JPS6271591A - Condensate desalting device - Google Patents

Condensate desalting device

Info

Publication number
JPS6271591A
JPS6271591A JP21055385A JP21055385A JPS6271591A JP S6271591 A JPS6271591 A JP S6271591A JP 21055385 A JP21055385 A JP 21055385A JP 21055385 A JP21055385 A JP 21055385A JP S6271591 A JPS6271591 A JP S6271591A
Authority
JP
Japan
Prior art keywords
condensate
resin
outlet pipe
ion exchange
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21055385A
Other languages
Japanese (ja)
Inventor
Hirotaka Momohara
桃原 広孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP21055385A priority Critical patent/JPS6271591A/en
Publication of JPS6271591A publication Critical patent/JPS6271591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To reduce the amt. of the liquid chemical to be used in the stage of a regeneration operation by providing a lower condensate collecting outlet pipe and lower resin outlet pipe to the bottom of a condensate desalting column and providing an upper condensate collecting outlet pipe and upper resin outlet pipe to the side part of the condensate desalting column. CONSTITUTION:This condensate desalting device is to be installed to a condensate cleaning-up installation of a nuclear power plant and is disposed respectively with a condensate inlet pipe 21 to the top of the condensate desalting column 2 in which a granular ion exchange resin 1 is housed, the upper condensate collecting outlet pipe 51 and upper resin outlet pipe 52 in the side part and the lower condensate collecting outlet pipe 23 and lower resin outlet pipe 4 in the bottom. As a result, cleaning-up is executed by the ion exchange resin in the upper part of the column 2 and the cleaned-up water is taken out of the pipe 51 in the ordinary operation stage. Only the ion exchange resin in the upper part is required to be regenerated; therefore, the amt. of the liquid chemical to be used in the regeneration operation in the ordinary operation stage can be reduced. The amt. of the waste material to be generated is eventually decreased.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は原子力発電所の復水浄化系設備に設けられた復
水112j3!装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a condensate 112j3 installed in a condensate purification system equipment of a nuclear power plant. Regarding equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第3図に従来の原子力発電所の復水浄化系設備に設けら
れた復水脱塩装置を示ず。この復水脱塩装置は、この復
水1l12塩装置の前段階に設番プられる復水ろ過装置
において浄化された純度の^い復水を、さらに純度を上
げるために設けられている。
Figure 3 does not show the condensate desalination equipment installed in the condensate purification system equipment of conventional nuclear power plants. This condensate desalination device is provided in order to further improve the purity of the condensate that has been purified in the condensate filtration device installed before the condensate 1l12 salt device.

この装置は、粒状のイオン交換樹脂1が収納された複数
の復水脱塩塔2と、この復水脱塩塔2に直列に後V!1
される樹脂ストレーノ゛3と、復水脱塩塔2内の粒状イ
オン交換樹脂1を再生するために存在する再生装置25
とにより構成される。浄化は復水Ill!ll西塔収納
されている粒状イオン交1  換樹脂1の層によ・り溶
解性不純物を捕獲して行なう。この捕獲された不純物の
昂である収量が一定の聞になると、その復水1112J
!!塔2は復水の流入流出が停止され復水系から切り離
されることになる。
This device includes a plurality of condensate demineralization towers 2 containing granular ion exchange resins 1, and a rear V! 1
A regenerator 25 exists to regenerate the granular ion exchange resin 1 in the condensate demineralization tower 2.
It is composed of Purification is done with condensate! This is done by trapping soluble impurities with a layer of granular ion exchange resin 1 housed in the west tower. When the yield of captured impurities reaches a certain level, the condensate becomes 1112J
! ! The inflow and outflow of condensate to the tower 2 is stopped, and the tower 2 is separated from the condensate system.

