JPS6133625B2 - - Google Patents

Info

Publication number
JPS6133625B2
JPS6133625B2 JP53157531A JP15753178A JPS6133625B2 JP S6133625 B2 JPS6133625 B2 JP S6133625B2 JP 53157531 A JP53157531 A JP 53157531A JP 15753178 A JP15753178 A JP 15753178A JP S6133625 B2 JPS6133625 B2 JP S6133625B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
resin layer
water
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53157531A
Other languages
Japanese (ja)
Other versions
JPS5584545A (en
Inventor
Fukuzo Kikukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP15753178A priority Critical patent/JPS5584545A/en
Publication of JPS5584545A publication Critical patent/JPS5584545A/en
Publication of JPS6133625B2 publication Critical patent/JPS6133625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は単一の強電解質イオン交換樹脂を充填
した単床式イオン交換塔の再生方法に関するもの
であり、イオン交換樹脂層内に再生薬液の集配液
管を設け、当該集配液管より下方のイオン交換樹
脂層を再生薬液の下降流で再生し、さらにこの再
生排液を回収し、そしてこの再生排液をイオン交
換塔の上部より下降流で通液して当該集配液管よ
り上方のイオン交換樹脂層を再生することによ
り、再生薬液の使用量を減少し再生効率を上げる
とともに処理水の純度を向上させることを目的と
する。 従来、イオン交換処理方法として下降流通水・
下降流再生法(以下下降流再生法と称する。)、お
よび下降流通水・上昇流再生法(以下上昇流再生
法と称す。)の両法が最も一般的に行なわれてい
る。下降流再生法は最も安定した簡単な再生方法
であるが、再生後樹脂層下部に未再生の不純物が
存在し、通水中にこの不純物が処理水中にリーク
して処理水の純度を低下させる原因となり、また
再生効率が低いという欠点がある。たとえば純水
製造装置における強酸性カチオン交換樹脂が充填
されているイオン交換塔を例にとつて説明する
と、再生済みの水素形の強酸性カチオン交換樹脂
が充填されているイオン交換塔にカルシウムイオ
ン、マグネシウムイオン、ナトリウムイオンなど
のイオンを含む原水を下降流で通水した場合、通
水の終点における強酸性カチオン交換樹脂層のイ
オン形の配列は上層部から下層部に向つてカルシ
ウム、マグネシウム形、ナトリウム形、水素形の
順となる。このイオン形の配列は各イオンの強酸
性カチオン交換樹脂に対する選択性によるもので
あるが、かかるイオン形の配列となつている強酸
性カチオン交換樹脂層を再生するにあたり、その
ままの状態でたとえば再生薬液として塩酸の水溶
液を下降流で流入させた場合、樹脂層の上層部か
ら中層部にかけて吸着していたナトリウムイオン
などが脱着され、そしてナトリウムイオンなどの
不純物を含む再生薬液がイオン交換樹脂下層部に
流下することによりイオン交換樹脂下層部にある
水素形の強酸性カチオン交換樹脂にナトリウムイ
オンなどが再び吸着する。したがつて再生が終了
したイオン交換樹脂下層部にナトリウム形が生成
されるのでこのナトリウムイオンが通水時におい
て処理水中にリークし処理水の純度を低下させる
という欠点がある。 上昇流再生法はこのような下降流再生法におけ
る欠点を解決するものである。すなわち再生薬液
を上昇流で流入させると、イオン交換樹脂下層部
はナトリウムイオン、カルシウムイオンなどの不
純物を含まない再生薬液で再生されるので、イオ
ン交換樹脂下層部は完全に水素形に再生され、原
水の通水終了時に存在する水素形のイオン交換樹
脂を樹脂下層部にそのまま保持することができる
ため、再生によつて水素形のイオン交換樹脂をよ
り多く生成することができ、また未再生のカルシ
ウム形、ナトリウム形のイオン交換樹脂は樹脂層
の中・上層部のみに存在するため、通水時におい
て下降流再生法に比べて高純度で多くの処理水を
得ることができる。しかし上昇流再生法において
再生中の樹脂層の流動や再生薬液の片流れは再生
効率の低下や処理水純度の低下の原因となるた
め、再生時に樹脂塔の上部から水あるいは加圧空
気などを導入してイオン交換樹脂の流動を防いだ
り、特別な構造のデイストリビユーターを必要と
するなど、装置が複雑であり、かつ運転操作がき
わめて困難であるという欠点がある。 本発明は単一の強電解質イオン交換樹脂を充填
した単床式イオン交換塔における従来の再生方法
の欠点を解決したものであり、単一の強電解質イ
オン交換樹脂を充填した単床式イオン交換塔を再
生するにあたり再生薬液をイオン交換樹脂層内に
設けた集配液管から下降流で流入させて当該集配
液管より下方にあるイオン交換樹脂層を再生し、
当該再生排液を回収する工程、当該再生排液をイ
オン交換塔の上部から下降流で流入させてこの流
出液を前記集配液管から排出することにより当該
集配液管より上方のイオン交換樹脂層を再生する
工程からなることを特徴とするイオン交換塔の再
生方法である。 以下に本発明を図面を用いて詳細に説明する。 図は本発明の実施態様の一例を示したフローの
説明図であり、図中1はイオン交換樹脂層2を形
成させたイオン交換塔であり、イオン交換樹脂層
2内に集配液管3およびイオン交換樹脂層2の上
方にデイストリビユーター4をそれぞれ配設す
る。集配液管3は再生薬液排出管13と接続し、
またエジエクター7を介して希釈水流入管14お
よび再生薬液槽5とを連通する。デイストリビユ
ーター4はポンプ8を付設した再生排液管17に
よつて回収再生排液槽6とを連通する。またイオ
