JP2940651B2 - Pure water production equipment - Google Patents

Pure water production equipment

Info

Publication number
JP2940651B2
JP2940651B2 JP4087870A JP8787092A JP2940651B2 JP 2940651 B2 JP2940651 B2 JP 2940651B2 JP 4087870 A JP4087870 A JP 4087870A JP 8787092 A JP8787092 A JP 8787092A JP 2940651 B2 JP2940651 B2 JP 2940651B2
Authority
JP
Japan
Prior art keywords
bed
column
resin
tower
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4087870A
Other languages
Japanese (ja)
Other versions
JPH05253568A (en
Inventor
以佐雄 山本
美和 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP4087870A priority Critical patent/JP2940651B2/en
Publication of JPH05253568A publication Critical patent/JPH05253568A/en
Application granted granted Critical
Publication of JP2940651B2 publication Critical patent/JP2940651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は純水の製造装置に関し、
特に従来の逆洗を無くしてイオン交換反応を化学量論的
におこなわせ、樹脂の再生時間を短縮し、またイオン交
換塔を小さく且つシンプルにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing pure water,
In particular, the ion exchange reaction is performed stoichiometrically without the conventional backwashing, the regeneration time of the resin is shortened, and the ion exchange tower is small and simple.

【0002】[0002]

【従来の技術】原水中の塩類や遊離した弱酸、珪酸など
をすべて除去した純水は、高圧ボイラー給水、プロセス
用水、電子工業用水、原子炉用水、その他きわめて高純
度の水が要求される工業用水および試験・研究用水等と
して広く用いられている。
2. Description of the Related Art Pure water from which all salts and free weak acids and silicic acids in raw water have been removed is supplied to high-pressure boiler feedwater, process water, water for electronics industry, water for nuclear reactors, and other industries requiring extremely high-purity water. Widely used as irrigation water and test / research water.

【0003】そしてこのような純水は通常イオン交換樹
脂を使用して製造され、実際には上層に弱酸性陽イオン
交換樹脂、下層に強酸性陽イオン交換樹脂を夫々充填し
た複層床式カチオン交換塔と、上層に弱塩基性陰イオン
交換樹脂、下層に強塩基性陰イオン交換樹脂を夫々充填
した複層床式アニオン交換塔、またさらに要すれば脱炭
酸塔を組み合わせた2床2塔もしくは2床3塔式あるい
は上記の各イオン交換樹脂を夫々別々に充填した単層床
式の4床4塔式もしくしは4床5塔式とした純水製造装
置が用いられている。
[0003] Such pure water is usually produced using an ion-exchange resin. In practice, a double-bed type cation in which a weakly acidic cation exchange resin is filled in the upper layer and a strongly acidic cation exchange resin is filled in the lower layer, respectively. An exchange tower, a double-bed anion exchange tower filled with a weakly basic anion exchange resin in the upper layer, and a strongly basic anion exchange resin in the lower layer, and if necessary, a two-bed two-column tower combining a decarbonation tower Alternatively, a pure water production apparatus of a two-bed three-column type or a single-bed type four-bed four-column type or a four-bed five-column type in which each of the above-mentioned ion exchange resins is separately filled is used.

【0004】そしてこの複層床式の装置においては、再
生液は塔内を上向きに強酸性陽イオン交換樹脂から弱酸
性陽イオン交換樹脂および強塩基性陰イオン交換樹脂か
ら弱塩基性陰イオン交換樹脂へ一貫して通薬し、原水は
塔内を下向きに通水する上昇流再生・下降流通水方式が
知られている。
[0004] In this double-bed apparatus, the regenerating solution is directed upward in the column from a strongly acidic cation exchange resin to a weakly acidic cation exchange resin and from a strongly basic anion exchange resin to a weakly basic anion exchange resin. An upflow regeneration / downflow water system is known, in which the medicine is passed through the resin consistently and the raw water flows downward in the tower.

【0005】これは、イオン交換樹脂に、一貫して上向
流で通薬することにより、まず強酸性陽イオン交換樹脂
・強塩基性陰イオン交換樹脂を再生し、残りの酸または
アルカリで再生効率のよい弱酸性陽イオン交換樹脂・弱
塩基性陰イオン交換樹脂を再生するため、強酸性陽イオ
ン交換樹脂・強塩基性陰イオン交換樹脂のみを用いた方
式に比べ再生薬品の使用量が大幅に少ない等の利点を有
しているからである。
[0005] In this method, a strongly acidic cation exchange resin and a strongly basic anion exchange resin are first regenerated by passing the drug through the ion exchange resin in an upward flow, and then regenerated with the remaining acid or alkali. Uses a large amount of regenerated chemicals to regenerate efficient weakly acidic cation exchange resin and weakly basic anion exchange resin compared to the method using only strongly acidic cation exchange resin and strongly basic anion exchange resin. This is because it has advantages such as less.

【0006】又単層床式の装置においては、強酸性陽イ
オン交換樹脂および強塩基性陰イオン交換樹脂では夫々
上昇流再生、下降流通水方式をとり、弱酸性陽イオン交
換樹脂および弱塩基性陰イオン交換樹脂では夫々上昇流
もしくは下降流再生、下降流通水方式をとることが知ら
れている。
In a single-bed type apparatus, a strongly acidic cation exchange resin and a strongly basic anion exchange resin employ an upflow regeneration and a downflow water system, respectively, to obtain a weakly acidic cation exchange resin and a weakly basic cation exchange resin. It is known that an anion exchange resin employs an upflow or downflow regeneration and a downflow water system, respectively.

【0007】[0007]

【発明が解決しようとする課題】従来のイオン交換塔に
おいては原水の通水によって原水の懸濁物質(以下濁質
という)が樹脂層に蓄積するため、再生工程の第1段階
として必ず樹脂の逆洗を行い、塔内の上記濁質を除去し
なければならない。
In a conventional ion exchange tower, suspended substances (hereinafter referred to as "turbidity") of the raw water accumulate in the resin layer due to the flow of the raw water. A backwash must be performed to remove the turbidity in the column.

