるものではない。
EXAMPLES The effects of the mixed bed type ion exchange apparatus according to the present invention and the method of producing pure water and ultrapure water using the mixed bed type ion exchange apparatus will now be described by way of examples and comparative examples. Clarify more. However, the present invention is not limited at all by the following examples.

【0020】(実施例1) 図7に示すように、25.5cmの内径を有する非再生
型混床式イオン交換装置(1)内に、底部より15cm
高さ(a)まで、強酸性カチオン交換樹脂と強塩基性ア
ニオン交換樹脂との混合物(混合比1:10)(商品
名:ダイヤイオンSK−1B、三菱化成(株)製、商品
名:ダイヤイオンSA−11A、三菱化成(株)製)
(21)を充填し、さらにその上部に前記同様の強酸性
カチオン交換樹脂と強塩基性アニオン交換樹脂との混合
物(混合比1:2)(22)を95cm高さ(b)迄充
填した。この混床式イオン交換装置(1)の上部に被処
理水を下向流で通水する供給部(3)を設けるととも
に、前記混合比1:10の樹脂混合物(21)と、混合
比1:2の樹脂混合物(22)との境界部分より6cm
上部位置(c)に集水管(4)を取り付け、且つ前記境
界部分より10cm下部位置(d)に第2集水管(4
2)をそれぞれ取り付けて実施例1の混床式イオン交換
装置とした。
Example 1 As shown in FIG. 7, a non-regenerative mixed-bed ion exchanger (1) having an inner diameter of 25.5 cm was placed 15 cm from the bottom.
Up to the height (a), a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin (mixing ratio: 1:10) (trade name: Diaion SK-1B, manufactured by Mitsubishi Kasei Co., Ltd., trade name: diamond) Ion SA-11A, manufactured by Mitsubishi Kasei Corporation)
(21) was charged, and the upper portion thereof was further filled with a mixture of the same strongly acidic cation exchange resin and strongly basic anion exchange resin (mixing ratio of 1: 2) (22) to a height of 95 cm (b). A supply unit (3) for passing water to be treated in a downward flow is provided above the mixed bed type ion exchange device (1), and the resin mixture (21) having a mixing ratio of 1:10 and a mixing ratio of 1 : 6 cm from the boundary with the resin mixture (22)
A water collecting pipe (4) is attached to the upper position (c), and the second water collecting pipe (4) is set to a position (d) 10 cm below the boundary.
2) were attached to each other to obtain a mixed bed type ion exchange apparatus of Example 1.

【0021】(比較例1) 前記実施例1と同様の非再生型混床式イオン交換装置
(1)に図6に示すように混合比1:10の樹脂混合物
(21)と、混合比1:2の樹脂混合物(22)との境
界部分より6cm上部位置(c)に第1集水管(41)
を取り付けて比較例1の混床式イオン交換装置とした。 (比較例2) 前記実施例1と同様の非再生型混床式イオン交換装置
(1)において、図8に示すように混合比1:10の樹
脂混合物(21)と、混合比1:2の樹脂混合物(2
2)との境界部分より10cm下部位置(c)に集水管
(4)を取り付けて比較例2の混床式イオン交換装置と
した。
(Comparative Example 1) As shown in FIG. 6, a resin mixture (21) having a mixing ratio of 1:10 and a mixing ratio of 1 were added to the same non-regenerative mixed-bed ion exchange apparatus (1) as in Example 1. : The first water collecting pipe (41) at a position (c) 6 cm above the boundary with the resin mixture (22)
Was attached to obtain a mixed bed type ion exchange device of Comparative Example 1. (Comparative Example 2) In the same non-regenerative type mixed-bed ion exchange device (1) as in Example 1, as shown in FIG. 8, a resin mixture (21) having a mixing ratio of 1:10 and a mixing ratio of 1: 2 Resin mixture (2
A water collecting pipe (4) was attached at a position (c) 10 cm below the boundary with (2) to obtain a mixed bed type ion exchange apparatus of Comparative Example 2.

