JPS63315189A - Condensate treatment method - Google Patents

Condensate treatment method

Info

Publication number
JPS63315189A
JPS63315189A JP13569288A JP13569288A JPS63315189A JP S63315189 A JPS63315189 A JP S63315189A JP 13569288 A JP13569288 A JP 13569288A JP 13569288 A JP13569288 A JP 13569288A JP S63315189 A JPS63315189 A JP S63315189A
Authority
JP
Japan
Prior art keywords
resin layer
condensate
water
exchange resin
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13569288A
Other languages
Japanese (ja)
Other versions
JPH0312952B2 (en
Inventor
Iwao Seto
勢渡 巌
Shigeo Miya
宮 茂夫
Shinichi Usui
伸一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP13569288A priority Critical patent/JPS63315189A/en
Publication of JPS63315189A publication Critical patent/JPS63315189A/en
Publication of JPH0312952B2 publication Critical patent/JPH0312952B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To quickly, properly and safely treat condensed water by continuing desalt of condensate with ammonia cycle and starting supply of the effluent from a foregoing upper resin layer to a following lower resin layer when sea- water leak is sensed in the condensate. CONSTITUTION:A downward flow is passed through a mixed bed ion exchange resin layer 9 constituted of H-type cation exchange resin and OH-type anion exchange resin. Said mixed bed ion exchange resin layer 9 is filled into a same desalting column 1 in the form of a foregoing upper resin layer and a following lower resin layer, and a sea-water leak sensing mechanism 8 for the sea-water flowing in is provided. In the normal time, water is passed through only said foregoing upper resin layer and treated, and condensate desalting is continued in the ammonia cycle, while effluent from said foregoing upper resin layer is started to pass through said following lower resin layer by opening and closing automatic valves 5 and 6 when sea-water leak is sensed in the condensate and treated water is supplied. A quick, proper and safe measure to cope with the situation can be carried out by said process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ、タービンなどのスケール生成および腐
食を防止するために、温床式イオン交換樹脂層を用いて
復水中に存在する不純物質を除去する復水脱塩処理方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention removes impurities present in condensate using a hotbed type ion exchange resin layer in order to prevent scale formation and corrosion in boilers, turbines, etc. This invention relates to a condensate desalination treatment method.

〔従来の技術〕[Conventional technology]

一般にボイラ運転条件の高温高圧化にしたがい、復水処
理の重要性が広く認められるようになり、通常は温床式
イオン交換樹脂を充填した復水脱塩塔に通水することに
より良好な処理結果が得られている。この復水脱塩装置
には、強酸性陽イオン交換樹脂を形陰に再生したものき
、強塩基性陰イオン交換樹脂を011形に再生したもの
を混合して充填するのが普通であるが、温床式イオン交
換樹脂層はイオン交換能力により溶解性の不純物イオン
を除去するだけでなく、懸濁微粒子の大部分をも除去す
ることができる。
In general, as boiler operating conditions become higher in temperature and pressure, the importance of condensate treatment has become widely recognized, and good treatment results are usually obtained by passing water through a condensate demineralization tower filled with a hotbed type ion exchange resin. is obtained. This condensate desalination equipment is usually filled with a mixture of a strongly acidic cation exchange resin regenerated into form 011 and a strongly basic anion exchange resin regenerated into form 011. Due to its ion exchange ability, the hot bed type ion exchange resin layer can not only remove soluble impurity ions but also remove most of the suspended particles.

従来この温床式イオン交換樹脂を充填した脱塩塔の運転
には、陽イオン交換樹脂が復水中のアンモニアと交換し
、アンモニアが破過した時点で樹脂の再生を行なうHサ
イクル復水処理方法と、いま一つはアンモニアが破過し
た後も引き続きNtla形樹脂を利用して処理を継続す
るアンモニアサイクル復水処理方法がある。最近では復
水脱塩装置の再生薬剤の節約、再生排液量の減少、運転
管理の面から、再生頻度の少ないアンモニアサイクル復
水脱塩を採用するところが多い。
Conventionally, this hotbed type desalination tower filled with ion exchange resin has been operated using an H-cycle condensate treatment method in which the cation exchange resin exchanges ammonia in the condensate, and the resin is regenerated once the ammonia has broken through. Another method is an ammonia cycle condensate treatment method in which treatment continues using Ntla resin even after ammonia has broken through. Recently, many companies have adopted ammonia cycle condensate desalination, which requires less regeneration, in order to save regeneration chemicals in condensate desalination equipment, reduce the amount of regenerated effluent, and improve operational management.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、アンモニアサイクルの運転においては1
1サイクルとは異なった種々の制限を受けるため、装置
が複雑となったり、樹脂の再生に長時間を要するなどの
問題点もあって、必ずしも完成された技術とは言えない
のが現状である。
However, in the operation of the ammonia cycle, 1
Because it is subject to various limitations different from that of a single cycle, there are problems such as the equipment being complicated and the time it takes to regenerate the resin, so it cannot necessarily be said that it is a perfected technology. .