【0008】そしてこの逆洗のためには充填した樹脂の
塔内の上方にかなり大きな空間部(以下これをフリーボ
ードと呼ぶ)が必要であった。例えばアニオン交換樹脂
塔においては、フリーボードの高さはアニオン交換樹脂
層の高さの60%以上の高さが必要であり、カチオン交
換塔においてもカチオン交換樹脂層の高さの約60%以
上も必要であった。このためこれらの交換塔の全高はか
なり大きなものとなり、製作費の上昇や設置建屋の大型
化等の問題がった。
[0008] For this backwashing, a considerably large space (hereinafter referred to as a free board) is required above the filled resin tower. For example, in the anion exchange resin tower, the height of the free board needs to be 60% or more of the height of the anion exchange resin layer, and in the cation exchange tower, about 60% or more of the height of the cation exchange resin layer. Was also needed. For this reason the total height of these exchange column becomes quite large, problems such as increase in the size of the rise and installation buildings of the production costs was Tsu Oh.

【0009】また上記上昇流再生においては、再生剤の
上昇流により交換樹脂層が押し上げられて流動するのを
防ぐため、再生剤を交換塔内の下部に設置したディスト
リビューターから流入して交換樹脂層の上部に設置した
コレクターから排出する方式を採っている。またさらに
再生時に上記フリーボードの上部から水や空気を流入せ
しめて当該水や空気の流入圧力によって樹脂層を押圧保
持してその流動化を防ぐ方法もとられている。このよう
なディストリビューターは再生剤を均一に分散させ且つ
樹脂層の流動化を防止するために特殊なものであり、ま
たコレクターも均一集液のため特殊なものであって、い
ずれも交換塔のコストを押し上げていた。
In the above-mentioned upward flow regeneration, in order to prevent the exchange resin layer from being pushed up by the upward flow of the regenerant and flowing, the regenerant flows from the distributor installed at the lower part in the exchange tower and exchange resin flows. The method of discharging from the collector installed at the top of the layer is adopted. Further, there is a method in which water or air is allowed to flow in from the upper portion of the free board during regeneration, and the resin layer is pressed and held by the inflow pressure of the water or air to prevent fluidization thereof. Such distributors are special for uniformly dispersing the regenerant and preventing fluidization of the resin layer, and the collectors are also special for uniform liquid collection. That was driving up costs.

【0010】これを解決するため、従来専用の逆洗塔を
交換塔の上方に設置してこの逆洗塔と交換塔とを連通管
で接続することにより、上記濁質を逆洗塔の上部から排
出する方式も採用されている。しかしこの場合にも逆洗
塔が必要となり、製作費と設置スペースの問題は依然と
して残っている。
In order to solve this problem, a conventional backwash tower is provided above the exchange tower, and the backwash tower and the exchange tower are connected to each other by a communication pipe. There is also a method that discharges from However, in this case, a backwash tower is required, and the problems of production cost and installation space still remain.

【0011】さらにこのような上昇流再生・下降流通水
方式の純水製造において、再生時に逆洗を行うと通水終
了時点で塔下部に未反応のまま残留しているH型カチオ
ン交換樹脂(R−H)あるいはOH型アニオン交換樹脂
(R−H)の層が乱されるために、これら残留R−
H、R−OHの有効利用がなされぬばかりか、化学量論
的な再生ができなくなるため、高純度の純水を得るため
には、多量の再生剤が必要となり、そのため当該方式の
前記した利点が失われてしまうという問題があった。
Further, in such an upflow regeneration / downflow water production pure water production, if backwashing is performed during regeneration, the H-type cation exchange resin remaining unreacted in the lower part of the tower at the end of water flow ( for a layer of R-H) or OH type anion exchange resin (R- O H) is disturbed, these residual R-
Not only is H and R-OH not effectively utilized, but also stoichiometric regeneration is not possible, and in order to obtain high-purity pure water, a large amount of a regenerating agent is required. There was a problem that the advantage was lost.

【0012】[0012]

【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、上記フリーボードや逆洗塔を必要としない
イオン交換塔からなる純水製造装置を開発したものであ
る。
According to the present invention, as a result of various studies, a pure water producing apparatus comprising an ion exchange tower which does not require the above-mentioned freeboard or backwash tower has been developed.

【0013】本発明は強酸性陽イオン交換樹脂と弱酸性
陽イオン交換樹脂を充填した複層床式カチオン交換塔お
よび強塩基性陰イオン交換樹脂と弱塩基性陰イオン交換
樹脂を充填した複層床式アニオン交換塔からなる2床2
塔式純水製造装置もしくはこれに脱炭酸塔を組合せてな
る2床3塔式純水製造装置あるいは弱酸性陽イオン交換
樹脂を充填した単層床式弱酸性カチオン交換塔、強酸性
陽イオン交換樹脂を充填した単層床式強酸性カチオン交
換塔、弱塩基性陰イオン交換樹脂を充填した単層床式弱
塩基性アニオン交換塔および強塩基性陰イオン交換樹脂
を充填した単層床式強塩基性アニオン交換塔からなる4
床4塔式純水製造装置もしくはこれに脱炭酸塔を組合せ
てなる4床5塔式純水製造装置において、該純水製造装
置の前段にそのカチオン交換塔内およびアニオン交換塔
内への濁質の混入を抑止するための膜分離装置を設置
し、各カチオン交換塔および各アニオン交換塔にはそれ
ぞれの交換塔内の空間に各充填樹脂の通水、再生による
膨潤分もしくは収縮分に対応する余裕高をその上部に持
たせて各樹脂を隙間なく充填し、上記の膜分離装置で予
備処理された原水を下降流通水方式で処理することによ
り、逆洗工程を省略したことを特徴とするものである。
The present invention relates to a multi-bed cation exchange column filled with a strongly acidic cation exchange resin and a weakly acidic cation exchange resin, and a multi-layer bed filled with a strongly basic anion exchange resin and a weakly basic anion exchange resin. Two beds consisting of a bed type anion exchange tower 2
A tower type pure water production device or a two-bed three-column type pure water production device combining this with a decarbonation tower, or a single-bed type weak acid cation exchange column filled with a weakly acidic cation exchange resin, strongly acidic cation exchange Single-bed strong acid cation exchange tower packed with resin, single-bed weak base anion exchange tower packed with weakly basic anion exchange resin, and single-bed strong packed with strong basic anion exchange resin 4 consisting of a basic anion exchange column
In a four-bed, five-column pure water production system or a four-bed, five-column pure water production system in which a decarbonation column is combined with this, a turbidity into the cation exchange column and the anion exchange column is provided before the pure water production system. Membrane separators are installed to prevent contamination of water quality.Each cation exchange column and each anion exchange column accommodates the amount of swelling or shrinkage due to water flow and regeneration of each packed resin in the space inside each exchange column. The backwashing step is omitted by allowing each resin to be filled without gaps by giving a margin to the upper part, and treating the raw water pretreated by the above-mentioned membrane separation device in a downward flowing water system. Is what you do.

