JPS61173467A - High temperature filter for cooling water of fuel cell - Google Patents

High temperature filter for cooling water of fuel cell

Info

Publication number
JPS61173467A
JPS61173467A JP60012586A JP1258685A JPS61173467A JP S61173467 A JPS61173467 A JP S61173467A JP 60012586 A JP60012586 A JP 60012586A JP 1258685 A JP1258685 A JP 1258685A JP S61173467 A JPS61173467 A JP S61173467A
Authority
JP
Japan
Prior art keywords
cooling water
filter
temperature
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60012586A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
金子 政雄
Kyozo Kawachi
河内 恭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60012586A priority Critical patent/JPS61173467A/en
Publication of JPS61173467A publication Critical patent/JPS61173467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To remarkably decrease heat loss by treating untreated water having condensed copper and iron with an ion exchange resin at low temperature, and oppositely washing a filter material with cooling water obtained by adsorbing filtering. CONSTITUTION:Part of cooling water entered a filter 21 flows out from an untreated water outlet 26 and its temperature is decreased with a heat exchanger 9 then the water is treated with an ion exchange resin tower 10 at low temperature. Since the untreated water flows along the surface of filter material 36 of the filter 21 and flows out from the filter with removing part of copper and iron trapped on the surface of filter material 36, the water which flowed out from the filter contains much copper and iron before entering the filter. When the filter material 36 is washed, a valve 31 is opened and nitrogen gas is supplied to a cooling water reservoir 25 and the cooling water enters the filter 21 through a valve 24 and a cooling water outlet 23, and flows within the filter material in an opposite direction to filtering. Thereby, copper and iron trapped in the filter material is removed and the water flows out from the untreated water outlet 26.

Description

【発明の詳細な説明】 口発明の技術分野] 本発明は燃料電池の高温の冷却水(ユよって配管系統や
熱交換器等から溶出する銅、鉄などを捕獲する燃料電池
の冷却水用高温フィルタ装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to high-temperature cooling water for fuel cells (high-temperature cooling water for fuel cells that captures copper, iron, etc. eluted from piping systems, heat exchangers, etc.). The present invention relates to a filter device.

[発明の技術的背景とその問題点コ 燃料電池は水素と機素とを反応器内で触媒を使って緩か
C二反応させ、こAlユよって電気を発生させるもので
あり、燃料となる水素と敗素の化学工ネルギが直接電気
エネルギに変換されるので、理論発電効率は90 S以
上となり、他の発電方式より高効率である。
[Technical background of the invention and its problems] A fuel cell is a device in which hydrogen and oxygen are subjected to a mild C2 reaction using a catalyst in a reactor, and electricity is generated from this aluminum, which is used as fuel. Since the chemical energy of hydrogen and nitrogen is directly converted into electrical energy, the theoretical power generation efficiency is over 90 S, which is higher efficiency than other power generation methods.

この場合、水素と機素との反応によって水を生放しなが
ら発電が行われるが、この時隔も発生するので高い発電
効率を維持する几め5ユは反応容器内の温度を170〜
230℃(ユ保つ必要があり、常時冷却水を流して冷却
している。
In this case, electricity is generated while leaving water alive due to the reaction between hydrogen and oxygen, but since this time interval also occurs, the temperature in the reaction vessel is kept at 170 -
It is necessary to maintain the temperature at 230°C (230°C), and cooling water is constantly supplied to cool it.

従来の冷却水系のシステムの一例を第7図区:示す0 第7図(:おいて、反応器1内を定温Cユ保つtめ、複
数の銅の冷却管2を反応器l内5ユ設けて冷却水を流し
ている。
An example of a conventional cooling water system is shown in Figure 7. In order to maintain a constant temperature inside the reactor 1, a plurality of copper cooling pipes 2 are installed in 5 units inside the reactor 1. installed and flowing cooling water.

冷却管2に銅を使用するのは熱伝導性に優れていること
と、加工が容易なことがその理由であり、さら域;電解
液;;りん酸を使用し友場合、銅が耐久性(:優れてい
ることも冷却管2(:銅が使われる理由である。
The reason why copper is used for the cooling pipe 2 is that it has excellent thermal conductivity and is easy to process. (: Superiority is also the reason why cooling pipe 2 (: Copper is used.

ま几冷却管2 Cは燃料電池の構造上から電位が加わっ
ているので、腐食され易く、さらf;銅ま几ri黄銅の
配管から、発生する銅とその化合物、炭素鋼、ステンレ
ス等の配管から発生する鉄とその化合物などが付着して
堆積する0 付着や堆積が進行すると冷却管2の一部に閉塞!生じて
温度分布が不均一となり、発電効率を低下させるばかり
でなく、電池の寿命を短かくする要因に二もなる。
Since the electric potential is applied to the cooling pipe 2 C due to the structure of the fuel cell, it is easily corroded, and also contains copper and its compounds generated from brass piping, carbon steel, stainless steel, etc. As the adhesion and accumulation progresses, a portion of the cooling pipe 2 is blocked! This results in uneven temperature distribution, which not only reduces power generation efficiency but also shortens battery life.