ン交換塔1最上部に被処理水流入管9と排出管1
6を接続し、イオン交換塔1下部に管10を接続
し、さらに管10に逆洗水流入管15、処理水の
流出管11および回収再生排液管12を接続し、
回収再生排液管12の一端を回収再生排液槽6と
接続する。 上述した装置で被処理水を処理する場合は被処
理水流入管9から被処理水を下降流でイオン交換
塔1に流入させ、下降流にてイオン交換樹脂層2
に通水して処理水を処理水の流出管11から流出
させる。下降流による被処理水の通水が終了した
後、イオン交換樹脂層の圧力損失や濁質による汚
染の度合によつて逆洗を行なう。逆洗は通常の逆
洗方法により逆洗水流入管15から逆洗水を上昇
流にてイオン交換塔1に通水し、イオン交換樹脂
層2の全体を逆洗して逆洗排水を排出管16から
排出してもよいが、集配液管3から逆洗水を通水
し、濁質が多くつまつているイオン交換樹脂層2
の中・上層部のみの逆洗を行なつてもよい。次
に、前サイクルにおける集配液管3より下層のイ
オン交換樹脂層2″を再生した再生排液と押出水
を回収再生排液槽6に貯留しておき、この再生排
液をポンプ8を作動させて再生排液管17を経て
デイストリビユーター4から下降流でイオン交換
塔1に流入させ、その流出液を集配液管3から排
出管13を経て排出し、当該集配液管3より上方
のイオン交換樹脂層2′の再生を行なう。なおこ
の際イオン交換樹脂層2″に再生排液が流入しな
いように逆洗水流入管15から低流速の上昇流で
水をイオン交換塔1に流入させてもよい。次に被
処理水流入管9から押出水を下向流でイオン交換
塔1に流入させ、イオン交換樹脂層2′の残留再
生排液を集配液管3から排出管13を経て排出す
る。次に再生薬液槽5の新しい再生薬液をエジエ
クター7を作動させて集配液管3から下降流でイ
オン交換塔1に流入させ当該集配液管3より下方
にあるイオン交換樹脂層2″の再生を行ない、こ
の再生排液を回収再生排液管12を経て回収再生
排液槽6に回収し、次回の再生工程におけるイオ
ン交換樹脂層2′の再生に供する。イオン交換樹
脂層2″の再生終了後、押出水を希釈水流入管1
4を経て集配液管3から下降流でイオン交換塔1
に流入させ、イオン交換樹脂層2″の再生液を押
し出し、この押出排水も回収再生排液槽6に回収
し、次回のイオン交換樹脂層2′の再生に供す
る。また次に押出水を被処理水流入管9から下降
流でイオン交換塔1に通水し、イオン交換樹脂層
2全体から再生液を押し出し、これを回収再生排
液管12から回収再生排液槽6に回収してもよ
い。次に被処理水流入管9から被処理水を下降流
でイオン交換塔1に流入させてイオン交換樹脂層
2の洗浄を行ない洗浄廃水を処理水の流出管11
より排出する。 イオン交換塔1がたとえば強酸性カチオン交換
樹脂を充填した純水製造装置のカチオン塔の場合
には、通水終了時においてイオン交換樹脂層2の
下層部には1価のカチオンであるナトリウムイオ
ンなどが多く吸着されるが、たとえば再生薬液と
して用いた塩酸の水素イオンによりこのナトリウ
ムイオンが容易に溶離し水素形に再生される。ま
た再生薬液の通薬および押し出しをイオン交換樹
脂層2内の集配液管3より下降流で行なうので従
来の下降流再生法のようにイオン交換樹脂層2の
上方のカルシウム形などから溶離した2価カチオ
ンなどの不純物が含まれずより完全に水素形に再
生される。 本発明においてイオン交換樹脂層2内に配設す
る集配液管3の位置は被処理水の水質、処理水の
要求水質、処理水の要求水量およびイオン交換塔
の直径と樹脂床高などによつて決定されるが、通
常全樹脂層高の下から3分の1の位置、および上
から2分の1の位置の間に配設するのが望まし
い。 なお、本実施態様においては集配液管3より上
層のイオン交換樹脂層2′を再生するについて前
のサイクルで回収した集配液管3より下層のイオ
ン交換樹脂層2″の再生排液を用いたが、イオン
交換樹脂層2′の再生に先立つて、まず新しい再
生剤でイオン交換樹脂層2″を再生し、その再生
排液を用いてイオン交換樹脂層2′の再生を行な
つてもよい。 本発明によれば、強電界質イオン交換樹脂層内
に集配液管を配設し、集配液管より下方のイオン
交換樹脂層を再生した再生排液を集配液管より上
方のイオン交換樹脂層の再生に用いることによつ
て、再生薬液量を減少し再生効率を上げることが
できると同時にイオン交換樹脂層の下層部を不純
物を含まない再生薬液で再生するので、イオン交
換樹脂層の下層部に未再生のイオン交換樹脂を残
留させることがなく、下降流通水において処理水
中に不純物がリークせず高純度の処理水を得るこ
とができる。また本発明は再生薬液をイオン交換
樹脂層の上層部および下層部においてそれぞれ下
降流で通液するので複雑な装置を必要とすること
なく、処理操作も簡単に行なうことができるとい
う利点がある。 以下本発明の実施例を説明する。 実施例 内径33mm、直線部高さ1000mmのイオン交換塔と
してのカラムに強酸性カチオン交換樹脂としてア
ンバーライト(登録商標)IR−120Bを570ml(樹
脂床高666mm)充填し、イオン交換樹脂層の下か
ら222mmの高さに多孔を有する集配液管を内設し
た。集配液管より上層のイオン交換樹脂層を再生
するにあたり、前再生工程において集配液管より
下層のイオン交換樹脂層を再生した5%塩酸溶液
780mlの再生排液とその押出排水の合計1050mlを
回収再生排液槽に回収しておき、この再生排液
1050mlを集配液管より上方のイオン交換樹脂層に
カラムの上方から流速4/h(S.V.)の下降流で
通液して集配液管より排出し、続いて第1表に示
した組成の原水570mlを下降流で通水して押し出
しを行ない流出液を集配液管より排出して集配液
管より上層のイオン交換樹脂層の再生を行なつ
た。次に集配液管より下層のイオン交換樹脂層を
再生するにあたり、再生薬液として36%塩酸94ml
(d=1.18)を約5%780mlに希釈し、集配液管か
ら流速4/h(S.V.)で下降流で通液し、続いて
純水を270ml通水して押し出しを行ない、集配液
管より下層のイオン交換樹脂層の再生を行なつ
た。 この際、集配液管より下層のイオン交換樹脂層
の再生排液および押出排水をあわせて1050mlを回
収再生排液槽に回収し、次回の再生工程における
集配液管より上層のイオン交換樹脂層の再生用に
貯留する。次に、カラムの上方より原水を流速