温床式イオン交換樹脂層をアンモニアサイクルで運転す
る場合の問題点の一つは、温床式イオン交換樹脂層中に
若干量存在する塩形樹脂がアンモニアブレーク時に不純
物リークの原因となる点である。これらの塩形樹脂は主
に樹脂の再生時に生成されるものである。
One of the problems when operating a hot bed type ion exchange resin layer in an ammonia cycle is that a small amount of salt form resin present in the hot bed type ion exchange resin layer causes impurity leakage during ammonia break. These salt-form resins are mainly produced during resin regeneration.

一方温床式イオン交換樹脂層の再生は、逆洗により陽イ
オン交換樹脂と陰イオン交換樹脂とを分離した後、陽イ
オン交換樹脂層には鉱酸を、陰イオン交換樹脂層には苛
性ソーダを通薬することにより行なわれるが、陽イオン
交換樹脂と陰イオン交換樹脂とを完全に分離することは
困難であるので、陽イオン交換樹脂層中に混入した陰イ
オン交換樹脂は鉱酸と接触することによりCff形、S
O。
On the other hand, in hotbed type ion exchange resin layer regeneration, after separating the cation exchange resin and anion exchange resin by backwashing, mineral acid is applied to the cation exchange resin layer and caustic soda is passed to the anion exchange resin layer. However, it is difficult to completely separate the cation exchange resin and anion exchange resin, so the anion exchange resin mixed in the cation exchange resin layer must come into contact with the mineral acid. According to Cff type, S
O.

形となり、陰イオン交換樹脂層中に混入した陽イオン交
換樹脂は苛性ソーダと接触することによりNa形となる
The cation exchange resin mixed into the anion exchange resin layer becomes Na form by contacting with caustic soda.

このNa形樹脂はアンモニアブレーク時にN114”と
イオン交換を行ないNa“を放出し、cp形、S04形
樹脂もアンモニアブレーク時に011−とイオン交換を
行ないCn−、so、”−を放出するものである。
This Na type resin performs ion exchange with N114'' during an ammonia break and releases Na'', and the CP type and S04 type resins also perform ion exchange with 011- during an ammonia break and release Cn-, so, and ``-. be.

したがって、アンモニアサイクルで運転する場合には塩
形樹脂の生成を極めて低く押さえることができるような
樹脂の再生方法をとる必要がある。
Therefore, when operating on an ammonia cycle, it is necessary to use a resin regeneration method that can keep the production of salt-type resin to an extremely low level.

いま一つの問題点は、アンモニアサイクル時においては
Hサイクル時より不純物イオンの除去能力がやや劣るた
め、アンモニアサイクル時において海水リーク(復水の
純度悪化)が生じた場合には不純物イオンがリークし易
く、また不純物イオンが破過に至る時間もHサイクル時
よりも短いなど、海水リーク時の処理性能に若干の問題
が残ることである。
Another problem is that the ability to remove impurity ions during the ammonia cycle is slightly inferior to that during the H cycle, so if seawater leaks (deterioration of condensate purity) during the ammonia cycle, impurity ions will leak. However, the time required for impurity ions to break through is shorter than that during the H cycle, which leaves some problems with the treatment performance when seawater leaks.

このため現時点では、アンモニアサイクル時に海水リー
クの発生が検知されたならば、直ちに樹脂の再生を開始
し、脱塩塔の運転を順次Hサイクルへ切り換えるのが安
全と考えられている。しかしながら樹脂の再生には、あ
る程度の時間を要するため、海水リークの規模によって
は樹脂の再生が間に合わず、電力の安定供給に支障をき
たしたりあるいはボイラ、タービンに悪影響を及ぼすこ
とも考えられる。
For this reason, at present, if seawater leakage is detected during the ammonia cycle, it is considered safe to immediately start regenerating the resin and sequentially switch the operation of the desalination tower to the H cycle. However, it takes a certain amount of time to regenerate the resin, so depending on the scale of the seawater leak, the resin may not be regenerated in time, which may impede the stable supply of electricity or adversely affect the boiler and turbine.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の上記問題点に鑑み、アンモニアサ
イクル時に万一海水リークが発生しても、電力供給ある
いはボイラ、タービンに何ら悪影響を及ばずことなく極
めて迅速、適確かつ安全に対処できる復水脱塩処理方法
を提供することを目的としたものである。
In view of the above-mentioned problems of the prior art, the present invention makes it possible to deal with the occurrence of a seawater leak extremely quickly, appropriately, and safely without any adverse effect on the power supply, boiler, or turbine in the event that a seawater leak occurs during the ammonia cycle. The purpose of this invention is to provide a condensate desalination treatment method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、形陰陽イオン交換樹脂と011形陰イオン交
換樹脂を混合した温床式イオン交換樹脂層に下向流で通
水する復水脱塩処理方法において、同一の脱塩塔に前記
温床式イオン交換樹脂層を、前段の上層樹脂層と後段の
下層樹脂層として充填すると共に、流入する復水中の海
水リーク検知機構を設け、平常時においては前記前段の
上層樹脂層のみに通水して処理し、アンモニアサイクル
で復水脱塩を続行し、復水中に海水リークが検知された
ときには、自動弁の開閉操作により直ちに前記前段の上
層樹脂層からの流出水を前記後段の下層樹脂層にも通水
を開始し、引き続いて処理水を得ることを特徴とする復
水処理方法である。
The present invention provides a condensate desalination treatment method in which water is passed in a downward flow through a hot bed type ion exchange resin layer in which a type anion exchange resin and a 011 type anion exchange resin are mixed, and the hot bed type ion exchange resin is added to the same desalination tower. The ion exchange resin layer is filled as an upper resin layer in the former stage and a lower resin layer in the latter stage, and a seawater leak detection mechanism in the inflowing condensate is provided, and under normal conditions, water is passed only to the upper resin layer in the former stage. When a seawater leak is detected in the condensate, the water flowing out from the upper resin layer of the previous stage is immediately transferred to the lower resin layer of the latter stage by opening and closing an automatic valve. This is a condensate treatment method characterized by starting water flow and subsequently obtaining treated water.