従って冷却管2への銅、鉄等の付着や堆積を極力抑制す
る几め(:冷却水の水質を高純度(:維持する必要があ
る0 この九め第7図1ユ示すように冷却水の浄化が考慮され
ている。
Therefore, it is necessary to take measures to suppress adhesion and accumulation of copper, iron, etc. to the cooling pipe 2 as much as possible (: maintain the water quality of the cooling water at a high purity). purification is being considered.

すなわち冷却水は反応器1内で温度が上昇し之後に高温
の液体ま九は液体と蒸気の混合流として流出し、気液分
離器3に送られて液体が分離され、蒸気は開閉弁4を介
して排出され、脱気に利用されたり、熱エネルギとして
利用される。
That is, the temperature of the cooling water increases in the reactor 1, and then the high-temperature liquid flows out as a mixed flow of liquid and steam, is sent to the gas-liquid separator 3, where the liquid is separated, and the steam is passed through the on-off valve 4. It is discharged through the air and used for degassing or as heat energy.

気液分離器3から液体として流出し之高温の冷却水はポ
ンプ5.開閉弁6を通りフィルタ7Iユ送込まれる。
The high temperature cooling water flowing out as a liquid from the gas-liquid separator 3 is pumped to the pump 5. It passes through the on-off valve 6 and is fed into the filter 7I.

フィルタ7は高温の冷却水から銅、鉄の浮遊懸濁物、コ
ロイド、イオン等をろ過ま几は吸着(二より除去するも
ので、板状ま几ハかご状をした金属の焼結ろ材や金属の
吸着体まtはイオン交換体が使用される。
The filter 7 filters suspended suspended matter of copper and iron, colloids, ions, etc. from the high-temperature cooling water. Metal adsorbents or ion exchangers are used.

フィルタ7で処理され九冷却水は反応器1シ二人って循
環利用されるが、反応器1の入口、出口の温度差は5〜
10℃程度であり、冷却水も160〜230℃という高
温の液体である。
The cooling water processed by filter 7 is recycled and used in two reactors, but the temperature difference between the inlet and outlet of reactor 1 is 5 to 50%.
The temperature is about 10°C, and the cooling water is also a liquid with a high temperature of 160 to 230°C.

フィルタ7は冷却水中の銅、鉄をすべて除去することが
できないので冷却水の一部は開閉弁8を通って循環系か
ら取り出され、熱交換器9によって40〜60℃に降温
さ九九後、イオン交換樹脂塔10 C送られて浄化され
、さらCユポンプ1]で加圧され、ヒータ12で昇温さ
九九抜気液分離器3に戻される。
Since the filter 7 cannot remove all the copper and iron in the cooling water, a portion of the cooling water is taken out from the circulation system through the on-off valve 8 and cooled down to 40 to 60°C by the heat exchanger 9. The resin is sent to an ion exchange resin column 10C for purification, further pressurized by a C pump 1, heated by a heater 12, and returned to a gas-liquid separator 3.

ま之、開閉弁4から排出される蒸気により不足し之冷却
水!補充するための補給水が熱交換器9の出側で冷却水
(:加えられ、イオン交換樹脂10で浄化され九後気液
分離器3(ユ供給される。
However, due to the steam discharged from the on-off valve 4, there is a shortage of cooling water! Make-up water for replenishment is added to the cooling water at the outlet side of the heat exchanger 9, purified by the ion exchange resin 10, and then supplied to the gas-liquid separator 3.

イオン交換樹脂塔10を用いると銅と鉄は効果的C二除
去できるが、イオン交換樹脂は冷却水を40〜60℃(
二降温させてからでないと処理できないのでエネルギロ
スが大キく、従って燃料電池としての実用性を考えると
イオン交換樹脂塔lOでの処理水量はできるだけ少くす
る必要があり、循環水量の10 S以下に抑えなければ
ならない。
Copper and iron can be effectively removed by using the ion exchange resin tower 10, but the ion exchange resin can cool the cooling water at 40 to 60°C (
Since the treatment cannot be performed until the temperature has been lowered twice, there is a large energy loss.Considering its practicality as a fuel cell, the amount of water treated in the ion exchange resin tower must be kept as small as possible, less than 10 S of the amount of circulating water. must be kept to a minimum.

また、フィルタ7は吸着し九鉄と銅C二よりろ材の閉塞
を生ずるので、洗浄水シーよる逆流が必要である。
In addition, since the filter 7 absorbs nine iron and copper C2 and causes blockage of the filter medium, backflow through the washing water sea is necessary.

すなわち第7図(:示すように洗浄水(二ハイオン交換
樹脂で浄化し定ものを使用し、開閉弁6,13を閉じ、
開閉弁14.15を開いて逆洗を行っている。
That is, as shown in FIG.
Backwashing is performed by opening the on-off valves 14 and 15.