12/h(S.V)の下降流で30分間通水してカラム
の底部より排出しイオン交換樹脂層の洗浄を行な
つた。 その後、原水を流速20/h(S.V.)の下降流で
通水した。通水の終点は別に設けた十分に再生さ
れた強塩基性アニオン交換樹脂アンバーライト
IRA−400が充填されているカラムに本実施例の
処理水を通水し、強塩基性アニオン交換樹脂のカ
ラムの流出水の電気伝導度が10μυ/cmになつた
点とした。以上説明した再生と通水をそれぞれ5
回繰り返したところ処理水の平均導電率は2.0μ
υ/cm、平均処理量は490/−樹脂であつた。 一方比較のために従来の方法として本発明の実
施例とまつたく同様なカラムとイオン交換樹脂お
よび量を用い、36%塩酸94mlを約5%780mlに希
釈し、カラム上部より流速4/h(S.V.)の下降
流で流入し、続いて第1表に示した組成の原水
855mlを流速3.4/h(S.V.)の下降流で通水して
押し出し、次にこの原水を流速12/h(S.V.)の
下降流で30分間流入し先浄を行なつた。次いでこ
の原水を流速20/h(S.V.)の下降流で通水し
た。なお通水の終点は本発明の実施例と同様にし
て強塩基性アニオン交換樹脂のカラムの流出水の
電気伝導度が10μυ/cmになつた点とした。以上
の再生と通水をそれぞれ5回繰り返したところ処
理水の平均導電率は4.7μυ/cm、平均処理量は
470/−樹脂であつた。なお本発明および従来
の方法ともに通水の終了時には逆洗を実施せずそ
のまま再生を行なつた。 以上の結果に示されるごとく本発明は従来法に
比べ処理水質および処理量において優れていた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a single-bed ion exchange tower filled with a single strong electrolyte ion exchange resin, and includes providing a collection and distribution pipe for a regenerated chemical solution in the ion exchange resin layer. The ion exchange resin layer below the liquid collection and distribution pipe is regenerated by the downward flow of the regenerated chemical solution, the regenerated waste liquid is recovered, and the regenerated waste liquid is passed downwardly from the upper part of the ion exchange column to the ion exchange column. By regenerating the ion exchange resin layer above the liquid collection and distribution pipe, the purpose is to reduce the amount of regenerated chemical solution used, increase regeneration efficiency, and improve the purity of treated water. Traditionally, the ion exchange treatment method was to use downward flow water.
The most commonly used methods are the downflow regeneration method (hereinafter referred to as the downflow regeneration method) and the downflow water/upflow regeneration method (hereinafter referred to as the upflow regeneration method). The downflow regeneration method is the most stable and simple regeneration method, but unregenerated impurities exist at the bottom of the resin layer after regeneration, and these impurities leak into the treated water during water flow, causing a decrease in the purity of the treated water. It also has the disadvantage of low regeneration efficiency. For example, to explain an ion exchange column filled with a strongly acidic cation exchange resin in a water purification device, calcium ions, When raw water containing ions such as magnesium ions and sodium ions is passed through in a downward flow, the arrangement of ion forms in the strongly acidic cation exchange resin layer at the end point of the water flow is from the upper layer to the lower layer: calcium, magnesium ions, etc. The sodium form is followed by the hydrogen form. This arrangement of ionic forms is due to the selectivity of each