復水系から切り頗された復水WA塩塔2内の粒状イオン
交換1iA脂1は、下部樹脂出口管4から配管5に導か
れ、まず陽イオン樹脂再生塔6へ移送される。ここで空
気と水により前記イオン交換樹111を陽イオン交換樹
脂と隙イオン交換樹脂に逆洗分離した後、陰イオン交換
−樹脂を陰イオン交換樹脂再生塔7へ移送する。陽イオ
ン樹脂再生塔6では陽イオン交換樹脂に硫酸を通薬して
、また隙イオン交換樹脂再生塔7では離イオン交換樹脂
に苛性ソーダを通薬して、それぞれイオン交換能力を回
復させる。その後、前記両樹脂を樹脂貯槽8に移送し、
前記薬液を洗い落して混合し、混合状態の粒状イオン交
換樹脂を配管9を通して復水脱塩塔2に戻す。このよう
にして粒状イオン交換樹脂1のイオン交換能力を回復さ
せる操作を再生操作と貯ぶ。
The granular ion exchange 1iA fat 1 in the condensate WA salt tower 2 cut out from the condensate system is led from the lower resin outlet pipe 4 to the pipe 5, and first transferred to the cation resin regeneration tower 6. Here, the ion exchange resin 111 is backwashed and separated into a cation exchange resin and a gap ion exchange resin using air and water, and then the anion exchange resin is transferred to the anion exchange resin regeneration tower 7. In the cation resin regeneration tower 6, sulfuric acid is passed through the cation exchange resin, and in the ion exchange resin regeneration tower 7, caustic soda is passed through the ion exchange resin to restore the ion exchange capacity. After that, both resins are transferred to the resin storage tank 8,
The chemical solution is washed off and mixed, and the mixed granular ion exchange resin is returned to the condensate demineralization tower 2 through the pipe 9. The operation of restoring the ion exchange capacity of the granular ion exchange resin 1 in this manner is referred to as a regeneration operation.

この再生操作により発生するailを含んだ廃水は、廃
液移送細管10によってドレインストレーナ11へ導か
れ、廃棄物処理膜@12に移送される。そして濃縮器に
より濃縮された後、固化設備13に送られf’J化され
る。
The waste water containing ail generated by this regeneration operation is led to a drain strainer 11 by a waste liquid transfer capillary 10, and then transferred to a waste treatment membrane @12. After being concentrated by the concentrator, it is sent to the solidification equipment 13 and converted into f'J.

復水脱塩装置を再生操作に切り換える前記所定の収量は
、復水脱塩塔2の11部に設番プられた復水入1]管2
1に設置される入口導電率計22により測定された復水
脱塩塔入口導電率と、復水出口下部収水管23に設置さ
れた導電率計24により測定された出口導電率との差に
、復水ll52塩塔2の通水量を乗じた次式により与え
られる。
The predetermined yield at which the condensate desalination equipment is switched to the regeneration operation is determined by
The difference between the condensate demineralization tower inlet conductivity measured by the inlet conductivity meter 22 installed at the condensate outlet lower water collection pipe 23 and the outlet conductivity measured by the conductivity meter 24 installed at the condensate outlet lower water collection pipe 23 , is given by the following formula multiplied by the water flow rate of the condensate 1152 salt tower 2.

[復水脱塩塔の収ff1l [μS/α・Ton]       ・・・・・・(1
)引し、F=復水Jl12Ju塔通水流453(Ton
/h)Δ t  n=時間 Ci  n=時間Δtnにおける平均復水脱塩塔入口3
#電率(μS / ax )Cout一時間Δtnにお
ける平均復水1112塩塔出口I!電率(II S /
 am )なお、再生時には、陽イオン交換樹脂および
陰イオン交I!に41脂11当り、それぞれ(tie(
98%)約1209、苛性ソーダ(100%)約100
gを使用する。
[Collection ff1l of condensate demineralization tower [μS/α・Ton] ・・・・・・(1
), F = condensate Jl 12 Ju tower flow 453 (Ton
/h) Δ t n = time Ci n = average condensate demineralization tower inlet 3 at time Δtn
# Electricity rate (μS/ax) Cout Average condensate in one hour Δtn 1112 Salt tower outlet I! Electricity rate (II S /
am) During regeneration, the cation exchange resin and anion exchange I! 41 parts fat and 11 parts each (tie(
98%) approx. 1209, caustic soda (100%) approx. 100
Use g.

また、このような再生操作が行なわれる間は、復水1l
12塩塔2に対し必ず存在する予備塔が複数の浄化を行
なう。
Also, while such regeneration operation is being carried out, 1 liter of condensate
A reserve tower always exists for the 12-salt tower 2 and performs a plurality of purifications.