ろ材中に銅、鉄が深くまで入ると逆洗の効果は少なくな
るので、逆洗に短かい周期で頻繁に尖施する必要があり
、また逆洗によりろ材から離脱した鋼と鉄を完全(二基
外(二排出するのに多量の洗浄水を使用する必要があり
、このため冷却水の温度が下がるので洗浄水を加熱して
から供給し九り、冷却水を加熱する必要があり、この九
め大きな熱損失を招いている。
When copper and iron enter deep into the filter media, the effectiveness of backwashing decreases, so it is necessary to sharpen the backwash frequently at short intervals. It is necessary to use a large amount of washing water to discharge the water out of the two units, which lowers the temperature of the cooling water, so it is necessary to heat the washing water before supplying it, and to heat the cooling water. This leads to a large amount of heat loss.

[発明の目的] 本発明の目的はイオン交換樹脂塔での低温処理水tを減
少させて熱損失を抑制すると共(二ろ材の逆洗時の熱損
失も抑制できるようCI、几燃料電池の冷却水用高温フ
ィルタ装置を提供することであろO [発明の概要コ 本発明は、燃料電池の反応器を冷却する高温の冷却水の
循環流路に挿入され、気液分離された冷却水の中の銅、
鉄などを吸着ろ過する燃料電池の冷却水用高温フィルタ
装置(二おいて、気液分離器から圧送され九未処理冷却
水をろ材を通して吸着ろ過して処理冷却水として送水す
ると共Cユ処理冷却水を逆送してろ材を逆洗した洗浄排
水をろ材ζ:沿って送出する汐神−上記未処理冷却水の
入口と連通し之連通路を備え九高温フィルタと、上記高
温フィルタで吸着ろ過され比処理冷却水を貯留して順次
燃料電池の反応器C二冷却水として送出すると共Cユ高
温フィルタの逆洗時(二洗浄水として高温フィルタに逆
送する冷却水貯留槽と、上記高温フィルタの連通路を通
って送出された未処理冷却水を熱交換器で冷却した後イ
オン交換樹脂で処理して気液分離器(:戻す低温処理系
と、上記逆洗時1:冷却水の流路を切換える配管系統を
備え、これC二よってイオン交換樹脂で低温処理される
未処理冷却水中の銅と鉄を濃縮して低温処理水mを低下
させると共に、高温フィルタの逆洗を冷却水の一部を用
いて行い、これ(:よって冷却水系統の熱損失を大@に
低減させたものである。
[Objective of the Invention] The object of the present invention is to reduce the amount of low-temperature treated water in the ion-exchange resin column and suppress heat loss (in order to suppress heat loss during backwashing of the filtration material, CI, SUMMARY OF THE INVENTION The present invention provides a high-temperature filter device for cooling water that is inserted into a circulation flow path of high-temperature cooling water that cools a reactor of a fuel cell and that filters gas-liquid separated cooling water. copper inside,
High-temperature filter device for fuel cell cooling water that adsorbs and filters iron, etc. Water is sent back and the filter media is backwashed, and the washed wastewater is sent out along the filter media. When the high-temperature filter is backwashed, the high-temperature filter is stored and sequentially sent to the reactor C of the fuel cell as cooling water. The untreated cooling water sent through the communication path of the filter is cooled by a heat exchanger, then treated with an ion exchange resin and returned to a gas-liquid separator (: a low-temperature treatment system; Equipped with a piping system that switches the flow path, this C2 condenses copper and iron in the untreated cooling water that is low-temperature treated with ion exchange resin, lowers the low-temperature treated water m, and backwashes the high-temperature filter with the cooling water. This is done using a part of the cooling water system, which greatly reduces heat loss in the cooling water system.

[発明の実施例] 本発明の一実施例を第1図(ユ示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

第1図において、フィルタ21は円管状のろ材を内蔵し
、入口22は開閉弁6とポンプ5を介して気液分離器3
 C接続され、冷却水出口23は開閉弁24を介して冷
却水貯留槽25I;接続され、未処理水出口26は開閉
弁2′7を介して熱交換器9C二接続されている。
In FIG. 1, a filter 21 has a built-in cylindrical filter medium, and an inlet 22 is connected to a gas-liquid separator 3 via an on-off valve 6 and a pump 5.
The cooling water outlet 23 is connected to the cooling water storage tank 25I through an on-off valve 24, and the untreated water outlet 26 is connected to the heat exchanger 9C through an on-off valve 2'7.

冷却水貯留槽25I;は窒素ガス供給配管銘、冷却水流
出配管四および窒素ガス流出配管(資)が設けられ、窒
素ガス供給配管28は図示されていない窒素ガス供給源
と開閉弁31を介して接続されており、冷却水流出配管
294−!開閉弁ヌを介して冷却管2と接続され、窒素
ガス流出配管30は冷却管2を出友冷却水が気液分離5
3へ戻る九めの配管32の一部【ユ開閉弁羽を介して接
続されている。
The cooling water storage tank 25I is provided with a nitrogen gas supply pipe, a cooling water outflow pipe 4, and a nitrogen gas outflow pipe (equipment), and the nitrogen gas supply pipe 28 is connected to a nitrogen gas supply source (not shown) via an on-off valve 31. The cooling water outflow pipe 294-! The nitrogen gas outflow pipe 30 is connected to the cooling pipe 2 through the on-off valve 2, and the Itomo cooling water is connected to the cooling pipe 2 through the gas-liquid separation 5.
A part of the ninth pipe 32 returning to 3 [Y] is connected via the on-off valve blade.