【0014】なお上記濁質とは、例えば粘土質、水酸化
物類、有機物、木片その他の異物である。
The turbid substance is, for example, clay, hydroxides, organic substances, wood chips and other foreign substances.

【0015】また上記膜分離装置としては、逆浸透膜装
置、限外濾過膜装置またはマイクロフィルター(精密濾
過膜装置)が有効である。
As the membrane separation device, a reverse osmosis membrane device, an ultrafiltration membrane device or a microfilter (microfiltration membrane device) is effective.

【0016】また上記余裕高とは、各充填樹脂の通水・
再生による膨潤量もしくは収縮量(即ち弱酸性陽イオン
交換樹脂および弱塩基性陰イオン交換樹脂の場合は再生
形から塩形に変化するときの膨潤量であり、強酸性陽イ
オン交換樹脂及び強塩基性陰イオン交換樹脂の場合は塩
形から再生形に変化するときの膨潤量である。)に見合
う容積を各交換樹脂の高さに換算したものである。
The above-mentioned margin is defined as the water flow of each filled resin.
The amount of swelling or shrinkage due to regeneration (that is, in the case of a weakly acidic cation exchange resin and a weakly basic anion exchange resin, the amount of swelling when changing from a regenerated form to a salt form). In the case of a nonionic anion exchange resin, the swelling amount at the time of change from the salt form to the regenerated form) is converted to the height of each exchange resin.

【0017】このように純水製造装置の前段に濁質の流
入を抑止するための膜分離装置を設置したので、逆洗を
実施する必要がなくなり、また下記に示すように、向流
再生方式の利点を、工業装置においても化学量論的に発
揮することが可能となった。
As described above, since the membrane separation device for suppressing the inflow of turbidity is installed at the preceding stage of the pure water production device, it is not necessary to perform backwashing. Can be stoichiometrically exhibited in industrial equipment.

【0018】即ち、本発明では、カチオン交換塔におい
て再生前に逆洗を行わないため、樹脂層のイオン配列
は、樹脂層上部から下部に向かってR−Ca、R−M
g、R−Na、R−Hの選択性の順に配列し、また、ア
ニオン交換塔では、再生前に逆洗を行わないため、樹脂
層のイオン配列は、樹脂層の上部から下部に向かって、
R−SO4 、R−Cl、R−シリカ、R−OHの選択性
の順位に配列するため、再生時に残留していた残R−
H、残R−OHを100%有効に利用できるばかりか、
化学量論的な再生が可能となり、極めて低い酸またはア
ルカリの再生剤使用量で、高純度水を製造することが可
能となり、かつ再生時間を大巾に低減することが可能と
なった。また逆洗塔やフリーボードをなくすことができ
るので、塔高さを低くでき、従って製作費が低減する。
That is, in the present invention, since the backwashing is not performed before regeneration in the cation exchange column, the ion arrangement of the resin layer is changed from the upper part of the resin layer to the lower part by R-Ca, RM
g, R—Na, and R—H are arranged in the order of selectivity. In the anion exchange tower, backwashing is not performed before regeneration, so that the ion arrangement of the resin layer is from the top to the bottom of the resin layer. ,
Since R-SO 4 , R-Cl, R-silica, and R-OH are arranged in the order of selectivity, the remaining R-
H, not only can the remaining R-OH be used 100% effectively,
Stoichiometric regeneration becomes possible, it becomes possible to produce high-purity water with an extremely low amount of acid or alkali regenerant, and it is possible to greatly reduce the regeneration time. Further, since the backwash tower and the free board can be eliminated, the height of the tower can be reduced, and the production cost can be reduced.

【0019】また上記フリーボードをなくし、各交換塔
内の空間にはイオン交換樹脂を、その余裕高を上部に持
たせて隙間なく充填してあるので、例えば塔内の上下に
目板を設置してこれら両目板間にイオン交換樹脂を充填
した装置の場合は、再生剤を通常の流速より多少速めた
流速の上昇流で流入させることによって樹脂層を上部の
目板に容易に押しつけることができ、よって樹脂層が流
動することはなくなる。従って従来のコレクターやディ
ストリビューターが不要となり、塔の構造がシンプルと
なる。
Further, since the above-mentioned free board is eliminated and the space inside each exchange tower is filled with ion exchange resin without leaving a gap at the upper part, for example, a perforated plate is installed above and below the tower. In the case of an apparatus in which the ion exchange resin is filled between these two eye plates, the resin layer can be easily pressed against the upper eye plate by flowing the regenerant at an ascending flow at a flow speed slightly higher than the normal flow speed. Thus, the resin layer does not flow. Therefore, the conventional collector and distributor are not required, and the structure of the tower is simplified.