【0022】(試験例) 前記実施例1及び比較例1〜2の混床式イオン交換装置
を、図9に示すような純水製造ラインに接続した。タン
ク(T)より粗純水を各イオン交換装置へ同時に3m3
/Hの流量で、上部から下部へ供給し、各イオン交換装
置の集水部より得られた処理水を、比較例1及び2につ
いては3m3 /Hの流量で上昇流により流出させた。得
られた処理水中の硫酸イオン(SO4 - )濃度を、濃縮
カラム付きイオンクロマトグラフィーオフライン分析装
置(ダイオネックスDX300)により測定した。尚、
実施例1のイオン交換装置については、第1集水管から
2.8m3 /Hの流量で処理水を流出させ、第2集水部
からは0.2m3 /Hの流量で処理水を流出させた。処
理水中のイオン濃度の測定については、第1集水部から
得られたものにのみ行い、第2集水部から得られた処理
水は、タンク(T)にリターンするよう配管した。実施
例及び比較例で得られた処理水中の硫酸イオン(SO4
- )濃度をそれぞれ表1に示した。
(Test Example) The mixed bed type ion exchange apparatus of Example 1 and Comparative Examples 1 and 2 was connected to a pure water production line as shown in FIG. 3m 3 of crude water from tank (T) to each ion exchanger at the same time
/ H was supplied from the upper part to the lower part at a flow rate, and the treated water obtained from the water collecting part of each ion exchange device was caused to flow out by an ascending flow at a flow rate of 3 m 3 / H for Comparative Examples 1 and 2. The sulfate ion (SO 4 ) concentration in the obtained treated water was measured by an ion chromatography off-line analyzer with a concentration column (Dionex DX300). still,
Regarding the ion exchange device of Example 1, treated water flows out at a flow rate of 2.8 m 3 / H from the first collecting pipe, and flows out at a flow rate of 0.2 m 3 / H from the second collecting section. I let it. The measurement of the ion concentration in the treated water was performed only on the one obtained from the first water collecting part, and the treated water obtained from the second water collecting part was piped so as to return to the tank (T). Sulfate ions (SO 4) in the treated water obtained in Examples and Comparative Examples
- ) The concentrations are shown in Table 1.

【表1】 [Table 1]

【0023】表1から明らかな如く、実施例1及び比較
例1の混床式イオン交換装置によって得られた処理水
は、比較例2のイオン交換装置と比べると、測定された
硫酸イオン濃度が低いことが明らかである。このことか
ら、処理水を混合比1:10の樹脂混合物(21)で処
理すると、却ってSO4 - イオン濃度が上昇してしま
い、好適な純水が得られないことが判る。また、第1集
水部と第2集水部とによってそれぞれ集水し、第2集水
部によって得られた処理水を前段工程へとリターンさせ
る実施例1の混床式イオン交換装置の方が、第2集水部
による処理水のリターンがない比較例1の混床式イオン
交換装置と比較し、得られる処理水中のイオン濃度が極
めて低いことが明らかである。このことから、混合比
1:10の樹脂混合物(21)で処理した処理水を前段
工程にリターンさせるとイオン交換効率が上昇し、好適
な純水が得られることが判る。
As is clear from Table 1, the treated water obtained by the mixed bed type ion exchange apparatus of Example 1 and Comparative Example 1 has a measured sulfate ion concentration as compared with the ion exchange apparatus of Comparative Example 2. It is clear that it is low. From this fact, it can be understood that when the treated water is treated with the resin mixture (21) having a mixing ratio of 1:10, the SO 4 - ion concentration is rather increased, and suitable pure water cannot be obtained. Further, the mixed bed type ion exchange apparatus of the first embodiment in which water is collected by the first water collecting section and the second water collecting section, respectively, and the treated water obtained by the second water collecting section is returned to the preceding step. However, it is clear that the ion concentration in the obtained treated water is extremely low as compared with the mixed bed type ion exchange device of Comparative Example 1 in which the treated water is not returned by the second water collecting section. From this, it is understood that when the treated water treated with the resin mixture (21) having a mixing ratio of 1:10 is returned to the preceding step, the ion exchange efficiency is increased, and suitable pure water is obtained.

【0024】[0024]