第2図F′i第1図Cニジけるフィルタ21の断面図で
あり、容器35内には円管状のろ材謁が装着され、入口
nと冷却水”a Q 72 ニろ材36で分離され、入
口z2と未処理水出ロ26ニ連通している0第3図は第
1図における冷却水貯留槽四の断面図であり、冷却水貯
留槽5の下部I:ニ冷却水流入配管37が接続され、上
部に窒素ガス供給配管四が接続され、冷却水流出配管2
9はその先端が冷却水貯留槽5内の冷却水中に常時浸漬
するように装置され、窒素ガス流出配管30はその先端
が冷却水流出配管四の先端より上方で水面付近に位置す
るように設置されている。
Fig. 2F'i Fig. 1C is a sectional view of the filter 21, in which a cylindrical filter medium is installed in the container 35, and the inlet n and the cooling water are separated by the filter medium 36. FIG. 3 is a sectional view of the cooling water storage tank 4 in FIG. The nitrogen gas supply pipe 4 is connected to the upper part, and the cooling water outflow pipe 2 is connected to the upper part.
9 is installed so that its tip is always immersed in the cooling water in the cooling water storage tank 5, and the nitrogen gas outflow pipe 30 is installed so that its tip is located above the tip of the cooling water outflow pipe 4 and near the water surface. has been done.

次C第1図の動作lニついて親羽する。Next C: Follow the action shown in Figure 1 and make a master wing.

フィルタ21を用いて鋼と鉄の除去を行うときは、開閉
弁6,34V開くと共I:開閉弁31.33を閉じるに
のとき開閉弁4.24.27は適正流量が流れるよりC
ユ開度を調節しておく。
When removing steel and iron using the filter 21, when the on-off valves 6 and 34V are opened, the on-off valves 4, 24 and 27 are closed so that the appropriate flow rate flows.
Adjust the opening degree.

気液分離器3を出た冷却水はポンプ5で加圧されフィル
タ21の入口nから流入し、ろ材36で吸着ろ過されて
冷却水貯留槽から流出し、開閉弁Uを通って冷却水貯留
槽25(二流入する。
The cooling water leaving the gas-liquid separator 3 is pressurized by the pump 5, flows into the inlet n of the filter 21, is adsorbed and filtered by the filter medium 36, flows out from the cooling water storage tank, passes through the on-off valve U, and enters the cooling water storage tank. Tank 25 (two inflows).

冷却水貯留槽25g′−流入し九冷却水は冷却水流出配
管四を通り、開閉弁34を経て反応器1の冷却管2C二
送られ、反応61内の電池!冷却し几後配管32を通っ
て気駄分離器3(:戻りこnc工って循環系を形成する
The cooling water that flows into the cooling water storage tank 25g' passes through the cooling water outflow pipe 4, passes through the on-off valve 34, and is sent to the cooling pipe 2C2 of the reactor 1, and is sent to the battery in the reaction 61! After cooling, it passes through the piping 32 and returns to the waste separator 3 (NC) to form a circulation system.

またフィルタ21(:流入し九冷却水の一部は吸着ろ過
されずC二未処理水出ロ26から流出し、熱交換器9で
降温された後、イオン交換樹脂塔10で低温処理される
In addition, a part of the cooling water that flows into the filter 21 (9) is not adsorbed and filtered, but flows out from the C2 untreated water outlet 26, and after being lowered in temperature in the heat exchanger 9, it is treated at a low temperature in the ion exchange resin tower 10. .

未処理水はフィルタ21のろ材36の表面f;沿って流
れ枦会岬、表面付近に捕獲された銅と鉄の一部を除去し
ながらフィルタ21から流出するのでフィルタ21に流
入する前の冷却水より銅と鉄が濃縮される。
The untreated water flows along the surface f of the filter medium 36 of the filter 21 and flows out from the filter 21 while removing some of the copper and iron trapped near the surface, thereby cooling the water before entering the filter 21. Copper and iron are more concentrated than water.