【0020】なお塔内に充填したイオン交換樹脂の頂面
に接して、当該イオン交換樹脂の再生時における膨潤も
しくは収縮に応じて伸張可能な可撓性多孔膜、例えば多
数の小孔を有する2枚のゴム製板の間に、液体は通すが
イオン交換樹脂は通過させない程度の目開きを有するサ
ラン布等を挟み込んで接着したものを設け、当該可撓性
多孔膜によってイオン交換樹脂を押さえつけるようにし
てもよく、このようにすると再生時における樹脂層の流
動化をより確実に防止することができる。
A flexible porous membrane, for example, having a large number of small holes, which is in contact with the top surface of the ion-exchange resin filled in the column and can be expanded in response to swelling or shrinkage during regeneration of the ion-exchange resin. Between a pair of rubber plates, a material is sandwiched and adhered by sandwiching a Saran cloth or the like having an aperture that allows liquid to pass therethrough but does not allow ion exchange resin to pass through, so that the ion exchange resin is pressed down by the flexible porous membrane. In this case, fluidization of the resin layer during regeneration can be more reliably prevented.

【0021】[0021]

【実施例】次に本発明の実施例について説明する。Next, an embodiment of the present invention will be described.

【0022】今、本発明方法の実施態様を図面によって
説明する。
Now, an embodiment of the method of the present invention will be described with reference to the drawings.

【0023】(1)複層床式カチオン交換塔および複層
床式アニオン交換塔を用いた2床2塔式もしくはこれに
脱炭酸塔を組合せた2床3塔式の純水製造装置の場合
(図1)。
(1) In the case of a two-bed two-column pure water production system using a multi-bed cation exchange column and a multi-bed anion exchange column, or a two-bed three-column system combining this with a decarbonation column (FIG. 1).

【0024】濁質を含む原水(A)は膜分離装置(B)
を経て実質的に濁質を除かれた状況で上部には弱酸性陽
イオン交換樹脂(WC)を、下部には強酸性陽イオン交
換樹脂(SC)を夫々充填した複層床式カチオン交換塔
(C)の頂部より送入され下降流通水方式でWC層、次
いでSC層を通過して塔(C)の底部より含有カチオン
の除かれた原水が送出され、脱炭酸塔(D)に送られ
る。ここでCO2 を除去してから残存アニオンを含む原
水を上部には弱塩基性陰イオン交換樹脂(WA)を、下
部には強塩基性陰イオン交換樹脂(SA)を夫々充填し
た複層床式アニオン交換塔(E)の頂部より送入し下降
流通水方式でWA層、次いでSA層を通過して塔(E)
の底部より更に含有アニオンの除かれた処理水(F)が
得られる。
Raw water containing turbidity (A) is converted to membrane separation equipment (B)
In the state where turbidity has been substantially removed through the above, a multi-layer cation exchange column filled with a weakly acidic cation exchange resin (WC) in the upper part and a strongly acidic cation exchange resin (SC) in the lower part, respectively. Raw water from which the cations are removed from the bottom of the tower (C) is sent from the top of (C), passes through the WC layer, and then the SC layer in a downward flowing water system, and is sent to the decarbonation tower (D). Can be A multi-layered bed in which raw water containing residual anions after removing CO 2 is filled with a weakly basic anion exchange resin (WA) at the top and a strongly basic anion exchange resin (SA) at the bottom. The water is fed from the top of the anion exchange tower (E) and passed through the WA layer and then the SA layer in a descending circulating water system, and the tower (E)
The treated water (F) from which the contained anions are further removed is obtained from the bottom of the above.

【0025】尚、塔(C)の充填樹脂(WC)および
(SC)の再生は再生液(G)を塔(C)の底部より送
入して頂部より排出する上昇流再生方式で行い、又塔
(E)の充填樹脂(WA)および(SA)の再生も同様
の上昇流再生方式で行う。
The resin (WC) and (SC) packed in the tower (C) are regenerated by an upflow regeneration system in which the regenerated liquid (G) is fed from the bottom of the tower (C) and discharged from the top. The regeneration of the resins (WA) and (SA) in the tower (E) is also carried out by the same upward flow regeneration method.

【0026】(2)単層床式の各強、弱カチオン交換塔
および単層床式の各強、弱アニオン交換塔を用いた4床
4塔式もしくはこれに脱炭酸塔を組合せた4床5塔式の
純水製造装置の場合(図2)。
(2) Four beds using a single-bed type strong and weak cation exchange column and a single-bed type strong and weak anion exchange column or four beds combined with a decarbonation column In the case of a five-tower pure water production system (FIG. 2).

【0027】濁質を含む原水(A)は膜分離装置(B)
を経て実質的に濁質を除かれた状態でWCを充填した単
層床式弱酸性カチオン交換塔(I)の頂部から底部へ充
填WCを下降流通水方式で通過してから、引続きSCを
充填した単層床式強酸性カチオン交換塔(J)頂部から
底部へ充填SCを下降流通水方式で通過して原水中の含
有カチオンが除かれる。この含有カチオンの除かれた原
水は脱炭酸塔(D)を通りCO2 を除かれてからWAを
充填した単層床式弱塩基性アニオン交換塔(K)の頂部
から底部へ充填WAを下降流通水方式で通過してから引
続きSAを充填した単層床式強塩基性アニオン交換樹脂
(L)の頂部から底部へ充填SAを下降流通水方式で通
過して更に含有アニオンの除かれた処理水(F)が得ら
れる。
Raw water containing turbidity (A) is converted to membrane separation equipment (B)
After passing through the packed WC from the top to the bottom of the single-bed type weakly acidic cation exchange column (I) packed with WC in a state in which turbidity has been substantially removed through a downward flowing water system, the SC is then removed. The cation contained in the raw water is removed by passing the packed SC from the top to the bottom of the packed single-bed type strongly acidic cation exchange tower (J) from the top to the bottom in a downward flowing water system. The raw water from which the contained cations have been removed passes through the decarbonation tower (D) to remove CO 2 , and then falls from the top to the bottom of the single-layer bed weakly basic anion exchange tower (K) packed with WA and descends from the top. After passing through the flowing water system, from the top to the bottom of the single-layer bed type strongly basic anion exchange resin (L) filled with SA, the SA is passed through the descending flowing water system to further remove the contained anions. Water (F) is obtained.