すなわち本発明の復水処理方法は、アンモニアサイクル
用に再生された形陰陽イオン交換樹脂とOH形陰陽イオ
ン交換樹脂混合した温床式イオン交換樹脂層に下向流で
復水を通水し復水中の不純物を除去する復水脱塩処理方
法において、同一の脱塩浴に、再生された温床式イオン
交換樹脂層を前段の上層樹脂層と後段の下層樹脂層とに
分割して充填すると共に、流入する復水中に海水リーク
が発生したことを検知するための検知機構を設け、平常
時においては復水を前記前段の上層樹脂層のみに通水し
、アンモニアブレーク後も処理をm続して11サイクル
からアンモニアサイクルへと移行するのであるが、アン
モニアサイクル復水脱塩を行なっている間に海水リーク
が検知されたならば、自動弁の開閉状態を切り換えるこ
とによって、直ちに前段の上層樹脂層の後段側にH−0
)1形のまま待機させていた後段の下層樹脂層に対して
、前段の上層樹脂層からの流出水の通水を開始すること
により、瞬時にアンモニアサイクルからHサイクルに切
り換え、引き続いて高純度の処理水を得ることを特徴と
するものである。
That is, in the condensate treatment method of the present invention, condensate is passed in a downward flow through a hot bed type ion exchange resin layer in which an anion and cation exchange resin regenerated for the ammonia cycle and an OH anion and cation exchange resin are mixed. In a condensate desalination treatment method for removing impurities, the same desalination bath is filled with a regenerated hotbed ion exchange resin layer divided into an upper resin layer in the former stage and a lower resin layer in the latter stage, and A detection mechanism is provided to detect the occurrence of a seawater leak in the inflowing condensate, and under normal conditions, the condensate is passed only through the upper resin layer of the previous stage, and treatment continues for m even after the ammonia break. The 11th cycle shifts to the ammonia cycle, but if a seawater leak is detected during ammonia cycle condensate desalination, the upper resin layer of the previous stage is immediately removed by switching the open/close state of the automatic valve. H-0 on the rear side of
) By starting to flow water from the upper resin layer of the previous stage to the lower resin layer of the latter stage, which had been kept in standby as type 1, the ammonia cycle was instantly switched to the H cycle, and the high purity This method is characterized by obtaining treated water.

〔実施態様〕[Embodiment]

本発明の実施態様を図面を参照しつつ説明すれば、第1
図は中間集水管を設けた脱塩塔及び関連設備を示すもの
であって、脱塩塔1は、その上部にば復水散水機構とし
ての復水流人管2を、塔中央部には処理水集水機構とし
ての第1処理水流出管3 (中間集水管)を、塔底部に
はやはり処理水集水機構としての第2処理水流出管4を
それぞれ備えている。第1処理水流出管3と第2処理水
流出管4は、それぞれ処理水取り出し位置(集水位W)
を切り換えるための自動弁5.6を介して合流し、合流
部の下流側には処理の終点を検知するだめの処理水水質
計7が設けてあり、復水流人管2の上流側には、前記自
動弁5.6へ信号を送ってこれらの開閉を自動的に切り
換え処理水取り出し位置を制御するための海水リーク検
知機構としての復水水質計8が設けである。脱塩塔1の
内部にはアンモニアサイクル用に再生した塩形樹脂含有
率の低い温床式イオン交換樹脂N9が充填しである。
The embodiments of the present invention will be described with reference to the drawings.
The figure shows a desalination tower equipped with an intermediate water collection pipe and related equipment.The desalination tower 1 has a condensate flow pipe 2 as a condensate water sprinkling mechanism in the upper part of the demineralization tower 1, and a water treatment pipe in the center of the tower. A first treated water outflow pipe 3 (intermediate water collection pipe) is provided as a water collection mechanism, and a second treated water outflow pipe 4 is provided at the bottom of the tower as a treated water collection mechanism. The first treated water outflow pipe 3 and the second treated water outflow pipe 4 are located at respective treated water takeout positions (water collection level W).
A treated water quality meter 7 is installed on the downstream side of the merging point to detect the end point of the treatment, and on the upstream side of the condensate flow pipe 2. A condensate water quality meter 8 is provided as a seawater leak detection mechanism for sending signals to the automatic valves 5 and 6 to automatically switch the opening and closing of these valves to control the treated water take-out position. The inside of the demineralization tower 1 is filled with a hot bed type ion exchange resin N9 having a low content of salt form resin, which has been regenerated for the ammonia cycle.