従って低温処理を−より一定量の銅および鉄!処理する
場合、その処理水量は第7図に示す従来の方法C二比べ
て格段に少なくなり、熱損失も減少する0 フィルタ21のろ材36を洗浄するときは、開閉弁6.
34を閉じ、開閉弁31を開き、窒素ガスが窒素ガス供
給源からSIXガス供給配管四を経て冷却水貯留槽25
1ユ供給され、この窒素ガスが冷却水貯留槽5内の冷却
水を開閉弁24.冷却水出口23を経てフィルタ21内
へ流入させ、冷却水!ろ材36中を吸着ろ適時と逆方向
に流し、ろ材36中Cユ捕獲され次銅と鉄を除去し、未
処理水出口26から流出させて低温処理を行う。
Hence low temperature processing – more constant amounts of copper and iron! When the treatment is performed, the amount of water to be treated is much smaller than that of the conventional method C2 shown in FIG. 7, and the heat loss is also reduced.
34 is closed, the on-off valve 31 is opened, and nitrogen gas flows from the nitrogen gas supply source through the SIX gas supply pipe 4 to the cooling water storage tank 25.
1 unit of nitrogen gas is supplied, and this nitrogen gas turns the cooling water in the cooling water storage tank 5 into the on-off valve 24. Cooling water flows into the filter 21 through the cooling water outlet 23! The water is flowed through the filter medium 36 in the opposite direction to adsorption filtration to remove the copper and iron captured by the C in the filter medium 36, and then flowed out from the untreated water outlet 26 for low-temperature treatment.

ろ材36の逆洗は銅と鉄がろ材36の表面近く(ユ捕獲
されているうちCユ実施するのが効果的であり、また逆
洗で銅と鉄が除去できるのは洗浄開始時のろ材366二
対する冷却水逆流Cユよる衝撃が有効(:働いていると
きであり、長時間逆洗するのは効果的でない。
It is effective to backwash the filter media 36 while copper and iron are near the surface of the filter media 36. The impact caused by the backflow of cooling water on the 3662 is effective (: when it is working, and backwashing for a long time is not effective.

従って、効果的な逆洗を行う次めには例えば洗浄周期を
10分〜1日という比較的短時間とし、逆洗時間も1秒
〜1分といつ極めて短かい時間に設定するのがよく、冷
却水の水質および逆洗C二伴なう低温処理(ユよる熱損
失を考慮して最適条件を決定する必要がある。
Therefore, in order to carry out effective backwashing, it is best to set the cleaning cycle to a relatively short period of 10 minutes to 1 day, and the backwash time to a very short period of 1 second to 1 minute. It is necessary to determine the optimum conditions by taking into account the quality of the cooling water and the heat loss caused by the low temperature treatment (C2) associated with backwashing.

逆洗時間が短くなると洗浄水音も少なくなり、洗浄効果
も著しく向上する。
When the backwashing time is shortened, the sound of the washing water decreases, and the cleaning effect is significantly improved.

まt、逆洗水として吸着ろ過した冷却水を使用している
ので、従来のように洗浄水の加熱i二よる熱損失が少な
くなる。
Furthermore, since adsorption-filtered cooling water is used as backwash water, heat loss due to heating of wash water as in the conventional method is reduced.

逆洗終了時(二は窒素ガスが冷却水貯留槽25内1:残
存し、冷却水出口配管29から冷却管2へ窒素ガスが流
入し、少量でにおるが、冷却管2内(二残留して反応器
l内の熱分布が不均一となる恐れがあるので、開閉弁3
1を閉じ、開閉弁6.33を開き冷却水貯留槽5内に残
存する窒素ガスを窒素ガス流出配管29から流出させた
後、開閉弁北な閉じ、開閉弁あを開き冷却管2へ冷却水
を供給する。
At the end of backwashing (2) Nitrogen gas remains in the cooling water storage tank 25, nitrogen gas flows from the cooling water outlet pipe 29 into the cooling pipe 2, and a small amount of nitrogen gas is emitted; The on-off valve 3
1, open the on-off valve 6.33 and let the nitrogen gas remaining in the cooling water storage tank 5 flow out from the nitrogen gas outflow pipe 29, then close the on-off valve north, open the on-off valve A and cool it to the cooling pipe 2. Supply water.

本発明の他の実施例を第4図に示す。Another embodiment of the invention is shown in FIG.

上記第1図の実施例では、ろ材36の表面を流れる未処
理水は低温処理される流tlユ限定され、ま7を亢奮を
増加させるほどろ材36表面付近の銅と鉄を除去する効
果が増大し、また、ろ材36の逆洗時に短時間ではある
が、冷却管2への冷却水の供給が停止する。
In the embodiment shown in FIG. 1, the untreated water flowing on the surface of the filter medium 36 is limited to a low-temperature-treated flow, and the more the water is stimulated, the more effective it is to remove copper and iron near the surface of the filter medium 36. Moreover, when backwashing the filter medium 36, the supply of cooling water to the cooling pipe 2 is stopped, albeit for a short time.