ion with respect to the strongly acidic cation exchange resin, but when regenerating a strongly acidic cation exchange resin layer with such an arrangement of ionic forms, it is necessary to use, for example, a regenerated chemical solution as it is. When an aqueous solution of hydrochloric acid is allowed to flow downward, the adsorbed sodium ions from the upper layer to the middle layer of the resin layer are desorbed, and the regenerated chemical solution containing impurities such as sodium ions flows into the lower layer of the ion exchange resin. By flowing down, sodium ions and the like are adsorbed again to the strongly acidic cation exchange resin in the hydrogen form located in the lower layer of the ion exchange resin. Therefore, since sodium forms are generated in the lower layer of the ion exchange resin after the regeneration, this sodium ion leaks into the treated water during water passage, resulting in a disadvantage that the purity of the treated water is reduced. The upflow regeneration method solves the drawbacks of the downflow regeneration method. In other words, when the regenerated chemical solution flows upward, the lower layer of the ion exchange resin is regenerated with the regenerated chemical solution that does not contain impurities such as sodium ions and calcium ions, so the lower layer of the ion exchange resin is completely regenerated into hydrogen form. Since the hydrogen-type ion-exchange resin present at the end of raw water flow can be retained in the lower layer of the resin, more hydrogen-type ion-exchange resin can be produced through regeneration, and unregenerated ion-exchange resin can be Since the calcium type and sodium type ion exchange resins exist only in the middle and upper layers of the resin layer, it is possible to obtain a larger amount of treated water with higher purity than with the downflow regeneration method during water flow. However, in the upward flow regeneration method, the flow of the resin bed during regeneration and the one-sided flow of the regenerated chemical solution cause a decrease in regeneration efficiency and a decrease in the purity of the treated water, so water or pressurized air is introduced from the top of the resin tower during regeneration. The drawbacks are that the device is complicated and operation is extremely difficult, such as requiring a special structure to prevent the flow of the ion exchange resin and a specially constructed distributor. The present invention solves the drawbacks of the conventional regeneration method in a single bed ion exchange column packed with a single strong electrolyte ion exchange resin. To regenerate the tower, the regenerated chemical solution is introduced in a downward flow from a liquid collection and distribution pipe provided in the ion exchange resin layer to regenerate the ion exchange resin layer below the liquid collection and distribution pipe,
A step of collecting the regenerated waste liquid, by causing the regenerated waste liquid to flow downward from the upper part of the ion exchange tower and discharging this effluent from the liquid collection and distribution pipe, thereby forming an ion exchange resin layer above the liquid collection and distribution pipe. This is a method for regenerating an ion exchange column, comprising the step of regenerating the ion exchange column. The present invention will be explained in detail below using the drawings. The figure is an explanatory diagram of a flow showing an example of an embodiment of the present invention. In the figure, 1 is an ion exchange tower in which an ion exchange resin layer 2 is formed, and a liquid collection and distribution pipe 3 and a Distributors 4 are disposed above the ion exchange resin layer 2, respectively. The liquid collection and distribution pipe 3 is connected to the recycled chemical liquid discharge pipe 13,
Further, the dilution water inflow pipe 14 and the regenerating chemical liquid tank 5 are communicated via the ejector 7 . The distributor 4 communicates with the recovery and regeneration drain tank 6 through a regeneration drain pipe 17 equipped with a pump 8 . In addition, at the top of the ion exchange tower 1, there is an inlet pipe 9 and an outlet pipe 1 for the water to be treated.
6, connect a pipe 10 to the lower part of the ion exchange tower 1, and further connect a backwash water inflow pipe 15, a treated water outflow pipe 11, and a recovery and regeneration drain pipe 12 to the pipe 10,
One end of the recovered and regenerated drain pipe 12 is connected to the recovered and regenerated drain tank 6 . When treating water with the above-mentioned apparatus, the water to be treated flows downward from the water inlet pipe 9 into the ion exchange tower 1, and the ion exchange resin layer 2 flows downward.
The treated water is made to flow out from the treated water outflow pipe 11. After the water to be treated flows downward, backwashing is performed depending on the pressure loss of the ion exchange resin layer and the degree of contamination due to turbidity. Backwashing is carried out by a normal backwashing method, in which backwash water is passed through the ion exchange tower 1 in an upward flow from the backwash water inflow pipe 15, the entire ion exchange resin layer 2 is backwashed, and the backwash wastewater is sent to the discharge pipe. Although the water may be discharged from the ion exchange resin layer 2 which is filled with turbidity, backwash water may be discharged from the liquid collection and distribution pipe 3.
It is also possible to backwash only the middle and upper parts of the tank. Next, the regenerated liquid and extruded water obtained by regenerating the ion exchange resin layer 2'' below the liquid collection and distribution pipe 3 in the previous cycle are stored in the recovery and regenerated liquid tank 6, and the regenerated liquid is used to operate the pump 8. The regenerated liquid is allowed to flow downward from the distributor 4 through the regeneration drain pipe 17 into the ion exchange tower 1, and the effluent is discharged from the liquid collection and distribution pipe 3 through the discharge pipe 13, and is discharged upward from the liquid collection and distribution pipe 3. The ion exchange resin layer 2' is regenerated. At this time, water is flowed into the ion exchange tower 1 from the backwash water inlet pipe 15 in an upward flow at a low flow rate so that the regenerated liquid does not flow into the ion exchange resin layer 2''. You may let them. Next, the extruded water is caused to flow downward into the ion exchange tower 1 from the water inflow pipe 9 to be treated, and the residual regenerated liquid in the ion exchange resin layer 2' is discharged from the liquid collection and distribution pipe 3 through the discharge pipe 13. Next, the new regenerated chemical solution in the regenerated chemical tank 5 is activated by the ejector 7 to flow downwardly into the ion exchange tower 1 from the liquid collection and distribution pipe 3 to regenerate the ion exchange resin layer 2'' located below the liquid collection and distribution pipe 3. The regenerated waste liquid is collected through the collected and regenerated liquid drain pipe 12 into the collected and regenerated liquid drain tank 6, and is used for the regeneration of the ion exchange resin layer 2' in the next regeneration process.The regeneration of the ion exchange resin layer 2'' is completed. After that, dilute the extruded water into the water inlet pipe 1
4, and descends from the collection and distribution pipe 3 to the ion exchange tower 1.
The regenerated liquid of the ion exchange resin layer 2'' is extruded, and this extruded waste water is also collected in the recovery and regeneration liquid tank 6 to be used for the next regeneration of the ion exchange resin layer 2'. The water may be passed downward from the treated water inlet pipe 9 to the ion exchange tower 1 to push out the regenerated liquid from the entire ion exchange resin layer 2, and then collected from the collected and regenerated liquid drain pipe 12 to the collected and regenerated liquid drain tank 6. Next, the water to be treated flows downward into the ion exchange tower 1 from the water inflow pipe 9 to wash the ion exchange resin layer 2, and the washed wastewater is passed through the outflow pipe 11 for the treated water.
Emit more. If the ion exchange tower 1 is, for example, a cation tower for a pure water production device filled with a strongly acidic cation exchange resin, monovalent cations such as sodium ions are present in the lower layer of the ion exchange resin layer 2 at the end of water flow. However, these sodium ions are easily eluted by the hydrogen ions of hydrochloric acid used as a regenerating chemical solution and regenerated into hydrogen form. In addition, since the regenerated chemical solution is passed and extruded in a downward flow from the liquid collection and distribution pipe 3 in the ion exchange resin layer 2, unlike the conventional down flow regeneration method, the regenerated chemical solution is eluted from the calcium form above the ion exchange resin layer 2. It does not contain impurities such as valent cations and is more completely regenerated into hydrogen form. In the present invention, the position of the liquid collection and distribution pipe 3 disposed within the ion exchange resin layer 2 depends on the quality of the water to be treated, the required quality of the treated water, the required amount of the treated water, the diameter of the ion exchange tower, the height of the resin bed, etc. However, it is usually desirable to arrange the resin layer between the lower one-third position and the upper half position of the total resin layer height. In addition, in this embodiment, in order to regenerate the ion exchange resin layer 2' above the liquid collection and distribution pipe 3, the recycled waste liquid of the ion exchange resin layer 2'' below the liquid collection and distribution pipe 3 collected in the previous cycle was used. However, prior to regenerating the ion exchange resin layer 2', the ion exchange resin layer 2'' may be regenerated with a new regenerating agent, and the ion exchange resin layer 2' may be regenerated using the recycled waste liquid. . According to the present invention, a liquid collection and distribution pipe is disposed within a strong electrolyte ion exchange resin layer, and the regenerated waste liquid obtained by regenerating the ion exchange resin layer below the liquid collection and distribution pipe is transferred to the ion exchange resin layer above the liquid collection and distribution pipe. By using it for regeneration, the amount of regenerated chemical solution can be reduced and the regeneration efficiency can be increased. At the same time, the lower layer of the ion exchange resin layer is regenerated with the regenerated chemical solution that does not contain impurities, so the lower layer of the ion exchange resin layer Highly purified treated water can be obtained without leaving unregenerated ion exchange resin in the water, and without leaking impurities into the treated water in the downstream flow. Further, the present invention has the advantage that the regenerating chemical solution is passed through the upper and lower layers of the ion exchange resin layer in a downward flow, so that a complicated device is not required and the treatment operation can be performed easily. Examples of the present invention will be described below. Example A column serving as an ion exchange tower with an inner diameter of 33 mm and a straight section height of 1000 mm was filled with 570 ml of Amberlite (registered trademark) IR-120B (resin bed height 666 mm) as a strongly acidic cation exchange resin, and was placed under the ion exchange resin layer. A liquid collection and distribution pipe with porous holes was installed internally at a height of 222 mm. When regenerating the ion exchange resin layer above the liquid collection and distribution pipe, a 5% hydrochloric acid solution was used to regenerate the ion exchange resin layer below the liquid collection and distribution pipe in the pre-regeneration process.
A total of 1,050 ml of 780 ml of recycled waste liquid and its extrusion waste water are collected in a collection and recycled liquid tank, and this recycled waste liquid is
1050 ml is passed through the ion exchange resin layer above the collection and distribution pipe at a downward flow rate of 4/h (SV) from above the column and discharged from the collection and distribution pipe, followed by raw water with the composition shown in Table 1. 570 ml of water was passed in a downward flow to perform extrusion, and the effluent was discharged from the liquid collection and distribution pipe to regenerate the ion exchange resin layer above the liquid collection and distribution pipe. Next, when regenerating the ion exchange resin layer below the liquid collection and distribution pipe, use 94ml of 36% hydrochloric acid as the regeneration chemical solution.
(d=1.18) was diluted to about 5% to 780 ml, and passed through the liquid collection and distribution pipe in a downward flow at a flow rate of 4/h (SV). Then, 270 ml of pure water was passed through the liquid collection and distribution pipe for extrusion. The lower ion exchange resin layer was regenerated. At this time, a total of 1050 ml of recycled waste water from the ion-exchange resin layer below the liquid collection and distribution pipe and extrusion waste water is collected in the recovery and regeneration liquid tank, and the ion-exchange resin layer above the liquid collection and distribution pipe will be used in the next regeneration process. Store for regeneration. Next, flow the raw water from above the column at
Water was passed through the column at a downward flow rate of 12/h (SV) for 30 minutes and discharged from the bottom of the column to wash the ion exchange resin layer. Thereafter, raw water was passed through in a downward flow at a flow rate of 20/h (SV). The end point of water flow is a separate, fully regenerated strong basic anion exchange resin Amberlite.
The treated water of this example was passed through a column filled with IRA-400, and the point was determined that the electrical conductivity of the water flowing out of the strongly basic anion exchange resin column reached 10 μυ/cm. The regeneration and water flow explained above are each performed 5 times.
When repeated several times, the average conductivity of the treated water was 2.0μ
The average throughput was 490/- resin. On the other hand, as a conventional method for comparison, using the same column, ion exchange resin, and amount as in the example of the present invention, 94 ml of 36% hydrochloric acid was diluted to about 780 ml of 5%, and the flow rate was 4/h ( SV) and then raw water with the composition shown in Table 1.