アンモニアサイクル用の樹脂再生方法は種々あるが、本
発明では樹脂の再生方法には特に限定はなく、高純度の
処理水が得られるものであればいずれの再生方法を用い
てもかまわない。
There are various resin regeneration methods for the ammonia cycle, but in the present invention, the resin regeneration method is not particularly limited, and any regeneration method may be used as long as highly purified treated water can be obtained.

このような復水処理装置では、平常時においては復水流
人管2より復水を流入せしめ、自動弁6を閉じ、自動弁
5を開けることにより、第1処理水流出管3より処理水
を取り出す。すなわち平常時においては復水水質が良好
なので樹脂の全量を使用する必要はなく、温床式イオン
交換樹脂層9の内、上部のhlに相当する前段の上層樹
脂層のみを用いて処理を行なう。この状態で処理を継続
すると、hlの部分の陽イオン交換樹脂はしだいにNH
イ形に変換されるため、脱塩塔1の運転はHサイクルか
らアンモニアサイクルへと移行するが、温床式イオン交
換樹脂層9の下部のh2に相当する後段の下層樹脂層に
は復水が流れないので、この部分の樹脂は再生直後と同
様にIJ形、O形陰を保っている。
In such a condensate treatment device, in normal times, condensate is allowed to flow in through the condensate flow pipe 2, and treated water is discharged from the first treated water outflow pipe 3 by closing the automatic valve 6 and opening the automatic valve 5. Take it out. That is, in normal times, since the quality of condensate water is good, it is not necessary to use the entire amount of resin, and only the upper resin layer of the hot bed type ion exchange resin layer 9 corresponding to the upper hl is used for the treatment. If the treatment is continued in this state, the cation exchange resin in the hl portion will gradually become NH
Since the demineralization column 1 is converted to the A type, the operation of the demineralization tower 1 shifts from the H cycle to the ammonia cycle, but condensate is present in the lower resin layer of the latter stage corresponding to h2 at the bottom of the hot bed type ion exchange resin layer 9. Since it does not flow, the resin in this area maintains the IJ-shape and O-shape as it did immediately after regeneration.

このように脱塩塔の運転がアンモニアサイクルに移行し
た後に、万一復水水質計8により海水リークが検知され
たならば、この検知信号により直ちに自動弁5を閉じ、
自動弁6を開は処理水の取り出しを第1処理水流出管3
から第2処理水流出管4へ切り換える。この操作により
、温床式イオン交換樹脂層9の内、上部のり、のみを使
用した処理から全樹脂層を使用する処理に切り換わる。
If a seawater leak is detected by the condensate water quality meter 8 after the operation of the desalination tower has shifted to the ammonia cycle in this way, the automatic valve 5 is immediately closed based on this detection signal.
Open the automatic valve 6 to take out the treated water through the first treated water outflow pipe 3.
and then switch to the second treated water outflow pipe 4. By this operation, the process is switched from the process using only the upper part of the hot bed type ion exchange resin layer 9 to the process using the entire resin layer.

温床式イオン交換樹脂層9の下部h2の部分は形陰、O
形陰であるので自動弁5.6の開閉操作のみで脱塩塔の
運転をアンモニアサイクルからHサイクルへ切り換える
ことが可能となるわけである。
The lower part h2 of the hot bed type ion exchange resin layer 9 has a shape of 0.
Since it is a closed-loop system, it is possible to switch the operation of the demineralization tower from the ammonia cycle to the H cycle simply by opening and closing the automatic valves 5 and 6.

この1うに、復水水質計8と自動弁5.6を連動させる
ことで、海水リークの検知と同時に自動的にアンモニア
サイクルからI]サイクルへ切り換えることができる。
By interlocking the condensate water quality meter 8 and the automatic valve 5.6 in this manner, it is possible to automatically switch from the ammonia cycle to the I cycle at the same time as seawater leak is detected.

この場合、海水成分の大部分は上部のり、に相当する樹
脂層により除去できるので、下部のh2に相当する樹脂
層の必要量は少なくてすむ。このように、本発明ではア
ンモニアサイクル、H−OHサイクルの利点を最大限に
生かすようにした結果、樹脂の総量は従来法と同等であ
りながら、海水リークに充分対応できる温床式イオン交
換樹脂塔を構成することが可能となったものである。
In this case, most of the seawater components can be removed by the resin layer corresponding to the upper glue, so that the required amount of the lower resin layer corresponding to h2 is small. In this way, the present invention takes full advantage of the advantages of the ammonia cycle and the H-OH cycle, and as a result, the hot bed type ion exchange resin tower is able to fully cope with seawater leakage, while the total amount of resin is the same as that of the conventional method. This makes it possible to configure the following.

なお、アンモニアサイクルからHサイクルへの切り換え
に際しては、第2処理水流出管4からの処理水純度を上
げるために、あらかじめh2の部分の樹脂層に短時間の
循環通水を行なうか、若干量のブローを行なうことが好
ましいが、これらの準備操作をも自動化しておけば、海
水リークという非常時においてもスイッチ操作一つで対
処できるため、現場の運転員の負担を著しく軽減するこ
とができる。
In addition, when switching from the ammonia cycle to the H cycle, in order to increase the purity of the treated water from the second treated water outflow pipe 4, first circulate water through the resin layer at h2 for a short period of time, or add a small amount of water. It is preferable to carry out a blow-off process, but if these preparatory operations are also automated, even in the event of an emergency such as a seawater leak, it can be handled with a single switch operation, significantly reducing the burden on on-site operators. .

第2図は脱塩塔を4塔備え常時3塔の脱塩塔で復水を処
理し、1塔は予備とする復水処理装置に本発明を適用し
た場合(第2図(■))と従来法(第2図(I))の場
合についての、アンモニアサイクルの間に海水リークが
発生した時の運転要領及び処理能力を比較したものであ
る。
Figure 2 shows a case in which the present invention is applied to a condensate treatment equipment equipped with four demineralization towers, in which condensate is always treated in three demineralization towers, and one tower is kept as a standby (Fig. 2 (■)) This figure compares the operating procedures and treatment capacity when a seawater leak occurs during the ammonia cycle between the conventional method (FIG. 2 (I)) and the conventional method (FIG. 2 (I)).

すなわち海水リーク発生前はA、B、Cの3塔をアンモ
ニアサイクルで運転しているとすると、従来法の場合に
は海水リークの検知とともに予備の脱塩塔りへの通水を
開始し、かわりに脱塩塔Aへの通水を停止し、樹脂を再
生塔へ移送し樹脂の再生を行なうのであるが、脱塩塔B
、脱塩塔Cはアンモニアサイクルのまま処理をmmする
ことになり不純物イオンがリークし易く、ボイラ、ター
ビンに悪影響を及ぼすことになり、電力の安定供給にも
影響を及ぼすことにもなる。
In other words, assuming that the three towers A, B, and C were operating on an ammonia cycle before a seawater leak occurred, in the case of the conventional method, water flow to the standby desalination tower would start as soon as a seawater leak was detected. Instead, the water flow to demineralization tower A is stopped and the resin is transferred to the regeneration tower to regenerate the resin.
Since the demineralization tower C continues to process in the ammonia cycle, impurity ions are likely to leak, which will have an adverse effect on the boiler and turbine, and will also affect the stable supply of electric power.

これに対し本発明では、海水リークの検知とともに脱塩
塔りへの通水を開始するが、同時に脱塩塔B、脱塩塔C
の処理水出口を切り換えることにより脱塩塔りだけでな
く3塔ともにHサイクルの運転が可能となるため、引き
続き高純度の水をボイラへ供給することができる。
In contrast, in the present invention, water flow to the desalination tower is started upon detection of seawater leak, but at the same time, the water flow to the desalination tower B and C
By switching the treated water outlet, not only the desalination tower but also all three towers can be operated in the H cycle, making it possible to continue supplying high-purity water to the boiler.

上記実施態様では、海水リークを検知するまでは復水を
第1の温床式イオン交換樹脂層のみに通水し、海水リー
クの検知時板後においては第1及び第2の温床式イオン
交換樹脂層に(直列的に)通水された分のみを処理水と
して取り出す。
In the above embodiment, until a seawater leak is detected, condensate is passed only through the first hotbed type ion exchange resin layer, and after the seawater leak is detected, the condensate is passed through the first and second hotbed type ion exchange resin layer. Only the amount of water that has passed through the layers (in series) is taken out as treated water.

以下に、本発明による実施例及び従来法による比較例を
示す。
Examples according to the present invention and comparative examples according to the conventional method are shown below.