第4図では上記の問題を考慮して気液分離器3から流出
する冷却水の配f″Ik:ボンプ5の出口と開閉弁6の
間で分岐させ、一方の配管42ri開閉弁6を経てフィ
ルタ21の入口221ユ接続し、他方の配管4:4に開
閉弁44を経て開閉弁具と冷却管2の関(ユ接続し、さ
ら(ユフィルタ21の未処理水配管45は配管4bと配
管47ζユ分岐させ、配管46は開閉弁48を介して熱
交換器9ζユ接続すると共(ユ配管47は開閉弁50と
ポンプ51を経てフィルタ21の入口22に接続してい
る。
In FIG. 4, in consideration of the above problem, the cooling water flowing out from the gas-liquid separator 3 is divided between the outlet of the pump 5 and the on-off valve 6, and is routed through one pipe 42ri and the on-off valve 6. The inlet 221 of the filter 21 is connected to the other pipe 4:4 through the on-off valve 44, and the connection between the on-off valve and the cooling pipe 2 is connected, and the untreated water pipe 45 of the filter 21 is connected to the pipe 4b The piping 46 is connected to the heat exchanger 9ζ through an on-off valve 48 (the piping 47 is connected to the inlet 22 of the filter 21 through an on-off valve 50 and a pump 51).

笛4図1−おいて、フィルタ21で吸着ろ過を行うとき
a開閉弁6 、24.34.48.50を開き、開閉弁
31.33.44″Ik:閉じる。
When adsorption filtration is performed using the filter 21, the whistle 4 (Fig. 1) opens the on-off valves 6 and 24.34.48.50, and the on-off valve 31.33.44''Ik: closes.

吸着ろ過された冷却水は冷却水出口おから流出し、未処
理水は未処理水出口26.配管45を通り配管46と配
管47(ユ分岐され、配管46を流れる未処理水が低温
処理する流量となるよ5に開閉弁48で調節される。
The adsorption-filtered cooling water flows out from the cooling water outlet 26. and the untreated water flows out from the untreated water outlet 26. It passes through a pipe 45 and is branched into a pipe 46 and a pipe 47 (Y), and the untreated water flowing through the pipe 46 is adjusted by an on-off valve 48 to a flow rate for low-temperature treatment.

一方、配管47には残りの未処理水が流れ、開閉弁(資
)を通り、ポンプ51で加圧さね、て入口ηから流入し
儂環系を形成する。
On the other hand, the remaining untreated water flows into the pipe 47, passes through the on-off valve, is pressurized by the pump 51, and flows in from the inlet η to form a ring system.

これによって未処理水!含む冷却水をフィルタ21のろ
材36表面を任意の流速で流すことができ、ろ材36表
面に吸着ろ過された銅と鉄の除去が効果的に2行われる
This results in untreated water! The cooling water contained therein can be allowed to flow through the surface of the filter medium 36 of the filter 21 at an arbitrary flow rate, and copper and iron adsorbed and filtered on the surface of the filter medium 36 are effectively removed.

また鋼と鉄の濃縮も前記実施例エリ効果的(ユ行えるの
で熱損失もより一層少なくできる。
Furthermore, since the concentration of steel and iron can be carried out effectively in accordance with the embodiment described above, heat loss can be further reduced.

逆洗時は開閉弁6.詞、刃!閉じ、開閉弁31゜44を
開き、前記第1図の場合と同様Cユろ材36の逆洗を行
う。
When backwashing, open/close valve 6. Words, blade! Then, the opening/closing valve 31.degree. 44 is opened, and the C filter material 36 is backwashed as in the case of FIG. 1.

この時ポンプ5で加圧され次冷却水は配管43゜開閉弁
Iを通って冷却管2へ供給され、常に反応器1内の冷却
を行うことができる。
At this time, the cooling water pressurized by the pump 5 is supplied to the cooling pipe 2 through the piping 43° opening/closing valve I, so that the inside of the reactor 1 can be constantly cooled.

また上記各実施例に、いずれも第3図に示す冷却水貯留
j!!25を使用しているが吸着ろ過後の冷却水?フィ
ルタ21内に圧送できればよく、例えば第5図1九に第
6図(ユ示す貯留槽5を用いることができろ。
Furthermore, in each of the above embodiments, the cooling water storage shown in FIG. ! 25, but is it the cooling water after adsorption filtration? It is sufficient if the liquid can be fed under pressure into the filter 21, and for example, the storage tank 5 shown in FIGS. 5, 19 and 6 can be used.

第5図はダイア7ラム61を内蔵し九冷却水貯留槽であ
り、ダイアフラム61を窒素ガスで動かし逆洗する。
FIG. 5 shows a cooling water storage tank with a built-in diaphragm 61, and backwashing is performed by moving the diaphragm 61 with nitrogen gas.

ま九窒素ガスを使用せず(ユ機械的に動かしても工く、
第6図はピストン6.1内蔵し几冷却水貯留摺である。
It does not use nitrogen gas (it can also be operated mechanically).
Figure 6 shows a cooling water storage slide with a built-in piston 6.1.

冷却水貯留槽として第5図またに第6図を用いろと配管
30および開閉弁33は不要となる。
If the cooling water storage tank shown in FIG. 5 or 6 is used, the piping 30 and the on-off valve 33 become unnecessary.

ま之上紀の各実施例では逆洗(二窒素ガスを使用してい
るが他の不活性ガスを用いてもよい。
In each of Manouki's embodiments, backwashing (dinitrogen gas is used, but other inert gases may be used.