ざt#a水脱塩装置は、主復水器の海水漏洩等の突発的
な水質悪化時に、水質純度を維持する機能も有する。し
たがって、前述の再生操作は、このような突発的な海水
漏洩時に対応できるように、粒状イオン交換樹脂1がイ
オン交換能力をある程度外した状態で行なわれ、これを
考慮して前記所定の収量が前記(1)の式により定めら
れる。
The #a water desalination device also has the function of maintaining water quality purity in the event of sudden water quality deterioration such as seawater leakage from the main condenser. Therefore, the above-mentioned regeneration operation is performed with the ion exchange capacity of the granular ion exchange resin 1 removed to some extent in order to cope with such sudden seawater leakage, and taking this into consideration, the predetermined yield is adjusted. It is determined by the formula (1) above.

それ故、通常運転時における再生操作ではイオン交換能
力を残した樹脂、つまり、未だ再生の必要がない樹脂も
再生操作が行なわれるようになる。
Therefore, in the regeneration operation during normal operation, the regeneration operation is performed even on the resin that still has ion exchange ability, that is, the resin that does not need to be regenerated yet.

しかも、この再生操作の際には、復水脱塩塔2内に収納
されたイオン交換樹脂の全開が再生されることになる。
Furthermore, during this regeneration operation, the ion exchange resin housed in the condensate demineralization tower 2 is fully regenerated.

ところで、再生操作時に使用される薬液mは、イオン交
換樹脂の総量によって定まるため、イオン交換樹脂の全
伍を再生するためには必要以上に大量な薬液が必要とな
る。その結果、再生廃液が増大し、原子力発電所から多
聞の廃棄物゛が発生することとなる。
By the way, since the chemical solution m used during the regeneration operation is determined by the total amount of ion exchange resin, a larger amount of chemical solution than necessary is required in order to regenerate all the ion exchange resins. As a result, the amount of recycled waste liquid increases, and a large amount of waste is generated from the nuclear power plant.

(発明の目的) 本発明は以上の問題点に鑑みてなされたものであり、再
生操作における薬液量の使用を減少して再生廃液の減少
を図り、したがって、原子力発電所から出される廃棄物
の発生量を低減することができる復水1112塩装置を
提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above problems, and aims to reduce the amount of chemical solution used in regeneration operations to reduce the amount of regeneration waste liquid, thereby reducing the amount of waste generated from nuclear power plants. It is an object of the present invention to provide a condensate 1112 salt device that can reduce the amount of generated salt.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明に係る復水脱塩装置
は、粒状イオン交換樹脂の収納された復水脱塩装置の頂
部に復水入口管が設けられ、側部に復水出口上部集水管
および上部樹脂出口管が設けられ、底部に復水出口下部
集水管および下部樹脂出口管が設けられたものであり、
通常の運転時には復水用[1上8Is集水管を通じて復
水を浄化し、かつ上部樹脂出口管から粒状イオン交換樹
脂を取り出して再q−操作し、突発的な水質悪化時には
底部の復水出口下部集水管から復水を導いて浄化を行な
い、かつ下部樹脂出口管から粒状イオン交換樹脂を取り
出して再生操作を行なうようにしたちのである。
In order to achieve the above object, the condensate desalination device according to the present invention is provided with a condensate inlet pipe at the top of the condensate desalination device in which granular ion exchange resin is housed, and a condensate outlet pipe at the side. A water collection pipe and an upper resin outlet pipe are provided, and a condensate outlet lower water collection pipe and a lower resin outlet pipe are provided at the bottom,
During normal operation, the condensate is purified through the condensate water collecting pipe, and the granular ion exchange resin is taken out from the upper resin outlet pipe and re-operated, and in the event of a sudden deterioration in water quality, the condensate is purified through the condensate outlet at the bottom. Condensate is introduced from the lower water collection pipe for purification, and granular ion exchange resin is taken out from the lower resin outlet pipe for regeneration.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図および第2図において説明す
る。前記〔発明゛の技術的背景とその問題点〕において
は簡単に説明したが、ここではさらに詳しく第2図にお
いて原子力発電所の概略系統から説明する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. Although it was briefly explained in the above [Technical Background of the Invention and its Problems], it will be explained in more detail starting from the schematic system of a nuclear power plant in FIG. 2.

原子炉31で発生した高温高圧蒸気はタービン32に送
られ、そこで仕事を行ない発[133を駆動する。ター
ビン32で仕事を行なった蒸気は、主復水器34で海水
によって冷却され復水となる。
High-temperature, high-pressure steam generated in the nuclear reactor 31 is sent to the turbine 32, where it performs work and drives the generator 133. The steam that has performed work in the turbine 32 is cooled by seawater in the main condenser 34 and becomes condensed water.

その後、低圧復水ポンプ35により空気抽1出器36お
よびグランド蒸気復水器37を経て復水浄化系38に送
られる。復水浄化系38に送られた復水は、復水ろ過装
置39で不溶解性不純物および溶解性不純物が除去され
た優、復水脱塩装置40によってさらに溶解性不純物が
除去される。復水中の不純物が全量除去された後、高圧
復水ポンプ41により低圧給水加熱器42に送られる。
Thereafter, the low-pressure condensate pump 35 sends the condensate through an air extractor 36 and a gland steam condenser 37 to a condensate purification system 38 . The condensate sent to the condensate purification system 38 has insoluble impurities and soluble impurities removed by the condensate filtration device 39, and then soluble impurities are further removed by the condensate desalination device 40. After all impurities in the condensate have been removed, the condensate is sent to a low-pressure feedwater heater 42 by a high-pressure condensate pump 41 .

その後、さらに給水ポンプ43および高圧給水加熱器4
4を経て昇圧昇温され原子炉31へ還流される。
After that, the water supply pump 43 and the high pressure water heater 4
4, the pressure and temperature are increased, and the fuel is refluxed to the nuclear reactor 31.

なお、復水脱塩装置40前段階の復水ろ過装置39には
、粉末状のイオン交換樹脂がプリコートされており、複
水中の溶解性不純物も除去する。
Note that the condensate filtration device 39 at the stage before the condensate desalination device 40 is pre-coated with a powdered ion exchange resin to also remove soluble impurities in the double water.

したがって、復水ろ過装W139の出口、すなわち、復
水脱塩装置40の入日の水質は極めて純度が高くなって
いる。
Therefore, the quality of the water entering the outlet of the condensate filtration device W139, that is, the condensate desalination device 40, has extremely high purity.

この復水脱塩装[4,0は、第1図に示すように、主に
復水脱塩塔2、樹脂ストレーナ3および再生系25とか
らなる。この、第1図において、従来例と同様な部分は
同一の符号を付すことにより説明を省略する。
As shown in FIG. 1, this condensate desalination system [4,0] mainly consists of a condensate desalination tower 2, a resin strainer 3, and a regeneration system 25. In FIG. 1, the same parts as in the conventional example are designated by the same reference numerals and the explanation thereof will be omitted.

復水脱塩塔2の頂部には復水を導入するための復水入口
管21が設けられる。復水脱塩塔2の側部には復水出口
上部集水管51が設けられ、配管52を介して樹脂スト
レーナ3に導かれている。
A condensate inlet pipe 21 for introducing condensate is provided at the top of the condensate demineralization tower 2 . A condensate outlet upper water collection pipe 51 is provided on the side of the condensate demineralization tower 2 , and is led to the resin strainer 3 via a pipe 52 .

この配管52には導電率計53が設置されている。A conductivity meter 53 is installed in this pipe 52.

また、同じく復水脱塩塔2の側部には上部樹脂出口管5
4がHsjられ、配管55を介して陽イオン樹脂再生塔
6に導かれる。これらの復水出口上部集水管51および
上部樹脂出口管54は、復水脱塩塔2の内径が90c1
11の場合には、復水脱塩浴内の内部シート55から3
0〜50IJの位置に設定される。
Similarly, an upper resin outlet pipe 5 is provided on the side of the condensate demineralization tower 2.
4 is subjected to Hsj and guided to the cation resin regeneration tower 6 via the pipe 55. These condensate outlet upper water collection pipe 51 and upper resin outlet pipe 54 have an inner diameter of 90c1 of the condensate demineralization tower 2.
11, the internal sheets 55 to 3 in the condensate desalination bath
It is set at a position of 0 to 50 IJ.

復水脱塩塔2の底部には復水出口下部集水管23が設け
られ、この集水管23は、樹脂ストレーナ3に導かれて
いる。この復水出口下部集水管23には導電率計24が
設問されている。上記の導電率計53.24は、それぞ
れ配管52、復水出口集水管23内を流れる浄化水の水
質を監視するものである。これらの導電率x+53.2
4による指示値がイオン交換樹脂の員流点(イオン交換
樹脂の脱塩能力が急散に劣化する点)以下を示したとき
に、ろ過鋭塩塔2を再生操作に切り換える。
A condensate outlet lower water collection pipe 23 is provided at the bottom of the condensate demineralization tower 2 , and this water collection pipe 23 is led to the resin strainer 3 . A conductivity meter 24 is connected to the condensate outlet lower water collection pipe 23. The conductivity meters 53 and 24 are used to monitor the quality of purified water flowing through the pipe 52 and the condensate outlet water collection pipe 23, respectively. These conductivities x+53.2
When the indicated value indicated by No. 4 is below the flow point of the ion exchange resin (the point at which the desalting ability of the ion exchange resin rapidly deteriorates), the filter sharp salt tower 2 is switched to the regeneration operation.

同じく底部には下部!IJl11出口管4が設けられ、
配管5を介して陽イオン樹脂再生塔6に導かれている。
Also on the bottom is the bottom! IJl11 outlet pipe 4 is provided,
It is led to a cation resin regeneration tower 6 via a pipe 5.

この下部樹脂出口管4または上部樹脂出口管54を通っ
て、復水脱塩塔2内の粒状イオン交換樹脂1が再生系2
5へ移送される。下部樹脂出口管4から移送される場合
には、復水脱塩塔2内の粒状イオン交換樹脂の全1ti
A、iaが、また上部樹脂出口管54から移送さる場合
には復水脱塩塔2内の上部に収納された粒状イオン交換
樹脂1Aがそれぞれ再生系25へ導かれる。このように
樹脂出口管を選択することにより再生系へ移送される樹
脂量を変化させ得るよう構成される。
The granular ion exchange resin 1 in the condensate demineralization tower 2 passes through the lower resin outlet pipe 4 or the upper resin outlet pipe 54 to the regeneration system 2.
Transferred to 5. When transferred from the lower resin outlet pipe 4, all 1ti of granular ion exchange resin in the condensate demineralization tower 2 is transferred from the lower resin outlet pipe 4.
When A and ia are transferred from the upper resin outlet pipe 54, the granular ion exchange resin 1A stored in the upper part of the condensate demineralization tower 2 is guided to the regeneration system 25, respectively. By selecting the resin outlet pipe in this way, it is possible to change the amount of resin transferred to the regeneration system.

次に、作用を説明する。Next, the effect will be explained.

通常速#h時には、復水は復水脱塩塔2上部のイオン交
換樹脂1Aにより浄化され、復水出口上部集水管51か
らw11111ストレーナ3の方に流出する。
At the normal speed #h, the condensate is purified by the ion exchange resin 1A in the upper part of the condensate demineralization tower 2, and flows out from the condensate outlet upper water collection pipe 51 toward the w11111 strainer 3.

このとき復水11R塩塔2下部のイAン交換樹W81B
付近に復水が伴流するのを避けるため、復水出口′F部
集水管23から復水を少Ffi流す。このとき復水出口
上部集水管51がら流出する復水の水質の監視は導電率
a153により行なわれ、その指示値が貫流点以下に達
したときに復水の流出を停止し、再生操作を行なう。こ
の再生操作は、上部のイオン交換樹脂1Aのみを上部a
im出日管54がら取り出し、陽イオン樹脂再生塔6の
方へ移送することにより従来と同様に行なわれる。
At this time, the IA exchange tree W81B at the bottom of the condensate 11R salt tower 2
In order to avoid condensate flowing into the vicinity, a small amount of condensate Ffi is allowed to flow from the condensate outlet 'F section water collection pipe 23. At this time, the water quality of the condensate flowing out from the condensate outlet upper water collection pipe 51 is monitored by the conductivity a153, and when the indicated value reaches the flow-through point or below, the condensate outflow is stopped and a regeneration operation is performed. . In this regeneration operation, only the upper ion exchange resin 1A is
This is carried out in the same manner as in the past by taking out the im-developing tube 54 and transferring it to the cation resin regeneration tower 6.

海水漏洩等の突発的な水質悪化時には、復水脱塩等2に
流入した復水は、復水脱塩塔2に収納されたイオン交換
樹脂の全量によって浄化され、復水出口下部集水管23
よ勺流出される。この浄化の後に行なわれる再生操作は
、イオン交換樹脂の全社を下部樹脂出口管4より取り出
し、陽イオン樹脂再生塔6の方へ移送することにより行
なわれる。
In the event of a sudden deterioration of water quality such as a seawater leak, the condensate that has flowed into the condensate desalination tower 2 is purified by the entire amount of ion exchange resin stored in the condensate desalination tower 2, and then transferred to the condensate outlet lower water collection pipe 23.
It's going to be leaked. The regeneration operation performed after this purification is performed by taking out the entire ion exchange resin from the lower resin outlet pipe 4 and transferring it to the cation resin regeneration tower 6.

以上のようにすれば、イオン交換能力の喪失したイオン
交換樹脂1のみについて再生操作を行なうことができる
ことから、通常運転後の復水脱塩′塔2の再生操作時に
、復水脱塩塔2内の上部イオン交換樹脂1Aのみを再生
処理すればよく、従来のように復水脱塩塔2内のイオン
交換樹脂を全社1A、IBを再生する場合に比し、再生
用薬液mを大幅に低減することができる。その結果、廃
棄物の発生を低減することができる。
By doing the above, it is possible to perform the regeneration operation only on the ion exchange resin 1 that has lost its ion exchange ability. It is only necessary to regenerate the upper ion exchange resin 1A in the condensate demineralization tower 2, and compared to the conventional case of regenerating the entire ion exchange resin 1A and IB in the condensate demineralization tower 2, the regeneration chemical solution m can be significantly reduced. can be reduced. As a result, waste generation can be reduced.

また、海水漏洩等の際には、従来と同様に復水I2塩塔
に収納された全量のイオン交換樹脂を使用して浄化を行
なうことができるので、原子力発電所の安全性を確保す
ることができる。上部のイオン交換樹脂に対してはその
イオン交t!i!能力の限界まで浄化作用を行なわせる
ことができる。
In addition, in the event of seawater leakage, the entire amount of ion exchange resin stored in the condensate I2 salt tower can be used for purification as in the past, ensuring the safety of nuclear power plants. I can do it. For the ion exchange resin at the top, the ion exchange t! i! It can be used to purify to the limit of its ability.

さらに、通常運転時には、復水脱塩塔2の上部の粒状−
(Aン交換樹脂1Δに対し、その保有イオン交換能力の
限界まで使用できるため、復水1112塩塔2の再生操
作頻度が減少し、作業口の負担を軽減することができる
Furthermore, during normal operation, the granules in the upper part of the condensate demineralization tower 2
(Since the A exchange resin 1Δ can be used up to the limit of its ion exchange capacity, the frequency of regeneration operations of the condensate 1112 salt tower 2 can be reduced, and the burden on the work opening can be reduced.

〔発明の効果〕〔Effect of the invention〕

以−[のように、本発明に係る復水層Jg装置にJ:れ
ば、復水JH2塩塔の底部に復水出口下部集水管J3よ
び下部樹脂出口管を設けるとともに、その復水脱塩塔の
側部に復水出口上部集水管および上部樹脂出口管を設け
たことから、通常運転時には復水脱塩塔の上部のイオン
交換樹脂にて浄化を行なって、上記復水用[1上部集水
管から浄化水を取り出し、この上部のイオン交換樹脂の
みを再生すればよいことから、通常運転時の再生操作に
43いて使用薬液量を低減することができ、その結果、
廃棄物の発生量を低減することができる。
As shown below, in the condensate layer Jg device according to the present invention, a condensate outlet lower water collection pipe J3 and a lower resin outlet pipe are provided at the bottom of the condensate JH2 salt tower, and the condensate dewatering Since the condensate outlet upper water collecting pipe and the upper resin outlet pipe are installed on the side of the salt tower, during normal operation, the ion exchange resin in the upper part of the condensate desalination tower performs purification, and the condensate [1] Since it is only necessary to take out the purified water from the upper water collection pipe and regenerate only the ion exchange resin in the upper part, it is possible to reduce the amount of chemical liquid used in the regeneration operation during normal operation, and as a result,
The amount of waste generated can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

tA1図は本発明の一実施例に係る復水脱塩装置の概略
図、第2図は第1′判の復水脱塩装置が組み込まれた原
子力発電所の概略系統図、m3図は従来の復水脱塩袋η
の概略図である。 1・・・イオン交換樹脂、2・・・復水脱塩塔、4・・
・下部樹脂出口管、21・・・復水入口管、23・・・
復水出口下部集水管、51・・・復水出口上部集水管、
54・・・上部樹脂出口管。
Figure tA1 is a schematic diagram of a condensate desalination equipment according to an embodiment of the present invention, Figure 2 is a schematic diagram of a nuclear power plant incorporating a 1' size condensate desalination equipment, and Figure m3 is a conventional diagram. Condensate desalination bag η
FIG. 1... Ion exchange resin, 2... Condensate demineralization tower, 4...
・Lower resin outlet pipe, 21... Condensate inlet pipe, 23...
Condensate outlet lower water collection pipe, 51... condensate outlet upper water collection pipe,
54... Upper resin outlet pipe.

Claims (1)

【特許請求の範囲】 1、原子力発電所の復水浄化系設備に設けられた復水脱
塩装置において、粒状イオン交換樹脂の収納された復水
脱塩塔の頂部に復水入口管が設けられ、側部に復水出口
上部集水管および上部樹脂出口管が設けられ、底部に復
水出口下部集水管および下部樹脂出口管が設けられたこ
とを特徴とする復水脱塩装置。 2、粒状イオン交換樹脂が、上部樹脂出口管または下部
樹脂出口管から取り出されることにより、取出樹脂量を
変化させるよう構成された特許請求の範囲第1項記載の
復水脱塩装置。
[Scope of Claims] 1. In a condensate desalination device installed in a condensate purification system equipment of a nuclear power plant, a condensate inlet pipe is provided at the top of a condensate desalination tower containing granular ion exchange resin. 1. A condensate desalination device characterized in that a condensate outlet upper water collection pipe and an upper resin outlet pipe are provided at the side part, and a condensate outlet lower water collection pipe and a lower resin outlet pipe are provided at the bottom part. 2. The condensate desalination apparatus according to claim 1, wherein the granular ion exchange resin is taken out from the upper resin outlet pipe or the lower resin outlet pipe, thereby changing the amount of resin taken out.
JP21055385A 1985-09-24 1985-09-24 Condensate desalting device Pending JPS6271591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21055385A JPS6271591A (en) 1985-09-24 1985-09-24 Condensate desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21055385A JPS6271591A (en) 1985-09-24 1985-09-24 Condensate desalting device

Publications (1)

Publication Number Publication Date
JPS6271591A true JPS6271591A (en) 1987-04-02

Family

ID=16591226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21055385A Pending JPS6271591A (en) 1985-09-24 1985-09-24 Condensate desalting device

Country Status (1)

Country Link
JP (1) JPS6271591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232292A (en) * 1989-08-08 1991-10-16 Nec Corp Circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232292A (en) * 1989-08-08 1991-10-16 Nec Corp Circuit board

Similar Documents

Publication Publication Date Title
CN106277517A (en) The regeneration processing method of a kind of Coal Chemical Industry dense salt waste water and enforcement system thereof
CN101863568A (en) Technology for extracting copper from copper ammonia wastewater through ion exchange method
CN207718841U (en) Novel presurized water reactor Steam Generators in NPP blowdown water treatment system
JP3760033B2 (en) Secondary water treatment system for pressurized water nuclear power plant
RO108452B1 (en) Water separation process from a diluted watery solution opf
CN207619159U (en) A kind of condensate polishing treatment regenerative wastewater ammonia recovery system
JPS6271591A (en) Condensate desalting device
CN111033121B (en) Double-loop nuclear reactor steam generating device with purging and draining system
JPS63315189A (en) Condensate treatment method
US3972772A (en) Steam power plant for nuclear reactor stations having pressurized water reactors
CN107857395A (en) A kind of condensate polishing treatment regenerative wastewater ammonia recovery system
CN108706782A (en) A kind of sea water desalination processing unit
CN109775910A (en) ICL for Indirect Coal Liquefaction reused water processing technique and system
CN207108678U (en) Nitrogen fertilizer plant's production cycle water system
CN205953752U (en) System for implement regeneration processing method of dense salt waste water of coal industry
CN221117244U (en) Third generation semiconductor wastewater treatment device
CN220552300U (en) Steam condensate heat energy recovery system
JPH0416960Y2 (en)
JPH10174890A (en) Treatment of ammonia type condensate desalting device and water passage tower using to this
TWI224024B (en) System and method for purifying and reutilizing boricacid solution of high concentration with reverse osmosis membrane
JPS61173467A (en) High temperature filter for cooling water of fuel cell
CN105036080A (en) Method for preparing high-concentration refined hydrochloric acid by using tail gas hydrogen chloride generated from chloroacetic acid production
JPH0422489A (en) Water treatment method of power plant
JPS6265785A (en) Treatment of condensate
JPH0929248A (en) Condensate desalting apparatus