〔本発明による実施例〕[Example according to the present invention]

大部分がNH,形となっている強酸性陽イオン交換樹脂
Doiyex HCR−WZを再生レベル10eq/ 
7!−Rの塩酸でI(形に再生したものと、大部分がO
形陰となっている強塩基性陰イオン交換樹脂Dowex
 5BR−Pを再生レベル10eq/ j!−Rの苛性
ソーダでO1l形に再生したものを準備し、内径50酊
のアクリル製カラムにDowex HCR−WZとDo
wex 5BR−Pとを7:5に混合したものを120
0fl充填し、その上部にはDowex11CI?−W
Zを単独で300fl充填した。カラム全体ではDow
ex IIcR−WZとDowex 5BR−Pとの混
合比は2:1である。
Recycle the strongly acidic cation exchange resin Doiyex HCR-WZ, which is mostly in the form of NH, at a regeneration level of 10eq/
7! - I with hydrochloric acid of R (regenerated into form and mostly O
Strongly basic anion exchange resin Dowex
5BR-P playback level 10eq/j! -R regenerated into O1L form with caustic soda, prepared, and placed in an acrylic column with an inner diameter of 50mm and Dowex HCR-WZ and Dowex HCR-WZ.
120 mixed with wex 5BR-P at a ratio of 7:5
Filled with 0fl and Dowex11CI? -W
300 fl of Z was filled alone. Dow for the whole column
The mixing ratio of ex IIcR-WZ and Dowex 5BR-P is 2:1.

このカラムの上部より、純水にアンモニアを5mg/ 
las CaCO3添加した人工復水をL VIIOm
/hで通水し、カラム底部から600++n上方の中間
サンプリングコックより処理水を取り出した。アンモニ
アブレーク時の処理水中のNa“をフレームレス原子吸
光光度法で測定したところ0.5〜1.0μg//!a
sNaであり、酸導電率は0.I Its /crn以
下であった。中間サンプリングコックより上方の陽イオ
ン交換樹脂がアンモニアで飽和した後に、人工復水にN
a(lを33 mg/ Ras CaC0+添加して海
水リークを模し、処理水の取り出しをカラム底部に切り
換えて処理水中のNa”を測定したところ0.1 μg
/βas Na以下となり酸導電率は0.1μ57cm
以下であった。また、海水リークの状態で処理を継続し
ても5時間以内は処理水中のNa“は1μg/j!as
Na以下であり、酸導電率は0.1μ37cm以下であ
った。
From the top of this column, add 5mg/ammonia to the pure water.
las CaCO3 added artificial condensate to L VIIOm
Water was passed through the column at a rate of 1/h, and treated water was taken out from an intermediate sampling cock located 600++n above the bottom of the column. The amount of Na in the treated water during the ammonia break was measured using flameless atomic absorption spectrometry and was 0.5 to 1.0 μg//!a
sNa, and the acid conductivity is 0. I Its /crn or less. After the cation exchange resin above the intermediate sampling cock is saturated with ammonia, N is added to the artificial condensate.
33 mg/Ras CaC0+ was added to simulate a seawater leak, the treated water was taken out to the bottom of the column, and Na'' in the treated water was measured and found to be 0.1 μg.
/βas Na or less, acid conductivity is 0.1μ57cm
It was below. In addition, even if the treatment is continued in the state of seawater leak, the Na” in the treated water will be 1 μg/j!as within 5 hours.
Na or less, and acid conductivity was 0.1μ37cm or less.

〔比較例〕[Comparative example]

上記実施例に用いたのと同じ樹脂を同一の再生条件及び
樹脂層構成(したがって、各樹脂の充填量は実施例と同
じ)で内径50酊のアクリル製カラムに充填し、純水に
アンモニアを5mg/7!asCaCOz添加した人工
復水をLV110m/hでカラム上部より通水し、カラ
ム底部より処理水を取り出した。アンモニアブレーク時
の処理水中のNa′″をフレームレス原子吸光光度法で
測定したところ0・5〜1・0μg/7!asNaであ
り、酸導電率番よ0.1μs/cm以下であった。カラ
ム内の陽イオン交換樹脂がアンモニアで飽和した後に、
海水リークを模して人工復水にNaCρを33mg/β
asCaCO3添加して処理水中のNa”を測定したと
ころ、NaC7!添加と同時に1μg/ffasNaを
超え、酸導電率もO,1μ570mを超えた。
The same resin used in the above example was packed into an acrylic column with an inner diameter of 50 mm under the same regeneration conditions and resin layer configuration (therefore, the amount of each resin packed was the same as in the example), and ammonia was added to pure water. 5mg/7! Artificial condensate added with asCaCOz was passed through the top of the column at a LV of 110 m/h, and treated water was taken out from the bottom of the column. When Na''' in the treated water during the ammonia break was measured by flameless atomic absorption spectrophotometry, it was 0.5 to 1.0 μg/7!asNa, and the acid conductivity was less than 0.1 μs/cm. After the cation exchange resin in the column is saturated with ammonia,
Add 33mg/β of NaCρ to artificial condensate to simulate a seawater leak.
When asCaCO3 was added and Na'' in the treated water was measured, it exceeded 1 μg/ffasNa at the same time as NaC7!, and the acid conductivity also exceeded O,1μ570m.

〔発明の効果] 以上のように、同一の脱塩塔に温床式イオン交換樹脂層
を前段と後段に分割して充填して処理する本発明方法に
よれば、従来法と同等量の樹脂を使用するにも拘らず、
アンモニアサイクルの間に万一海水リークが発生しても
、弁の開閉操作のみで全脱塩塔を直ちにアンモニアサイ
クルからHサイクルに切り換えることができるので、海
水リークが発生しても、しばらくの間は出力を落すこと
なく安全に発電を継続することができ、この間に予備の
ユニットを起動するなどにより安定した電力供給が確保
され、またボイラ、タービンにも何らの悪影響を及ぼす
こともなく、さらに、アンモニアサイクルからHサイク
ルへの切り換えを自動的に行なうことができるので、操
作が極めて簡便となるばかりでなく海水リークへの対処
が著しく迅速・適確なものとなり、アンモニアサイクル
復水脱塩の持つ長所を十分に発揮することが可能となる
とともに、海水リークに対しても安全に対処することが
できるなどの利点があり、復水器冷却水の塩分濃度が高
い場合、特に復水器冷却水に海水を利用する汽力発電所
にとって利用価値は極めて大きいものである。
[Effects of the Invention] As described above, according to the method of the present invention, in which the same desalination tower is filled with a hot bed type ion exchange resin layer divided into the front stage and the rear stage, the same amount of resin can be used as in the conventional method. Despite using
Even if a seawater leak occurs during the ammonia cycle, all desalination towers can be immediately switched from the ammonia cycle to the H cycle by simply opening and closing the valves. can safely continue generating electricity without reducing output, and during this time, by starting up spare units, etc., a stable power supply is ensured, and there is no negative impact on the boiler or turbine. Since it is possible to automatically switch from the ammonia cycle to the H cycle, not only is the operation extremely simple, but the response to seawater leaks is extremely quick and accurate, and the ammonia cycle condensate desalination In addition to making it possible to fully utilize its advantages, it also has the advantage of being able to safely deal with seawater leaks. The utility value for steam power plants that use seawater as water is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示すものであって、脱塩塔
に中間集水管を設けた場合の脱塩塔の縦断面図、第2図
は複数の脱塩塔を組合わせた場合の復水処理方法を示す
系統説明図であって、(1)は従来方法、(II)は本
発明方法についてのものである。 1・・・脱塩塔、2・・・復水流入管、3・・・第1処
理水流出管、4・・・第2処理水流出管、5.6・・・
自動弁、7・・・処理水水質計、8・・・復水水質計、
9・・・温床式イオン交換樹脂層。
Fig. 1 shows an embodiment of the present invention, and is a vertical cross-sectional view of a desalination tower when an intermediate water collection pipe is provided in the desalination tower, and Fig. 2 shows a case where a plurality of desalination towers are combined. FIG. 1 is a system explanatory diagram showing a condensate treatment method, in which (1) is a conventional method and (II) is a method of the present invention. 1... Desalination tower, 2... Condensate inflow pipe, 3... First treated water outflow pipe, 4... Second treated water outflow pipe, 5.6...
Automatic valve, 7... Treated water quality meter, 8... Condensate water quality meter,
9...Hot bed type ion exchange resin layer.

Claims (2)

【特許請求の範囲】[Claims] (1)H形陽イオン交換樹脂とOH形陰イオン交換樹脂
を混合した温床式イオン交換樹脂層に下向流で通水する
復水脱塩処理方法において、同一の脱塩塔に前記温床式
イオン交換樹脂層を、前段の上層樹脂層と後段の下層樹
脂層として充填すると共に、流入する復水中の海水リー
ク検知機構を設け、平常時においては前記前段の上層樹
脂層のみに通水して処理し、アンモニアサイクルで復水
脱塩を続行し、復水中に海水リークが検知されたときに
は、自動弁の開閉操作により直ちに前記前段の上層樹脂
層からの流出水を前記後段の下層樹脂層にも通水を開始
し、引き続いて処理水を得ることを特徴とする復水処理
方法。
(1) In a condensate desalination treatment method in which water is passed in a downward flow through a hot bed type ion exchange resin layer in which an H type cation exchange resin and an OH type anion exchange resin are mixed, the hot bed type The ion exchange resin layer is filled as an upper resin layer in the former stage and a lower resin layer in the latter stage, and a seawater leak detection mechanism in the inflowing condensate is provided, and under normal conditions, water is passed only to the upper resin layer in the former stage. When a seawater leak is detected in the condensate, the water flowing out from the upper resin layer of the previous stage is immediately transferred to the lower resin layer of the latter stage by opening and closing an automatic valve. A condensate treatment method characterized by starting water flow and subsequently obtaining treated water.
(2)前記脱塩塔を複数並列に配備して処理する特許請
求の範囲第1項記載の処理方法。
(2) The processing method according to claim 1, wherein a plurality of the desalting towers are arranged in parallel.
JP13569288A 1988-06-03 1988-06-03 Condensate treatment method Granted JPS63315189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13569288A JPS63315189A (en) 1988-06-03 1988-06-03 Condensate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13569288A JPS63315189A (en) 1988-06-03 1988-06-03 Condensate treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP617280A Division JPS56102990A (en) 1980-01-22 1980-01-22 Disposal of condensate and its apparatus