また上記各実施例では円管状のろ材36が使用されてい
るがろ材の入口と未処理水出口とが連通し、ろ材の入口
とフィルタの冷却水出口とがる材によって分離され、ろ
材の表面を未処理水が流れる構造であれば、すべて適用
可能である。
Further, in each of the above embodiments, a cylindrical filter medium 36 is used, but the inlet of the filter medium and the untreated water outlet communicate with each other, and the inlet of the filter medium and the outlet of the cooling water of the filter are separated by a sharp member, and the surface of the filter medium It is applicable to any structure where untreated water flows.

[発明の効果コ 以上説明し力よづ(二、本発明の燃料電池の冷却水用高
温フィルタ装kによれば、銅と鉄が濃縮された未処理水
!低温でイオン交換樹脂による処理を行うと共(ユ、吸
着ろ過し次冷却水を用いてろ材の逆洗を行っているので
熱損失!大幅に減少させることができる。
[Effects of the invention] I have explained the above (2. According to the high-temperature filter device for cooling water of fuel cells of the present invention, untreated water enriched with copper and iron! Treated with ion exchange resin at low temperature. As the filter media is backwashed with cooling water after adsorption filtration, heat loss can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明1ユよる燃料電池の冷却水用高温フィル
タ装置の一実施例を示す系統図、第2図は第1図におけ
る高温フィルタの断面図、第3図は第1図(二おける冷
却水貯留槽の断面図、第4図は本発明の他の実施例!示
す系統図、第5図および第6図はそれぞれ第4図の実施
例Cユおける冷却水貯留槽の一例!示す断面図、第7図
は従来の燃料電池の冷却水用高温フィルタ装置の一例を
示す系統図である。 1・・・反応器     2・・・冷却管3−気液分離
器 4.6.8.13.14.15・・・開閉弁5.1
1.51・・・ポンプ  7.21・・・高温フィルタ
9・・・熱交換器    10−イオン交換樹脂塔12
・・・ヒータ 24.27.3]、 33.34.44
.48.50・・−開閉弁5・・・冷却水貯留槽  四
・・・窒素ガス供給配管29・・・冷却水流出配管 (
資)・・・窒素ガス流出配管35・・・容器     
 36・・・ろ材61・・・ダイアフラム  63−ピ
ストン代理人 弁理士 猪 股 祥 晃(ほか1名)第
1図 第  2  図         第  3  図第 
 4  図 第  5  図              第  6
  図第  7  図
FIG. 1 is a system diagram showing an embodiment of a high-temperature filter device for cooling water of a fuel cell according to the present invention, FIG. 2 is a sectional view of the high-temperature filter in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the cooling water storage tank in the embodiment C of FIG. 4, and the system diagram shown in FIG. The cross-sectional view shown in FIG. 7 is a system diagram showing an example of a conventional high temperature filter device for cooling water of a fuel cell. 1... Reactor 2... Cooling pipe 3 - gas-liquid separator 4.6. 8.13.14.15...Opening/closing valve 5.1
1.51...Pump 7.21...High temperature filter 9...Heat exchanger 10-Ion exchange resin column 12
... heater 24.27.3], 33.34.44
.. 48.50...-On-off valve 5...Cooling water storage tank 4...Nitrogen gas supply pipe 29...Cooling water outflow pipe (
Capital)...Nitrogen gas outflow piping 35...Container
36...Filter material 61...Diaphragm 63-Piston agent Patent attorney Yoshiaki Inomata (and 1 other person) Figure 1 Figure 2 Figure 3
4 Figure 5 Figure 6
Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)燃料電池の反応器を冷却する高温の冷却水の循環
流路に挿入され、気液分離された冷却水の中の銅、鉄な
どを吸着ろ過する燃料電池の冷却水用高温フィルタ装置
において、気液分離器から圧送された未処理冷却水をろ
材を通して吸着ろ過して処理冷却水として送水すると共
に処理冷却水を逆送してろ材を逆洗した洗浄排水をろ材
に沿つて送出する上記未処理冷却水の入口と連通した連
通路を備えた高温フィルタと、上記高温フィルタで吸着
ろ過された処理冷却水を貯留して順次燃料電池の反応器
に冷却水として送出すると共に高温フィルタの逆洗時に
洗浄水として高温フィルタに逆送する冷却水貯留槽と、
上記高温フィルタの連通路を通つて送出された未処理冷
却水を熱交換器で冷却した後イオン交換樹脂で処理して
気液分離器に戻す低温処理系と、上記逆洗時に冷却水の
流路を切換える配管系統を備えたことを特徴とする燃料
電池の冷却水用高温フィルタ装置。
(1) A high-temperature filter device for fuel cell cooling water that is inserted into the circulation flow path of high-temperature cooling water that cools the fuel cell reactor and adsorbs and filters copper, iron, etc. in the gas-liquid separated cooling water. In the system, untreated cooling water pumped from the gas-liquid separator is adsorbed and filtered through a filter medium to be sent as treated cooling water, and at the same time, the treated cooling water is sent back to backwash the filter medium and wash water is sent out along the filter medium. A high-temperature filter is provided with a communication path communicating with the inlet of the untreated cooling water, and the treated cooling water adsorbed and filtered by the high-temperature filter is stored and sequentially sent to the reactor of the fuel cell as cooling water. A cooling water storage tank that is sent back to the high temperature filter as cleaning water during backwashing;
A low-temperature treatment system that cools the untreated cooling water sent through the communication path of the high-temperature filter with a heat exchanger, processes it with an ion exchange resin, and returns it to the gas-liquid separator; A high-temperature filter device for cooling water of a fuel cell, characterized by being equipped with a piping system for switching paths.
(2)上記高温フィルタの連通路から送出される未処理
冷却水の一部を加圧して連通路入口に還流させてろ材表
面を洗浄する循環水路を設けた特許請求の範囲第1項記
載の燃料電池の冷却水用高温フィルタ装置。
(2) A circulation waterway is provided for pressurizing a portion of the untreated cooling water sent out from the communication passage of the high temperature filter and returning it to the communication passage inlet to wash the surface of the filter medium. High temperature filter device for fuel cell cooling water.
(3)上記高温フィルタのろ材を円管状とした特許請求
の範囲第1項記載の燃料電池の冷却水用高温フィルタ装
置。
(3) A high-temperature filter device for cooling water of a fuel cell according to claim 1, wherein the filter medium of the high-temperature filter is cylindrical.
JP60012586A 1985-01-28 1985-01-28 High temperature filter for cooling water of fuel cell Pending JPS61173467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60012586A JPS61173467A (en) 1985-01-28 1985-01-28 High temperature filter for cooling water of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60012586A JPS61173467A (en) 1985-01-28 1985-01-28 High temperature filter for cooling water of fuel cell