【0028】尚、塔(J)および塔(I)の各充填樹脂
(SC)および(WC)の再生は、再生液(G)を塔
(J)では上昇流再生方式で通過させて行い、引続きこ
の再生液(G)を塔(I)に上昇流再生又は下降流のい
ずれかの方式で通過させて行う。また塔(L)および塔
(K)の各充填樹脂(SA)および(WA)の再生は再
生液(H)を塔(L)では上昇流再生方式で通過させて
行い、引続きこの再生液(H)を塔(K)に上昇流再生
又は下降流再生のいずれかの方式で通過させて行う。
Regeneration of the packed resins (SC) and (WC) in the tower (J) and the tower (I) is performed by passing the regenerated liquid (G) in the tower (J) by an upflow regeneration method. Subsequently, the regenerating liquid (G) is passed through the tower (I) by either an upward flow regeneration or a downward flow. In addition, regeneration of the resin (SA) and (WA) in each of the tower (L) and the tower (K) is performed by passing the regenerating solution (H) in the tower (L) by an upflow regeneration method. H) is passed through the tower (K) in either upflow regeneration or downflow regeneration.

【0029】実施例1(図1の方式) 次のようなカチオン及びアニオンを含んだ水質の原水
を、通常の凝集沈殿装置、濾過器で順に処理した。
EXAMPLE 1 (Method of FIG. 1) Raw water having the following cations and anions was treated in order with a conventional coagulating sedimentation apparatus and a filter.

【0030】 カチオン成分 アニオン成分 Na+K=23.5mgCaCO3 /リットル HCO3 =35.6mgCaCO3 /リットル Ca=34.8 〃 SO4 =15.0 〃 Mg=23.2 〃 Cl=26.1 〃 ────────────────── NO3 = 4.8 〃 全カチオン=81.5 〃 ────────────────── 塩構成全アニオン=81.5 〃 CO2 =14.3 〃 SiO2 =15.7 〃 ────────────────── 全アニオン=111.5 〃Cation component Anion component Na + K = 23.5 mg CaCO 3 / liter HCO 3 = 35.6 mg CaCO 3 / liter Ca = 34.8 {SO 4 = 15.0} Mg = 23.2 {Cl = 26.1} NO NO 3 = 4.8 〃 Total cations = 81.5 〃 ────────────────── Salt configuration All anions = 81.5 〃 CO 2 = 14.3 〃 SiO 2 = 15.7 〃 ────────────────── total anions = 111.5 〃

【0031】その後上記処理水を限外濾過膜(ロミコン
社製 GM−80)を装着した限外濾過膜装置で処理し
た。限外濾過膜装置処理前の原水の濁度2〜5度、SD
I(Silt density index)は測定不能であったのに対
し、得られた透過水は濁度が0.1度以下、SDIは2
以下であった。この透過水を図3に示すような複層床式
カチオン交換塔(1)および図4に示すような複層床式
アニオン交換塔(2)と両塔(1)(2)間に設けたC
2 を除去するための脱炭酸塔(図示せず)からなる複
層床式純水製造装置に通水した。
Thereafter, the treated water was treated with an ultrafiltration membrane device equipped with an ultrafiltration membrane (GM-80 manufactured by Romicon Corporation). Turbidity of raw water before ultrafiltration membrane treatment 2-5 degrees, SD
While I (Silt density index) could not be measured, the obtained permeated water had a turbidity of 0.1 degrees or less and an SDI of 2
It was below. The permeated water was provided between a double-bed type cation exchange column (1) as shown in FIG. 3 and a double-bed type anion exchange column (2) as shown in FIG. 4 between both columns (1) and (2). C
Water was passed through a multi-bed type pure water production apparatus comprising a decarbonation tower (not shown) for removing O 2 .

【0032】即ち塔(1)(2)内の図に示す高さの位
置に液体は通すがイオン交換樹脂は通過させない構造の
公知の目板(3)(4)を装着し、この間にカチオン交
換塔(1)内には強酸性陽イオン交換樹脂(5)として
アンバーライトIR−124を13.6リットル(Na
形基準)、弱酸性陽イオン交換樹脂(6)としてアンバ
ーライトIRC−76を6.8リットル(H型基準)、
アニオン交換塔(2)内には強塩基性陰イオン交換樹脂
(7)としてアンバーライトIRA−400を14.8
リットル(Cl形基準)、弱塩基性陰イオン交換樹脂
(8)としてIRA−94Sを16.8リットル(遊離
塩基形基準)充填し、さらにそれぞれの塔内にそれぞれ
の樹脂の膨潤率を見込んだ余裕高さ(9)を上部の目板
(3)と充填樹脂の頂面との間に設けた交換塔を用い
た。
That is, well-known eye plates (3) and (4) having a structure that allows liquid to pass through but does not allow ion-exchange resin to pass therethrough are installed at the height positions shown in the figures in the towers (1) and (2), and the cations are interposed therebetween. In the exchange column (1), 13.6 liters (Na) of Amberlite IR-124 as a strongly acidic cation exchange resin (5)
6.8 liters of Amberlite IRC-76 as a weakly acidic cation exchange resin (6) (H type standard),
14.8 of Amberlite IRA-400 as a strongly basic anion exchange resin (7) was placed in the anion exchange tower (2).
Liter (based on Cl form), 16.8 liters (based on free base form) of IRA-94S as a weakly basic anion exchange resin (8), and the swelling ratio of each resin was estimated in each column. An exchange tower having an extra height (9) provided between the upper panel (3) and the top surface of the resin to be filled was used.