【発明の効果】以上詳述した如く、この発明は内部にカ
チオン交換樹脂とアニオン交換樹脂との混合樹脂を充填
してなる混床式イオン交換装置において、上部に被処理
水を通水する供給部が設けられてなるとともに、その下
部がカチオン交換樹脂貯留部とされ、このカチオン交換
樹脂貯留部より上部に第1集水部が設けられ、第1集水
部の下部に第2集水部が設けられ、第2集水部から得ら
れる処理水を前工程に戻す還水路が設けられてなること
を特徴とする混床式イオン交換装置であり、及び下部に
カチオン交換樹脂貯留部を有する混床式イオン交換装置
を使用し、前段工程からの処理水を前記混床式イオン交
換装置の上部より下向流で通水させるとともに、得られ
た処理水をカチオン交換樹脂貯留部よりも上部に設けた
第1集水部と、第1集水部の下部に設けた第2集水部に
よってそれぞれ集水し、第1集水部によって得られた処
理水は次工程へと移行させ、第2集水部より得られた処
理水は前段工程へと戻してなることを特徴とする純水及
び超純水の製造方法であるから、前記試験例の結果より
明らかな如く、樹脂からのイオンリークがほとんどな
く、高集積化、高密度化されている半導体工業の洗浄用
水として利用可能な極めて純度の高い処理水を得ること
ができるという優れた効果を奏する。
As described above in detail, the present invention relates to a mixed bed type ion exchange apparatus in which a mixed resin of a cation exchange resin and an anion exchange resin is filled. A cation exchange resin storage section at a lower portion thereof, a first water collection section provided above the cation exchange resin storage section, and a second water collection section below the first water collection section. Is provided, and a return channel is provided for returning the treated water obtained from the second water collecting section to the previous step. The mixed-bed ion exchange apparatus has a cation exchange resin storage section at the bottom. Using a mixed bed type ion exchange device, while passing the treated water from the preceding step in a downward flow from the upper part of the mixed bed type ion exchange device, the obtained treated water is located above the cation exchange resin storage part. The first water collecting part provided in Water is respectively collected by the second water collecting section provided at the lower part of the water collecting section, and the treated water obtained by the first water collecting section is shifted to the next step, and the treated water obtained from the second water collecting section is Since it is a method for producing pure water and ultrapure water, which is characterized by returning to the previous step, as is clear from the results of the test examples, there is almost no ion leak from the resin, high integration, high density It has an excellent effect that it is possible to obtain treated water of extremely high purity that can be used as cleaning water in the semiconductor industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】混床式イオン交換装置の実験例を示した模式図
である。
FIG. 1 is a schematic diagram showing an experimental example of a mixed bed type ion exchange device.

【図2】この発明に係る混床式イオン交換装置の第1実
施例を示した模式図である。
FIG. 2 is a schematic view showing a first embodiment of a mixed bed type ion exchange apparatus according to the present invention.

【図3】この発明に係る混床式イオン交換装置の第2実
施例を示した模式図である。
FIG. 3 is a schematic view showing a second embodiment of the mixed bed type ion exchange apparatus according to the present invention.

【図4】この発明に係る純水及び超純水の製造方法の一
実施例の概要を示す模式図である。
FIG. 4 is a schematic view showing an outline of an embodiment of a method for producing pure water and ultrapure water according to the present invention.

【図5】この発明に係る純水及び超純水の製造方法の一
実施例の概要を示す模式図である。
FIG. 5 is a schematic view showing an outline of an embodiment of a method for producing pure water and ultrapure water according to the present invention.

【図6】この発明の比較例1に係る混床式イオン交換装
置の断面模式図である。
FIG. 6 is a schematic sectional view of a mixed-bed ion exchange apparatus according to Comparative Example 1 of the present invention.

【図7】この発明の実施例1に係る混床式イオン交換装
置の断面模式図である。
FIG. 7 is a schematic sectional view of a mixed-bed ion exchange apparatus according to Embodiment 1 of the present invention.

【図8】この発明の比較例2に係る混床式イオン交換装
置の断面模式図である。
FIG. 8 is a schematic sectional view of a mixed-bed ion exchange apparatus according to Comparative Example 2 of the present invention.

【図9】この発明の試験例における純水の製造方法の概
要を示す模式図である。
FIG. 9 is a schematic diagram showing an outline of a method for producing pure water in a test example of the present invention.

【図10】従来の混床式イオン交換装置の一実施例を示
す模式図である。
FIG. 10 is a schematic view showing one embodiment of a conventional mixed bed type ion exchange apparatus.

【図11】従来の混床式イオン交換装置を用いた純水の
製造方法の概要を示す模式図である。
FIG. 11 is a schematic diagram illustrating an outline of a method for producing pure water using a conventional mixed-bed ion exchange device.

【図12】従来の混床式イオン交換装置を用いた純水の
製造方法の概要を示す模式図である。
FIG. 12 is a schematic diagram showing an outline of a method for producing pure water using a conventional mixed-bed ion exchange device.

【図13】混床式イオン交換装置の再生処理での逆洗工
程の概要を示す模式図である。
FIG. 13 is a schematic diagram showing an outline of a backwashing step in a regeneration process of a mixed-bed ion exchange device.

【図14】混床式イオン交換装置の再生処理におけるア
ニオン、カチオン両イオン交換樹脂の分離状態を示す模
式図である。
FIG. 14 is a schematic diagram showing a state of separation of both anion and cation ion exchange resins in a regeneration treatment of a mixed bed type ion exchange apparatus.