855 ml of water was forced out by flowing downward at a flow rate of 3.4/h (SV), and then this raw water was flowed in at a downward flow at a flow rate of 12/h (SV) for 30 minutes for pre-cleaning. Next, this raw water was passed through in a downward flow at a flow rate of 20/h (SV). The end point of the water flow was set as the point at which the electrical conductivity of the water flowing out of the strongly basic anion exchange resin column reached 10 μυ/cm in the same manner as in the examples of the present invention. When the above regeneration and water flow were repeated 5 times each, the average conductivity of the treated water was 4.7μυ/cm, and the average treatment amount was
470/- It was resin. In addition, in both the present invention and the conventional method, when the water flow was finished, the regeneration was performed without performing backwashing. As shown in the above results, the present invention was superior to the conventional method in terms of treated water quality and throughput. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施態様の一例を示したフローの
説明図である。 1……イオン交換塔、2……イオン交換樹脂
層、3……集配液管、4……デイストリビユータ
ー、5……再生薬液槽、6……回収再生排液槽、
7……エジエクター、8……ポンプ、9……被処
理水流入管、10……管、11……処理水の流出
管、12……回収再生排液管、13……再生薬液
排出管、14……希釈水流入管、15……逆洗水
流入管、16……排出管、17……再生排液管。
The figure is an explanatory diagram of a flow showing an example of an embodiment of the present invention. 1...Ion exchange tower, 2...Ion exchange resin layer, 3...Liquid collection and distribution pipe, 4...Distributor, 5...Regenerating chemical liquid tank, 6...Recovery and regenerating waste liquid tank,
7... Ejector, 8... Pump, 9... Treated water inflow pipe, 10... Pipe, 11... Treated water outflow pipe, 12... Recovery and regeneration drain pipe, 13... Regeneration chemical solution discharge pipe, 14 ...Dilution water inflow pipe, 15...Backwash water inflow pipe, 16...Discharge pipe, 17...Regeneration drain pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 単一の強電解質イオン交換樹脂を充填した単
床式イオン交換塔を再生するにあたり、再生薬液
をイオン交換樹脂層内に設けた集配液管から下降
流で流入させて当該集配液管より下方にあるイオ
ン交換樹脂層を再生し、当該再生排液を回収する
工程、当該再生排液をイオン交換塔の上部から下
降流で流入させてこの流出液を前記集配液管から
排出することにより当該集配液管より上方のイオ
ン交換樹脂層を再生する工程からなることを特徴
とするイオン交換塔の再生方法。
1. When regenerating a single-bed ion exchange tower filled with a single strong electrolyte ion exchange resin, the regenerated chemical solution is allowed to flow downward from the liquid collection and distribution pipe provided in the ion exchange resin layer, and is then flowed downward from the liquid collection and distribution pipe. A step of regenerating the ion exchange resin layer in the ion exchange column and collecting the regenerated effluent, by causing the regenerated effluent to flow downward from the upper part of the ion exchange tower and discharging the effluent from the liquid collection and distribution pipe. A method for regenerating an ion exchange tower, comprising a step of regenerating an ion exchange resin layer above a liquid collection and distribution pipe.
JP15753178A 1978-12-22 1978-12-22 Regeneration method for ion exchange tower Granted JPS5584545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15753178A JPS5584545A (en) 1978-12-22 1978-12-22 Regeneration method for ion exchange tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15753178A JPS5584545A (en) 1978-12-22 1978-12-22 Regeneration method for ion exchange tower

Publications (2)

Publication Number Publication Date
JPS5584545A JPS5584545A (en) 1980-06-25
JPS6133625B2 true JPS6133625B2 (en) 1986-08-02

Family

ID=15651697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15753178A Granted JPS5584545A (en) 1978-12-22 1978-12-22 Regeneration method for ion exchange tower

Country Status (1)

Country Link
JP (1) JPS5584545A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684197B2 (en) * 2006-09-22 2011-05-18 オルガノ株式会社 Ion exchange apparatus regeneration method and apparatus
CN102325728B (en) 2010-05-10 2013-10-09 三浦工业株式会社 Method for operation of ion exchanger, and ion exchanger

Also Published As

Publication number Publication date
JPS5584545A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
US4519917A (en) Counter-current adsorption filters for the treatment of liquids and a method of operating the filter
US4648976A (en) Integral water demineralizer system and method
US4528101A (en) Method of separating acid from salt by adsorption with recycling
JP2001169800A (en) Method for regenerating mixed bed type device for purifying sugar solution
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JPS6133625B2 (en)
JP4192557B2 (en) Purification method of sugar solution
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JP2940651B2 (en) Pure water production equipment
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2940648B2 (en) Pure water production equipment
JP2654053B2 (en) Condensate desalination equipment
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP2742975B2 (en) Regeneration method of ion exchange device
JP2003088765A (en) Countercurrent regeneration type ion exchange apparatus and method for cleaning packed layer of ion exchange resin in the apparatus
JP2001232217A (en) Method for regenerating ion exchange resin
JPS582432Y2 (en) Ion exchange resin tower used for upstream regeneration
JPS6132055B2 (en)
JPH11276911A (en) Rising flow regeneration of double-layered bed anion exchange resin