【0033】なお上記カチオン交換塔とアニオン交換塔
には、それぞれ60m/hおよび40m/hの流速(以
下LVと記す)で上記透過水を下降流で通水し、貫流点
に達した段階で、逆洗を行わず次の条件にて交換樹脂を
上昇流再生することにより、純水の製造を平均12トン
/1サイクルでくりかえし行った。その結果6カ月にわ
たり、通水時に電気伝導率0.1μS/cm、シリカ濃度
0.001mg/リットルの純水を安定して製造すること
ができた。
The permeated water is passed through the cation exchange column and the anion exchange column at a flow rate of 60 m / h and 40 m / h (hereinafter referred to as LV) in a downward flow, and reaches a through-flow point. By performing upflow regeneration of the exchange resin under the following conditions without backwashing, the production of pure water was repeated at an average of 12 tons per cycle. As a result, pure water having an electric conductivity of 0.1 μS / cm and a silica concentration of 0.001 mg / liter was able to be stably produced during the passage of water for 6 months.

【0034】再生条件 (1)カチオン交換塔 ・再生剤 3%塩酸 ・再生レベル 35%HCl 150g/リットル
-TOTAL-CER ・再生工程 (採水終了)→HCl通薬(LV=16m/H、15分
間)→押し出し(LV=16m/H、12分間)→洗浄
(20分間) ・再生所要時間 :47分間
Regeneration conditions (1) Cation exchange column-Regenerant 3% hydrochloric acid-Regeneration level 35% HCl 150 g / liter
-TOTAL-CER-Regeneration process (water sampling completed)-> HCl delivery (LV = 16 m / H, 15 minutes)-Extrusion (LV = 16 m / H, 12 minutes)-Washing (20 minutes)-Regeneration time: 47 Minutes

【0035】(2)アニオン交換塔 ・再生剤 1.3%及び2.5%苛性ソーダ ・再生レベル 100%NaOH 30g/リット
ル-TOTAL-AER ・再生工程 (採水終了)→NaOH通薬(LV=14m/H、1.
3%:8.5分間)、2.5%:6.5分間)→押し出
し(LV=14m/H、24分間)→洗浄(15分間) ・再生所要時間 :54分間
(2) Anion exchange tower-Regeneration agent 1.3% and 2.5% caustic soda-Regeneration level 100% NaOH 30g / liter-TOTAL-AER-Regeneration step (water sampling completed)-> NaOH passing (LV = 14m / H, 1.
3%: 8.5 minutes), 2.5%: 6.5 minutes) → Extrusion (LV = 14 m / H, 24 minutes) → Washing (15 minutes) ・ Regeneration time: 54 minutes

【0036】実施例2(図2の方式) 図5に示す弱酸性陽イオン交換樹脂(6)としてIRC
−76を充填した単層床式弱酸性カチオン交換塔(1
0)、図6に示す強酸性陽イオン交換樹脂(5)として
IR−124を充填した単層床式強酸性カチオン交換塔
(11)、図7に示す弱塩基性陰イオン交換樹脂(8)
としてIRA−94Sを充填した単層床式弱塩基性アニ
オン交換塔(12)および図8に示す強塩基性陰イオン
交換樹脂(7)としてIRA−400を充填した単層床
式強塩基性アニオン交換塔(13)を夫々用いて実施例
1と同様に実施し実施例1と同様の結果を得た。
Example 2 (Method of FIG . 2 ) IRC was used as the weakly acidic cation exchange resin (6) shown in FIG.
-76 packed in a single bed weak acid cation exchange column (1
0), a single-bed type strongly acidic cation exchange column (11) filled with IR-124 as the strongly acidic cation exchange resin (5) shown in FIG. 6, and a weakly basic anion exchange resin (8) shown in FIG.
Bed type weak basic anion exchange column (12) filled with IRA-94S as the base, and single bed type strong basic anion packed with IRA-400 as the strong base anion exchange resin (7) shown in FIG. Each of the exchange towers (13) was used in the same manner as in Example 1 to obtain the same results as in Example 1.

【0037】尚塔(10)では再生形の充填樹脂(6)
の高さが72cmに対し、余裕高さ(9)は25cmであ
り、塔(11)では塩形の充填樹脂(5)の高さが14
3cmに対し、余裕高さ(9)は6cmであり、塔(12)
では再生形の充填樹脂(8)の高さが109cmに対し、
余裕高さ(9)は17cmであり、また塔(13)では塩
形の充填樹脂(7)の高さが96cmに対して余裕高さ
(9)は15cmであった。
In the tower (10), the recycled resin (6)
The height (9) is 25 cm, whereas the height of the salt-form packed resin (5) is 14 cm in the tower (11).
For 3 cm, the extra height (9) is 6 cm and the tower (12)
In the above, the height of the recycled resin (8) is 109cm,
The extra height (9) was 17 cm, and in the tower (13), the extra height (9) was 15 cm while the height of the salt-form packed resin (7) was 96 cm.

【0038】従来例 一方、再生工程にて逆洗を行う従来の下降流通水・上昇
流再生方式の複層床式純水製造装置において、上記実施
例1と同じ再生レベルでの再生工程及び再生所要時間は
下記表1に示すようになる。
The prior art on the other hand, in the multi-layer bed water purifying apparatus of a conventional down flow water-upflow regeneration method for performing backwashing in a regeneration step, a regeneration step and playback at the same reproduction level as in Example 1 The required time is as shown in Table 1 below.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示したような条件での再生及び実施
例の場合と同じ流速での透過水の通水による純水製造を
行ったところ、得られた処理水の水質は、電気伝導率が
2μS/cm、シリカ濃度0.2mgSiO2 /リットルで
あって、本発明装置による場合に比べて極めて低い純度
のものであった。
When regeneration was performed under the conditions shown in Table 1 and pure water was produced by passing permeated water at the same flow rate as in the example, the quality of the treated water obtained was determined to be electrical conductivity. Was 2 μS / cm, the silica concentration was 0.2 mg SiO 2 / liter, and the purity was extremely lower than that of the apparatus of the present invention.

【0041】[0041]

【発明の効果】このような本発明によれば、従来に比べ
てイオン交換樹脂の再生の際の工程数、再生に要する時
間をともに大幅に削減することができ、さらにこれに伴
って再生に要する水の使用量も大きく減少する。
According to the present invention, the number of steps for regenerating the ion exchange resin and the time required for the regeneration can be greatly reduced as compared with the prior art. The required water usage is also greatly reduced.