Publications (2)

Publication Number Publication Date
JPS63315189A true JPS63315189A (en) 1988-12-22
JPH0312952B2 JPH0312952B2 (en) 1991-02-21

Family

ID=15157683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13569288A Granted JPS63315189A (en) 1988-06-03 1988-06-03 Condensate treatment method

Country Status (1)

Country Link
JP (1) JPS63315189A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315683A (en) * 1993-04-30 1994-11-15 Seisui Kogyo Kk Mixed bed type ion exchange device and production of pure water and ultrapure water using mixed bed type ion exchange device
CN105110419A (en) * 2015-10-06 2015-12-02 吉首大学 Vibrating motor vibration and foam pad shock absorption fluidized bed type ion exchange water treatment device
CN105110416A (en) * 2015-10-06 2015-12-02 吉首大学 Vibrating motor vibration and rubber pad shock absorption fluidized bed type ion exchange water treatment device
CN105110415A (en) * 2015-10-06 2015-12-02 吉首大学 Self-balancing vibration and rubber pad shock absorption fluidized bed type ion exchange water treatment device
CN105110417A (en) * 2015-10-06 2015-12-02 吉首大学 Self-balancing vibration and foam pad shock absorption fluidized bed type ion exchange water treatment device
CN105217726A (en) * 2015-10-06 2016-01-06 吉首大学 Electric and magnetic oscillation spring shock absorption fluidized bed-type ion exchange water processor
CN107285519A (en) * 2017-07-25 2017-10-24 浙江浙能绍兴滨海热电有限责任公司 A kind of condensed water precision processing system
CN110067610A (en) * 2018-01-24 2019-07-30 三菱日立电力系统株式会社 The operation method and steam power plant of generating equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467832B1 (en) * 2013-12-18 2014-12-02 (주)부로무역 An aqueous solution of a salt spreader manufacturer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315683A (en) * 1993-04-30 1994-11-15 Seisui Kogyo Kk Mixed bed type ion exchange device and production of pure water and ultrapure water using mixed bed type ion exchange device
CN105110419A (en) * 2015-10-06 2015-12-02 吉首大学 Vibrating motor vibration and foam pad shock absorption fluidized bed type ion exchange water treatment device
CN105110416A (en) * 2015-10-06 2015-12-02 吉首大学 Vibrating motor vibration and rubber pad shock absorption fluidized bed type ion exchange water treatment device
CN105110415A (en) * 2015-10-06 2015-12-02 吉首大学 Self-balancing vibration and rubber pad shock absorption fluidized bed type ion exchange water treatment device
CN105110417A (en) * 2015-10-06 2015-12-02 吉首大学 Self-balancing vibration and foam pad shock absorption fluidized bed type ion exchange water treatment device
CN105217726A (en) * 2015-10-06 2016-01-06 吉首大学 Electric and magnetic oscillation spring shock absorption fluidized bed-type ion exchange water processor
CN107285519A (en) * 2017-07-25 2017-10-24 浙江浙能绍兴滨海热电有限责任公司 A kind of condensed water precision processing system
CN110067610A (en) * 2018-01-24 2019-07-30 三菱日立电力系统株式会社 The operation method and steam power plant of generating equipment
CN110067610B (en) * 2018-01-24 2021-10-15 三菱动力株式会社 Method for operating power plant and thermal power plant

Also Published As

Publication number Publication date
JPH0312952B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
KR960704805A (en) DEIONIZED WATER OR HIGH PURITY WATER PRODUCING METHOD AND APPARATUS
JPS63315189A (en) Condensate treatment method
JP3610388B2 (en) Condensate demineralizer
JPS6351757B2 (en)
JP4573315B2 (en) Condensate purification system and operation method thereof
JPH055998Y2 (en)
JP3707940B2 (en) Condensate treatment system and condensate treatment method
JPH0212159B2 (en)
JPH10174890A (en) Treatment of ammonia type condensate desalting device and water passage tower using to this
JPS6265785A (en) Treatment of condensate
CN107188271B (en) Water purification system and method for controlling regeneration and replacement treatment of ion floating bed
JPS5817884A (en) Treatment of condensate
JP2003090895A (en) Method and device for demineralizing condensate
JPH08215680A (en) Desalting apparatus
JPH06170361A (en) Condensation purification device
JPH0425798A (en) Condensate purification system
JP2002004810A (en) Method of treating condensate
JPS6271591A (en) Condensate desalting device
JPH01182798A (en) Boiling water type nuclear power plant
JPS6036829B2 (en) Condensate treatment method
JPH04131181A (en) Ion-exchange device
CN110156203A (en) For the water treatment facilities of power plant and its except carbon control system and control method
JPS6211916B2 (en)
JPH0715322B2 (en) Desalination system
CN109539227A (en) A kind of method that boiler system reduces blowdown rate