Publications (1)

Publication Number Publication Date
JPS61173467A true JPS61173467A (en) 1986-08-05

Family

ID=11809456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60012586A Pending JPS61173467A (en) 1985-01-28 1985-01-28 High temperature filter for cooling water of fuel cell

Country Status (1)

Country Link
JP (1) JPS61173467A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264877A (en) * 1986-11-20 1988-11-01 株式会社東芝 Cooler system of electrochemical battery
JPH01166469A (en) * 1987-12-23 1989-06-30 Mitsubishi Electric Corp Fuel cell power generation system
US6638655B2 (en) 2000-04-13 2003-10-28 Matsushita Electric Industrial Co., Ltd. Fuel cell system
CN114665118A (en) * 2021-04-14 2022-06-24 长城汽车股份有限公司 Cooling system for fuel cell and vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264877A (en) * 1986-11-20 1988-11-01 株式会社東芝 Cooler system of electrochemical battery
JPH01166469A (en) * 1987-12-23 1989-06-30 Mitsubishi Electric Corp Fuel cell power generation system
US6638655B2 (en) 2000-04-13 2003-10-28 Matsushita Electric Industrial Co., Ltd. Fuel cell system
CN114665118A (en) * 2021-04-14 2022-06-24 长城汽车股份有限公司 Cooling system for fuel cell and vehicle

Similar Documents

Publication Publication Date Title
JP3518112B2 (en) Fuel cell water treatment equipment
JP2685247B2 (en) How to remove ammonia
CN108751325A (en) A kind of ammonia nitrogen waste water processing system and ammonia nitrogen waste water treatment method
JPS61173467A (en) High temperature filter for cooling water of fuel cell
JPS61188865A (en) High temperature filtering device for cooling water of fuel cell
JP3091389B2 (en) Dissolved hydrogen removing method for electrolysis apparatus and dissolved hydrogen removing apparatus therefor
CN108706782A (en) A kind of sea water desalination processing unit
CN208594145U (en) Regenerate denitrating catalyst regenerative wastewater processing system
JP3614995B2 (en) Condensate demineralizer
KR101063926B1 (en) Condensate polishing system and method thereof
CN208250031U (en) Boiler steam sampling water recovery device
CN218969032U (en) Reverse osmosis device of converter valve cooling system
JPH0221992A (en) High-temperature adsorption treatment
CN220642656U (en) Industrial wastewater concentrated solution treatment system
JPH0221903A (en) High-temperature adsorption treatment device
CN209974447U (en) Condensate water deoiling deironing retrieval and utilization processing apparatus
CN214654243U (en) Water storage tank for copper-clad steel electroplating production line
JPH0221904A (en) High-temperature adsorption treatment device
CN211896153U (en) Water softening device of cooling tower
CN215249790U (en) Device for purifying sewage by catalytic cracking flue gas desulfurization and recycling
JP2004354056A (en) Method and device for desalinating condensation
JPH06114277A (en) Condensate desalting device
JP3506260B2 (en) Unpurified liquid purification device
JPH01206294A (en) Fluid purifier
CN115044732A (en) Turbidity reduction treatment device for dry-method dust removal coal cold water system of converter