【0042】また従来必要であったコレクターは全く不
要であり、その他ディストリビューター等の塔内部品も
実質的に不要となり、交換塔がシンプルな構造となり、
且つ逆洗用のフリーボードをなくしたことによって従来
装置よりも塔高さを低くすることができたので構造のシ
ンプル化と共に製作費の低減に大きく寄与するものであ
る。
Further, the collector which was conventionally required is not required at all, and other components in the tower such as a distributor are substantially unnecessary, and the exchange tower has a simple structure.
In addition, the elimination of the freeboard for backwashing allows the height of the tower to be lower than that of the conventional apparatus, thus greatly simplifying the structure and greatly reducing the production cost.

【0043】さらに本発明によれば、再生時に逆洗を行
わないため、通水終了時に塔下部に未反応のまま残留す
るR−HやR−OHの層を乱さずにそのまま有効利用で
き、化学量論的な再生が工業装置として可能となるた
め、得られる処理水の電気伝導率、シリカ濃度ともに、
従来法に比べて極めて高純度である。
Further, according to the present invention, since backwashing is not performed at the time of regeneration, the RH or R-OH layer which remains unreacted at the bottom of the tower at the end of water flow can be effectively used without disturbing the layer. Since stoichiometric regeneration becomes possible as an industrial device, both the electrical conductivity of the resulting treated water and the silica concentration,
Very high purity compared to the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の一実施装置を示す系統説明図であ
る。
FIG. 1 is a system explanatory diagram showing an embodiment of the device of the present invention.

【図2】本発明装置の他の実施態様を示す系統説明図で
ある。
FIG. 2 is a system explanatory view showing another embodiment of the device of the present invention.

【図3】本発明の一実施例に係る複層床式カチオン交換
塔内の樹脂の充填高さを示す説明図である。
FIG. 3 is an explanatory view showing a filling height of a resin in a multi-layer cation exchange column according to one embodiment of the present invention.

【図4】本発明の一実施例に係る複層床式アニオン交換
塔内の樹脂の充填高さを示す説明図である。
FIG. 4 is an explanatory diagram showing a filling height of a resin in a multi-layered bed type anion exchange column according to one embodiment of the present invention.

【図5】本発明の一実施例に係る単層床式弱酸性カチオ
ン交換塔内の樹脂の充填高さを示す説明図である。
FIG. 5 is an explanatory diagram showing a filling height of a resin in a single-bed weak acid cation exchange column according to one embodiment of the present invention.

【図6】本発明の一実施例に係る単層床式強酸性カチオ
ン交換塔内の樹脂の充填高さを示す説明図である。
FIG. 6 is an explanatory diagram showing a filling height of a resin in a single-bed strong acid cation exchange column according to one embodiment of the present invention.

【図7】本発明の一実施例に係る単層床式弱塩基性アニ
オン交換塔内の樹脂の充填高さを示す説明図である。
FIG. 7 is an explanatory diagram showing a filling height of a resin in a single-bed type weakly basic anion exchange column according to one embodiment of the present invention.

【図8】本発明の一実施例に係る単層床式強塩基性アニ
オン交換塔内の樹脂の充填高さを示す説明図である。
FIG. 8 is an explanatory diagram showing a filling height of a resin in a single-layer strong basic anion exchange column according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 原水 B 膜分離装置 WC 弱酸性陽イオン交換樹脂 SC 強酸性陽イオン交換樹脂 C 複層床式カチオン交換塔 D 脱炭酸塔 WA 弱塩基性陰イオン交換樹脂 SA 強塩基性陰イオン交換樹脂 E 複層床式アニオン交換塔 F 処理水 G 再生液 I 単層床式弱酸性カチオン交換塔 J 単層床式強酸性カチオン交換塔 K 単層床式弱塩基性アニオン交換塔 L 単層床式強塩基性アニオン交換塔 A Raw water B Membrane separation device WC Weakly acidic cation exchange resin SC Strongly acidic cation exchange resin C Double bed cation exchange tower D Decarbonation tower WA Weakly basic anion exchange resin SA Strongly basic anion exchange resin E Bed type anion exchange column F Treated water G Regenerated liquid I Single bed type weakly acidic cation exchange column J Single bed type strongly acidic cation exchange column K Single bed type weakly basic anion exchange column L Single bed type strong base Anion exchange tower