【符号の説明】[Explanation of symbols]

1 混床式イオン交換装置 2 混合樹脂 3 供給部 4 集水部 41 第1集水部 42 第2集水部 5 還水路 6 カチオン交換樹脂貯留部 REFERENCE SIGNS LIST 1 mixed bed type ion exchange device 2 mixed resin 3 supply unit 4 water collecting unit 41 first water collecting unit 42 second water collecting unit 5 return water channel 6 cation exchange resin storage unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部にカチオン交換樹脂とアニオン交換
樹脂との混合樹脂を充填してなる混床式イオン交換装置
において、上部に被処理水を通水する供給部が設けられ
てなるとともに、その下部がカチオン交換樹脂貯留部と
され、このカチオン交換樹脂貯留部より上部に第1集水
部が設けられ、第1集水部の下部に第2集水部が設けら
れ、第2集水部から得られる処理水を前工程に戻す還水
路が設けられてなることを特徴とする混床式イオン交換
装置。
1. A mixed bed type ion exchange apparatus in which a mixed resin of a cation exchange resin and an anion exchange resin is filled, wherein a supply section through which water to be treated is passed is provided at an upper portion thereof. The lower part is the cation exchange resin storage part
And the first water collection above the cation exchange resin reservoir.
Part is provided, and a second water collecting part is provided below the first water collecting part.
And return the treated water obtained from the second catchment to the previous process
A mixed bed type ion exchange apparatus characterized by being provided with a passage .
【請求項2】 下部にカチオン交換樹脂貯留部を有する
混床式イオン交換装置を使用し、前段工程からの処理水
前記混床式イオン交換装置の上部より下向流で通水さ
せるとともに、得られた処理水をカチオン交換樹脂貯留
部よりも上部に設けた第1集水部と、第1集水部の下部
に設けた第2集水部によってそれぞれ集水し、第1集水
部によって得られた処理水は次工程へと移行させ、第2
集水部より得られた処理水は前段工程へと戻してなるこ
とを特徴とする純水及び超純水の製造方法。
2. A cation exchange resin storage section is provided at a lower portion.
Using a mixed bed type ion exchange device, the treated water from the preceding step is passed downward from above the mixed bed type ion exchange device, and the obtained treated water is stored in a cation exchange resin.
The first water collecting part provided above the part and the lower part of the first water collecting part
Respectively catchment by the second water collecting portion provided on the treated water obtained by the first collecting unit is shifted to the next step, the second
A method for producing pure water and ultrapure water, wherein treated water obtained from a water collecting section is returned to a preceding step.
JP5127847A 1993-04-30 1993-04-30 Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus Expired - Lifetime JP2742976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5127847A JP2742976B2 (en) 1993-04-30 1993-04-30 Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5127847A JP2742976B2 (en) 1993-04-30 1993-04-30 Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus

Publications (2)

Publication Number Publication Date
JPH06315683A JPH06315683A (en) 1994-11-15
JP2742976B2 true JP2742976B2 (en) 1998-04-22

Family

ID=14970144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5127847A Expired - Lifetime JP2742976B2 (en) 1993-04-30 1993-04-30 Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus

Country Status (1)

Country Link
JP (1) JP2742976B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116086A (en) * 2004-10-21 2006-05-11 Tokuyama Corp Action pole structure for iontophoresis apparatus and iontophoresis apparatus
TW200722177A (en) * 2005-08-25 2007-06-16 Miura Kogyo Kk Ion exchange apparatus
JP5461918B2 (en) * 2009-08-19 2014-04-02 株式会社ディスコ Processing waste liquid treatment equipment
JP6410619B2 (en) * 2015-01-21 2018-10-24 株式会社ディスコ Pure water purification equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969187A (en) * 1982-10-14 1984-04-19 Kansai Electric Power Co Inc:The Condensate treating method
JPS63315189A (en) * 1988-06-03 1988-12-22 Ebara Infilco Co Ltd Condensate treatment method

Also Published As

Publication number Publication date
JPH06315683A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
KR0185487B1 (en) Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same
WO2000002819A1 (en) Ion exchange removal of metal ions from wastewater
MXPA00011558A (en) Ion exchange removal of metal ions from wastewater
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP3992299B2 (en) Ultrapure water production equipment
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP3319053B2 (en) Treatment method for fluoride-containing water
EP0452042B1 (en) Ion exchange process
CA1166618A (en) Methods of ion exchange countercurrent regeneration
JP2950621B2 (en) Ultrapure water production method
JP2016203053A (en) Method and apparatus for regenerating ion exchange resin
JP2940651B2 (en) Pure water production equipment
JP2940648B2 (en) Pure water production equipment
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JP2881107B2 (en) Regeneration method of mixed bed type ion exchange tower
JP2742975B2 (en) Regeneration method of ion exchange device
JP3951456B2 (en) Pure water production equipment
JP2654053B2 (en) Condensate desalination equipment
JP5568434B2 (en) Separation method of mixed resin in mixed bed type resin packed tower
JP3674368B2 (en) Pure water production method
JP2941121B2 (en) Ultrapure water production equipment
JPH0138553B2 (en)
JP6337933B2 (en) Water quality management system and operation method of water quality management system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 15

EXPY Cancellation because of completion of term