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 1/42 B01J 47/02 - 47/08 B01J 49/00 - 49/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C02F 1/42 B01J 47/02-47/08 B01J 49/00-49/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強酸性陽イオン交換樹脂と弱酸性陽イオ
ン交換樹脂を充填した複層床式カチオン交換塔および強
塩基性陰イオン交換樹脂と弱塩基性陰イオン交換樹脂を
充填した複層床式アニオン交換塔からなる2床2塔式純
水製造装置もしくはこれに脱炭酸塔を組合せてなる2床
3塔式純水製造装置あるいは弱酸性陽イオン交換樹脂を
充填した単層床式弱酸性カチオン交換塔、強酸性陽イオ
ン交換樹脂を充填した単層床式強酸性カチオン交換塔、
弱塩基性陰イオン交換樹脂を充填した単層床式弱塩基性
アニオン交換塔および強塩基性陰イオン交換樹脂を充填
した単層床式強塩基性アニオン交換塔からなる4床4塔
式純水製造装置もしくはこれに脱炭酸塔を組合せてなる
4床5塔式純水製造装置において、該純水製造装置の前
段にそのカチオン交換塔内およびアニオン交換塔内への
懸濁物質の混入を抑止するための膜分離装置を設置し、
各カチオン交換塔および各アニオン交換塔にはそれぞれ
の交換塔内の空間に、各充填樹脂の通水、再生による膨
潤分もしくは収縮分に対応する余裕高をその上部に持た
せて各樹脂を隙間なく充填し、上記の膜分離装置で予備
処理された原水を下降流通水方式で処理することによ
り、逆洗工程を省略したことを特徴とする純水製造装
置。
1. A multi-layer cation exchange column filled with a strongly acidic cation exchange resin and a weakly acidic cation exchange resin, and a multi-layer bed filled with a strongly basic anion exchange resin and a weakly basic anion exchange resin. Two-bed two-column pure water production system consisting of an anion exchange tower or a two-bed three-column pure water production system combining this with a decarbonation tower or a single-bed weak acid packed with a weakly acidic cation exchange resin Cation exchange tower, single-bed strong acid cation exchange tower packed with strong acid cation exchange resin,
4 bed 4 column pure water consisting of a single bed type weak basic anion exchange column packed with a weak basic anion exchange resin and a single bed type strong basic anion exchange column packed with a strong basic anion exchange resin In a four-bed, five-column pure water production system in which a production device or a decarbonation column is combined with the production device, mixing of suspended substances into the cation exchange column and the anion exchange column is suppressed before the pure water production device. Installing a membrane separation device to perform
Each cation exchange tower and each anion exchange tower have a space above each exchange tower in the space inside each exchange tower, with a margin corresponding to the amount of swelling or shrinkage due to water flow and regeneration of each packed resin, and gaps between each resin. A pure water producing apparatus characterized in that a backwashing step is omitted by treating the raw water pre-treated with the above-mentioned membrane separation apparatus by a downward flowing water method without filling.
【請求項2】 複層床式カチオン交換塔および複層床式
アニオン交換塔を用いた2床2塔式もしくは2床3塔式
純水製造装置において、各交換塔の充填樹脂の再生を上
昇流で処理する請求項1記載の純水製造装置。
2. In a two-bed two-column or two-bed three-column pure water production apparatus using a multi-bed cation exchange tower and a multi-bed anion exchange tower, the regeneration of packed resin in each exchange tower is increased. The pure water production apparatus according to claim 1, wherein the apparatus is treated with a stream.
【請求項3】 単層床式弱酸性カチオン交換塔、単層床
式強酸性カチオン交換塔、単層床式弱塩酸性アニオン交
換塔および単層床式強塩基性アニオン交換塔を用いた4
床4塔式もしくは4床5塔式純水製造装置において強酸
性カチオン交換塔および強塩基性アニオン交換塔の各充
填樹脂の再生を上昇流で処理し、弱酸性カチオン交換塔
および弱塩基性アニオン交換塔の各充填樹脂の再生を夫
々上昇流もしくは下降流のいずれかで処理する請求項1
記載の純水製造装置。
3. Use of a single-bed type weakly acidic cation exchange column, a single-bed type strongly acidic cation exchange column, a single-bed type weakly hydrochloric anion exchange column, and a single-bed type strongly basic anion exchange column.
Regeneration of each packed resin of the strongly acidic cation exchange column and the strongly basic anion exchange column in the four-bed or four-bed five-column pure water production apparatus is treated by ascending flow, and the weakly acidic cation exchange column and the weakly basic anion are recovered. The regeneration of each packed resin in the exchange tower is performed by either an upflow or a downflow, respectively.
The pure water production apparatus according to the above.
【請求項4】 請求項1記載の膜分離装置が、逆浸透膜
装置、限外濾過膜装置、またはマイクロフィルターであ
る純水製造装置。
4. The pure water production apparatus according to claim 1, wherein the membrane separation device is a reverse osmosis membrane device, an ultrafiltration membrane device, or a microfilter.
【請求項5】 請求項1記載の余裕高は、塔内上部に固
設した目板と充填樹脂面との間に設けられた、各充填樹
脂の再生・通水による膨潤収縮高に対応する純水製造装
置。
5. The margin according to claim 1 corresponds to a height of swelling / shrinkage due to regeneration and water flow of each filled resin, which is provided between a perforated plate fixed at an upper part in the tower and a filled resin surface. Pure water production equipment.
【請求項6】 請求項1記載の余裕高は、交換樹脂の頂
面に接して設けられた可撓性多孔質膜の許容膨張高に相
当する純水製造装置。
6. The pure water production apparatus according to claim 1, wherein the extra height corresponds to an allowable expansion of a flexible porous membrane provided in contact with a top surface of the exchange resin.
JP4087870A 1992-03-11 1992-03-11 Pure water production equipment Expired - Fee Related JP2940651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087870A JP2940651B2 (en) 1992-03-11 1992-03-11 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087870A JP2940651B2 (en) 1992-03-11 1992-03-11 Pure water production equipment

Publications (2)

Publication Number Publication Date
JPH05253568A JPH05253568A (en) 1993-10-05
JP2940651B2 true JP2940651B2 (en) 1999-08-25

Family

ID=13926908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087870A Expired - Fee Related JP2940651B2 (en) 1992-03-11 1992-03-11 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP2940651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343388A (en) * 2001-05-21 2002-11-29 Mitsubishi Chemicals Corp Treating method of water to be supplied to fuel cell
JP4684197B2 (en) * 2006-09-22 2011-05-18 オルガノ株式会社 Ion exchange apparatus regeneration method and apparatus
JP6228531B2 (en) * 2014-12-19 2017-11-08 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
EP4252884A4 (en) * 2020-11-30 2024-04-24 Panasonic Intellectual Property Management Co., Ltd. Water softening device, recycling method for water softening device, and method for cleaning water softening device

Also Published As

Publication number Publication date
JPH05253568A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US4648976A (en) Integral water demineralizer system and method
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
JP2940651B2 (en) Pure water production equipment
JP3632343B2 (en) Pure water production method and ion exchange tower
JP2940648B2 (en) Pure water production equipment
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
JP3922824B2 (en) High purity water production equipment
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2742975B2 (en) Regeneration method of ion exchange device
JP2941121B2 (en) Ultrapure water production equipment
JP4347491B2 (en) Regeneration method of mixed-bed starch sugar liquid purification equipment
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JP2576155B2 (en) Multi-layer ion exchanger
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3951456B2 (en) Pure water production equipment
JP2654053B2 (en) Condensate desalination equipment
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPS6133625B2 (en)
JPS582432Y2 (en) Ion exchange resin tower used for upstream regeneration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees