JPS6132055B2 - - Google Patents

Info

Publication number
JPS6132055B2
JPS6132055B2 JP53071462A JP7146278A JPS6132055B2 JP S6132055 B2 JPS6132055 B2 JP S6132055B2 JP 53071462 A JP53071462 A JP 53071462A JP 7146278 A JP7146278 A JP 7146278A JP S6132055 B2 JPS6132055 B2 JP S6132055B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
collector
resin layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071462A
Other languages
Japanese (ja)
Other versions
JPS54162680A (en
Inventor
Juji Haraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP7146278A priority Critical patent/JPS54162680A/en
Publication of JPS54162680A publication Critical patent/JPS54162680A/en
Publication of JPS6132055B2 publication Critical patent/JPS6132055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複層床上昇流再生式純水装置における
イオン交換樹脂の再生方法、更に詳しくは上下に
デイストリビユーターを、中間にコレクターを
夫々内設したイオン交換塔に強電解質イオン交換
樹脂を下層に、弱電解質イオン交換樹脂を上層に
夫々充填しかつ上記コレクターの上方にも下方の
樹脂層を押えるために弱電解質イオン交換樹脂層
を積んでなる複層床式の純水装置の再生方法、特
に該コレクターより上方に位置する弱電解質イオ
ン交換樹脂層を再生する方法に関するものであ
る。 イオン交換樹脂を用いた純水製造装置には通常
並流法と向流法の2つの方法があり、後者の向流
法は樹脂塔に原水を通水してイオン交換処理する
際の通水再生の液流方向を逆向きに、即ち一方を
下降流に、他方を上昇流として行うものである
が、この向流法は通水と再生を同方向の流れによ
つて行う前者の並流法に比べ再生薬剤費、処理水
の純度等が著しく改善される。 しかしこの向流式純水装置を工業的に実施する
場合、交流式の特徴を十分に生かした効率のよい
イオン交換を行うためには通水、再生中に樹脂層
が流動しない状態に保つことが必要であるが、向
流式においては通水または再生のいずれかを上昇
流で行なうためにこのときベツトを保持する方法
が問題になつてくる。 この問題に対処する方法として (1) 再生中に塔上部から樹脂層上面にバランス水
または空気を流し樹脂層の流動化を押える方
法。 (2) 上昇流通水を高流速で流し樹脂層の1部をベ
ツトにする方法。 等がある。 (2)の方法については通水中に流量コントロール
および停止が十分にできないため、工業的に実施
する場合に大変不便であり、またある程度流量コ
ントロールを可能にするため樹脂塔へ樹脂をコン
パクトに充填し再生時の逆洗は別個に逆洗ホツパ
ーを設けて行わなければならず、それだけ装置が
複雑となり再生操作も移送工程が余分に入り単純
ではないという欠点をもつている。 これに対し(1)の方法では通薬時の再生剤の上昇
流は通常例えばLV=6m/hr前後であり、樹脂
層へかゝる圧力損失Δpも通水時の例えばLV=
30m/hr前後に比較して大変に小さく、そのため
少量の空気または水を下降流で流すことで樹脂層
の流動化を簡単に押えることが可能である。 しかしこの方法においては上昇流で樹脂層に通
薬された再生薬液は樹脂塔の上下に設けたデイス
トリビユーターの中間に配置されたコレクターか
ら再生廃液として排出されるようにしているの
で、当該コレクターの上方にコレクター下方の樹
脂層を押えるための樹脂層を積み、このコレクタ
ー上方に積まれた樹脂層を介して塔上部からのバ
ランス水又は空気によつてコレクター下方の樹脂
層の流動化を押えることが必要である。 このコレクター上方に積む押え用の樹脂層は通
常20〜40cmの高さであり、量的には全樹脂層の約
20%にも相当している。そのためこの約20%にも
及ぶ樹脂が無効樹脂となり、通水時のイオン交換
には全く関与せず不経済である。 このことは強電解質イオン交換樹脂を下層に、
弱電解質イオン交換樹脂を上層に夫々充填する複
層床上昇流再生式純水装置の場合でも同様であ
り、コレクターの上方にも下方の樹脂層(上方の
弱電解質イオン交換樹脂層と下方の強電解質イオ
ン交換樹脂層とよりなる)を押えるための弱電解
質イオン交換樹脂層を積むことが必要となり、弱
電解質イオン交換樹脂の多くが無効樹脂となるた
め極めて不経済となる訳である。 本発明はこのような問題に対処してなされたも
ので、上記の無効樹脂を複層床上昇流再生式純水
装置の再生方法の一環として再生処理すべく実
験、研究の結果本発明方法に至つたものである。 即ち本発明方法はイオン交換樹脂塔の上部より
水または空気を流入させて該塔に充填した上層の
弱電解質イオン交換樹脂と下層の強電解質イオン
交換樹脂とからなるイオン交換樹脂層を上方より
保持しながらイオン交換樹脂塔の下部より再生剤
を流入させて該コレクターより下方にある上層の
弱電解質イオン交換樹脂と下層の強電解質イオン
交換樹脂とからなるイオン交換樹脂層の再生を行
う工程の前または後に、あるいはこれと同時に該
イオン交換塔の上部より再生剤を流入させて前記
コレクターより上方に位置する従来無効樹脂とな
つていた弱電解質イオン交換樹脂層を下降流で再
生する際、該コレクターの塔外への液抜パイプに
設けられたサイフオン部にサイフオンブレーカ用
弁を付設し、この弁を開放した状態でこのサイフ
オン部の立上りヘツドと同一の高さまでイオン交
換樹脂塔の液面を抜いた後、該イオン交換樹脂塔
の上部に内設されている通水用デイストリビユー
ターから再生剤を流入して再生し、その再生廃液
を該コレクターを介して当該液抜パイプより排出
せしめることにより所期の成果をあげたものであ
る。 かくて本発明法によればコレクター上方に位置
する押え樹脂をも有効に再生することにより従来
複層床上昇流再生式純水装置において多量に無効
樹脂となつていた弱電解質イオン交換樹脂をも有
効に再生しこれを通水時のイオン交換に際し有効
に利用できるようにしたもので、その工業的利益
極めて大なるものがある。 以下に本発明方法を図面に示す実施態様に従つ
て詳細に説明する。 図面に示すように純水製造装置におけるイオン
交換樹脂塔1はその上下に通水用デイストリビユ
ーター5と通薬用デイストリビユーター3を、ま
たこれらの中間にコレクター4を夫々内設してあ
る。 なおデイストリビユーター5は通常は多数の穴
のあいたステンレス管などを放射状、肋骨状また
はリング状にし、その外周面にサラン布などの網
状体をまきつけたものが使用されるが、場合によ
つては単なるステンレスなどの円板に液体を衝突
させて分散させるものが使用される。 このイオン交換樹脂塔1に充填されたイオン交
換樹脂層2は下層の強電解質イオン交換樹脂層
(強酸性陽イオン交換樹脂層または強塩基性陰イ
オン交換樹脂層)2−Sと上層の弱電解質イオン
交換樹脂層(弱酸性陽イオン交換樹脂層または弱
塩基性陰イオン交換樹脂層)2―Wとからなり、
上層の弱電解質イオン交換樹脂層2―Wはコレク
ター4を挾んでコレクター下方の層2―W1と従
来無効樹脂となつていたコレクター上方の押え樹
脂層2―W2とに分れている。 今上記の純水製造装置がイオン交換を終了し通
水工程から再生工程に入ると、先ず通水中に流入
した濁質を除去し樹脂層2をほぐすために弁16
を閉めて、弁14,15を開き逆洗工程に入る。
逆洗工程約10分終了後、弁14を閉じ沈静工程に
移る。沈静工程3分後、弁8,9を開き水抜工程
に入り水を所定の液面、即ちコレクター4の液抜
パイプ17のサイフオン部17′のヘツドと同じ
高さh1まで下げる。 水がこのように所定の液面まで下がれば押押え
樹脂(無効樹脂)2―W2の通薬工程に入るが、
弁15を閉じ、弁10,12,13を開き、再生
剤を計量槽6から水エゼクター7によつて通水用
デイストリビユーター5を介し樹脂塔1内にその
上部より流入させる。その途中で通薬濃度の調整
を行うための弁10から水を流入させ希釈する。 通水用デイストリビユーター5は通常通水時即
ち高流量時の水の分散を考え設計されているの
で、上記のようにこれを通薬用のデイストリビユ
ーターに兼用した場合、通薬は比較的低流量で行
われるためその分散は極めて悪く所期の目的に沿
い難くなる。 その対策としては通水デイストリビユーター5
の他に通薬デイストリビユーターを別個に併設す
るか、または通水デイストリビユーター5に別途
の工夫を施すようにしてもよいが、この場合には
樹脂塔内が複雑となるので、前記のように通薬前
に液面を高さh1まで抜いておく方法はサイフオン
ブレーカー用弁9の付加のみで済み装置的に有利
となる。 即ち通薬前にサイフオンブレーカー用弁9を開
き、サイフオン部17′が働かないようにして再
生廃液ブロー弁8を開くことにより液面が通水デ
イストリビユーター5から少し下にくるまで水を
抜いておけば通薬時に再生剤が通水用デイストリ
ビユーター5より低流量で流入してもその再生剤
が落下して高さh1の液面をたゝくことで横方向の
撹拌も十分に行われ再生剤の片流れを防止し、押
え樹脂層2―W2の均一な再生を可能にする。そ
の再生廃液はコレクター4を経由して弁8から排
出される。 この押え樹脂層2―W2の通薬が終了した後、
弁13を閉じ押出工程に移るが、イオン交換樹脂
塔の上部より水を流入してイオン交換樹脂層2を
水で上方より保持する水押えの場合にはこの押出
工程は省略することができる。 押出工程後は塔1の上部より水または空気を流
入してイオン交換樹脂層2を水または空気で上方
より保持しながら通常の上昇流再生の工程、即ち
弁11を開いて通常の上昇流通薬、上昇流押出し
を行い、次いで弁11を閉じて、弁14を開き下
降流洗滌を行う。 図面ではコレクター4より上方の押え樹脂2―
W2を再生するために新らしい再生薬品を使用し
ているが、原水々質即ち陽イオン交換樹脂塔(カ
チオン交換樹脂塔)では炭酸カルシウムと炭酸マ
グネシウムの和が中性塩に比べ少ない場合、ある
いはまた陰イオン交換樹脂塔(アニオン交換樹脂
塔)では弱酸に比較し鉱酸の少ない場合は再生廃
液を貯槽し、これを押え樹脂2―W2の再生に使
用するのが有利である。 また上記の説明では押え樹脂(無効樹脂)2―
W2の再生をコレクター4の下方の樹脂層(有効
樹脂)2―S及び2―W1の再生の前に行つてい
るが、この順序を逆にして有効樹脂の再生を先
に、無効樹脂の再生を後に行つても差支えない。
また有効樹脂の再生時に水押え方式をとる場合に
は無効樹脂の再生と有効樹脂の再生とを併行して
同時に行うことも可能である。 このようにして本発明によれば最小限の設備の
付加および操作の付加によつて無効樹脂を再生す
ることができ、この種の純水装置におけるイオン
交換樹脂の有効度を著しく高め得たものである。 実施例 図面に示す再生方式に従い再生した複層床上昇
流式再生純水装置において下記の装置寸法、使用
樹脂、再生剤、通水再生条件下にそのカチオン交
換樹脂塔、脱炭酸塔、アニオン交換樹脂塔の順に
下記組成の原水を毎時3m3通水して純水の製造を
行つた。 (1) 装 置
The present invention relates to a method for regenerating ion exchange resin in a multilayer bed upflow regeneration type water purification device, and more specifically, the present invention relates to a method for regenerating ion exchange resin in a multilayer bed upflow regeneration type water purification device, and more specifically, a strong electrolyte ion exchange resin is installed in an ion exchange column equipped with upper and lower distributors and a collector in the middle. A method for regenerating a multi-layered bed type water purification device in which the lower layer is filled with a weak electrolyte ion exchange resin, the upper layer is filled with a weak electrolyte ion exchange resin, and a weak electrolyte ion exchange resin layer is stacked above the collector to suppress the lower resin layer. In particular, the present invention relates to a method for regenerating a weak electrolyte ion exchange resin layer located above the collector. There are usually two methods for pure water production equipment using ion exchange resin: parallel flow method and counter flow method.The latter counter flow method involves passing raw water through a resin tower during ion exchange treatment. The regeneration liquid flow direction is reversed, that is, one is a downward flow and the other is an upward flow.This countercurrent method is a parallel flow method in which the water flow and regeneration are carried out in the same direction. Compared to the method, recycling chemical costs and the purity of treated water are significantly improved. However, when implementing this countercurrent type water purification equipment industrially, in order to perform efficient ion exchange that takes full advantage of the characteristics of the AC type, it is necessary to keep the resin layer in a non-flowing state during water flow and regeneration. However, in the countercurrent type, either water passage or regeneration is performed in an upward flow, so the method of holding the bed becomes a problem. Methods to deal with this problem include (1) a method to suppress fluidization of the resin layer by flowing balance water or air from the top of the tower to the top of the resin layer during regeneration; (2) A method in which a portion of the resin layer is made into a bed by flowing upwardly flowing water at a high flow rate. etc. Method (2) is very inconvenient when implemented industrially because it is not possible to sufficiently control or stop the flow rate during water flow, and in order to make it possible to control the flow rate to some extent, the resin must be compactly packed into the resin column. Backwashing at the time of regeneration must be carried out by separately providing a backwash hopper, which complicates the apparatus accordingly and has the disadvantage that the regeneration operation is not simple as it requires an extra transfer step. On the other hand, in method (1), the upward flow of the regenerant during water passage is usually around LV = 6 m/hr, and the pressure loss Δp to the resin layer also increases, for example, LV = 6 m/hr.
It is very small compared to around 30m/hr, so it is possible to easily suppress the fluidization of the resin layer by flowing a small amount of air or water in a downward flow. However, in this method, the regenerated chemical solution passed through the resin layer in an upward flow is discharged as regenerated waste liquid from the collector placed between the distributors installed above and below the resin tower. A resin layer is stacked above the collector to suppress the resin layer below the collector, and the resin layer below the collector is fluidized by balance water or air from the top of the tower through the resin layer stacked above the collector. It is necessary to hold it down. The resin layer stacked above the collector is usually 20 to 40 cm high, and in terms of quantity, it is about the total of the total resin layer.
This is equivalent to 20%. Therefore, about 20% of this resin becomes ineffective resin and does not participate in ion exchange at all during water flow, making it uneconomical. This means that the strong electrolyte ion exchange resin is used as the lower layer.
The same is true in the case of a multi-layer bed upflow regeneration type water purification system in which the upper layer is filled with a weak electrolyte ion exchange resin, and the upper and lower resin layers (the upper weak electrolyte ion exchange resin layer and the lower strong It is necessary to stack a weak electrolyte ion exchange resin layer to suppress the electrolyte ion exchange resin layer (consisting of an electrolyte ion exchange resin layer), and this becomes extremely uneconomical since most of the weak electrolyte ion exchange resin becomes an ineffective resin. The present invention was made in response to these problems, and as a result of experiments and research, the method of the present invention was developed to recycle the above-mentioned ineffective resin as part of the regeneration method of a multi-layer bed upflow regeneration pure water device. It has been reached. That is, in the method of the present invention, water or air is introduced from the upper part of an ion exchange resin tower, and the ion exchange resin layer, which is filled in the tower and consists of an upper layer of a weak electrolyte ion exchange resin and a lower layer of a strong electrolyte ion exchange resin, is held from above. Before the step of injecting a regenerating agent from the lower part of the ion exchange resin column to regenerate the ion exchange resin layer below the collector, which consists of an upper layer of weak electrolyte ion exchange resin and a lower layer of strong electrolyte ion exchange resin. Or later, or at the same time, when a regenerating agent is introduced from the upper part of the ion exchange tower to regenerate the weak electrolyte ion exchange resin layer located above the collector, which has conventionally been an ineffective resin, in a downward flow, the collector A siphon breaker valve is attached to the siphon section installed in the liquid drain pipe to the outside of the column, and with this valve open, the liquid level in the ion exchange resin column is raised to the same height as the rising head of this siphon section. After the ion-exchange resin tower is drained, a regenerating agent is introduced from a water distribution distributor installed in the upper part of the ion exchange resin tower to regenerate it, and the recycled waste liquid is discharged from the drain pipe via the collector. As a result, the desired results were achieved. Thus, according to the method of the present invention, by effectively regenerating the holding resin located above the collector, the weak electrolyte ion exchange resin, which has been a large amount of ineffective resin in conventional multi-layer bed upflow regeneration type water purification equipment, can be also removed. It can be effectively regenerated and used effectively for ion exchange during water flow, and its industrial benefits are extremely large. The method of the present invention will be explained in detail below according to embodiments shown in the drawings. As shown in the drawing, an ion exchange resin tower 1 in a pure water production apparatus has a water flow distributor 5 and a medicine flow distributor 3 installed above and below it, and a collector 4 installed between these. be. The distributor 5 is usually made of a stainless steel tube with many holes in a radial, rib-shaped, or ring shape, and a net-like material such as Saran cloth is wrapped around the outer circumferential surface of the stainless steel tube. In other cases, a device is used that disperses the liquid by colliding it with a disc made of stainless steel or the like. The ion exchange resin layer 2 filled in this ion exchange resin column 1 is composed of a lower strong electrolyte ion exchange resin layer (strong acidic cation exchange resin layer or strong basic anion exchange resin layer) 2-S and an upper layer weak electrolyte. Ion exchange resin layer (weakly acidic cation exchange resin layer or weakly basic anion exchange resin layer) 2-W,
The upper weak electrolyte ion exchange resin layer 2-W is divided into a layer 2-W1 below the collector with the collector 4 in between, and a holding resin layer 2- W2 above the collector, which has conventionally been an ineffective resin. Now, when the above-mentioned pure water production apparatus finishes ion exchange and enters the regeneration process from the water flow process, first the valve 16 is used to remove the suspended matter that has flowed into the water flow and loosen the resin layer 2.
is closed and valves 14 and 15 are opened to begin the backwashing process.
After about 10 minutes of the backwashing process, the valve 14 is closed and the settling process begins. After 3 minutes of the settling step, the valves 8 and 9 are opened to enter the water draining step and the water is lowered to a predetermined liquid level, that is, to the same height h1 as the head of the siphon portion 17' of the drain pipe 17 of the collector 4. When the water falls to the specified liquid level like this, the presser resin (invalid resin) 2-W 2 injection process begins.
The valve 15 is closed, the valves 10, 12, and 13 are opened, and the regenerant is caused to flow from the metering tank 6 into the resin column 1 from the upper part through the water ejector 7 and the water distributor 5. During this process, water is allowed to flow in from the valve 10 for adjusting the drug concentration to dilute the drug. The water distributor 5 is designed to disperse water during normal water flow, that is, at high flow rates, so if it is also used as a medicine distributor as described above, the medicine flow will be reduced. Since the flow rate is relatively low, the dispersion is extremely poor and it becomes difficult to achieve the intended purpose. As a countermeasure, water flow distributor 5
In addition, a separate drug flow distributor may be provided, or a separate device may be applied to the water flow distributor 5, but in this case, the inside of the resin tower will be complicated. As mentioned above, the method of draining the liquid level to the height h1 before administering the medicine requires only the addition of the siphon breaker valve 9, and is advantageous in terms of equipment. That is, before passing the medicine, open the siphon breaker valve 9, prevent the siphon part 17' from working, and open the regenerated waste liquid blow valve 8, so that the water is poured until the liquid level is slightly below the water distributor 5. If the regenerant is removed, even if the regenerant flows in at a low flow rate from the water distribution distributor 5 during drug passing, the regenerant will fall and drop the liquid level at a height of h1 , which will prevent the lateral movement. Sufficient stirring is also performed to prevent one-sided flow of the regenerating agent and to enable uniform regeneration of the holding resin layer 2- W2 . The recycled waste liquid is discharged from the valve 8 via the collector 4. After the application of this presser resin layer 2-W 2 is completed,
The valve 13 is closed and the extrusion process begins, but this extrusion process can be omitted if a water press is used in which water is introduced from the upper part of the ion exchange resin tower to hold the ion exchange resin layer 2 from above. After the extrusion process, water or air is introduced from the upper part of the column 1, and while the ion exchange resin layer 2 is held from above by water or air, the normal upward flow regeneration process is carried out, that is, the valve 11 is opened to perform the normal upward flow regeneration process. , upward flow extrusion is performed, then valve 11 is closed and valve 14 is opened to perform downward flow washing. In the drawing, the presser resin 2 is located above the collector 4.
A new regeneration chemical is used to regenerate W2 , but if the sum of calcium carbonate and magnesium carbonate in the raw water, that is, the cation exchange resin tower (cation exchange resin tower) is smaller than the neutral salt, Alternatively, if the anion exchange resin tower (anion exchange resin tower) contains less mineral acid than weak acid, it is advantageous to store the recycled waste liquid in a tank and use it for regenerating the presser resin 2-W 2 . Also, in the above explanation, the presser resin (ineffective resin) 2-
The regeneration of W 2 is performed before the regeneration of the resin layer (effective resin) 2-S and 2-W 1 below the collector 4, but by reversing this order, the effective resin is regenerated first, and the ineffective resin is regenerated first. There is no problem if the playback is performed later.
Furthermore, when a water holding method is used when regenerating the effective resin, it is also possible to simultaneously perform the regeneration of the ineffective resin and the effective resin. In this way, according to the present invention, ineffective resin can be regenerated with minimal addition of equipment and operations, and the effectiveness of ion exchange resin in this type of water purification device can be significantly increased. It is. Example: In a multi-layer bed upflow type regenerated pure water equipment regenerated according to the regeneration method shown in the drawings, the cation exchange resin tower, decarbonation tower, and anion exchange were performed under the following equipment dimensions, resin used, regenerant, and water flow regeneration conditions. Pure water was produced by passing 3 m 3 of raw water with the following composition per hour through the resin tower. (1) Equipment

【表】 (2) 使用樹脂【table】 (2) Resin used

【表】 (3) 再生剤使用量【table】 (3) Amount of regenerant used

【表】 ル
(アニオン交換樹脂用)
(4) 原水の組成
[Table] Le
(For anion exchange resin)
(4) Composition of raw water

【表】 (5) 通水および再生条件 通水量 3m2/hr 通水LV 33m/hr通薬 (A) カチオン交換樹脂塔では3%HClを上昇流
で通薬LV6m/hrで行うと共に樹脂層を押え
るため下降流で原水をLV1.2m/hrで流す。 (B) アニオン交換樹脂塔では苛性ソーダを1.5
%、3%と2段通薬でかつLV8m/hrで約半
分づゝ流すと共に樹脂層を押えるため下降流
で純水をLV1.6m/hrで流す。 (6) 押え樹脂(無効樹脂)の再生 カチオン交換樹脂塔、アニオン交換樹脂塔共
に全体の再生剤量の20%を流して行つた。カチ
オン交換樹脂塔では無効樹脂はコレクター上方
に200mmの高さ、即ち20lであつたが、塔内上部
の通水用デイストリビユーターより900mm下方
で無効樹脂より300mm上方の高さまで塔内液を
抜き同デイストリビユーターより1%HClを再
生剤に用いて通薬しLV=5m/hrの下に上記
無効樹脂は10分で再生された。 またアニオン塔では無効樹脂はコレクター上
方に300mmの高さ、即ち30あつたが、塔内上
部の通水用デイストリビユーターより400mm下
方で、無効樹脂より300mm上方の高さまで塔内
液を抜き1%NaOHを再生剤に用いこれを同デ
イストリビユーターより通薬しLV=5m/hr
の下に上記無効樹脂は10分で再生された。なお
押え樹脂(無効樹脂)の再生は5のA,Bで示
した有効樹脂の再生に先立つて行なつた。 以上の条件で通水と再生を行い以下の結果を得
た。
[Table] (5) Water flow and regeneration conditions Water flow rate 3 m 2 /hr Water flow LV 33 m/hr Chemical flow (A) In the cation exchange resin tower, 3% HCl was passed in an upward flow at a drug flow level of 6 m/hr, and the resin layer In order to suppress this, raw water is flowed downward at LV1.2m/hr. (B) In the anion exchange resin tower, 1.5% of caustic soda
% and 3%, and flow approximately half at LV8m/hr, and in order to press down the resin layer, pure water is flowed downward at LV1.6m/hr. (6) Regeneration of holding resin (invalid resin) 20% of the total amount of regenerant was flowed into both the cation exchange resin tower and the anion exchange resin tower. In the cation exchange resin tower, the ineffective resin was at a height of 200 mm above the collector, or 20 liters, but the liquid in the column was 900 mm below the water distributor at the top of the tower and 300 mm above the inactive resin. The ineffective resin was regenerated in 10 minutes at LV=5 m/hr by passing 1% HCl as a regenerating agent through the same distributor. In addition, in the anion tower, the ineffective resin was placed at a height of 300 mm above the collector, i.e. 30 mm, but the liquid in the tower was drained to a height of 400 mm below the water distributor at the top of the tower and 300 mm above the ineffective resin. Using 1% NaOH as a regenerating agent, it was passed through the same distributor, and the LV = 5 m/hr.
The invalid resin below was regenerated in 10 minutes. Note that the holding resin (ineffective resin) was regenerated prior to the regeneration of the effective resin shown in 5.A and B. Water flow and regeneration were performed under the above conditions, and the following results were obtained.

【表】 採水量はカチオン交換樹脂塔で純度5μS/cm
ブレークまでとし、またアニオン交換樹脂塔でシ
リカ0.1ppm(SiO2換算)リークまでとした。
[Table] The amount of water collected is a cation exchange resin tower with a purity of 5μS/cm.
The leakage of 0.1 ppm (SiO 2 equivalent) of silica was prevented from occurring in the anion exchange resin tower.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を説明するための複層
床上昇流再生純水製造装置における再生方法を示
した系統図である。 1……樹脂塔、2……イオン交換樹脂、3……
通薬用デイストリビユーター、4……コレクタ
ー、5……通水用デイストリビユーター、6……
再生剤計量槽、7……通薬用エゼクター、8……
再生廃液ブロー弁、9……サイフオンブレーカー
弁、10……通薬濃度希釈弁、11……通薬用
弁、12……エゼクター移送用弁、13……再生
剤計量槽元弁、14……逆洗用弁、15……逆洗
用ブロー弁、16……原水入口弁、2―S……強
電解質イオン交換樹脂、2―W……弱電解質イオ
ン交換樹脂、2―W1……コレクター4の下方の
弱電解質イオン交換樹脂、2―W2……コレクタ
ー4の上方の弱電解質イオン交換樹脂(無効樹
脂)、17……液抜パイプ、17′……サイフオン
部。
The drawing is a system diagram showing a regeneration method in a multi-layer bed upflow regenerated pure water production apparatus for explaining an embodiment of the present invention. 1...Resin tower, 2...Ion exchange resin, 3...
Medicine dispenser, 4...Collector, 5...Water dispenser, 6...
Regenerant measuring tank, 7... Medication ejector, 8...
Regeneration waste liquid blow valve, 9...Siph-on breaker valve, 10...Medication concentration dilution valve, 11...Medication delivery valve, 12...Ejector transfer valve, 13...Regenerant measuring tank main valve, 14... Backwash valve, 15...Backwash blow valve, 16...Raw water inlet valve, 2-S...Strong electrolyte ion exchange resin, 2-W...Weak electrolyte ion exchange resin, 2-W 1 ...Collector Weak electrolyte ion exchange resin below 4, 2-W 2 ...Weak electrolyte ion exchange resin (ineffective resin) above collector 4, 17... Liquid drain pipe, 17'... Siphon part.

Claims (1)

【特許請求の範囲】 1 上下にデイストリビユーターを、これらの中
間にコレクターを夫々内設したイオン交換樹脂塔
に強電解質イオン交換樹脂を下層に、弱電解質イ
オン交換樹脂を上層に夫々充填し、かつ上記コレ
クターの上方にも下方の樹脂層を押えるために弱
電解質イオン交換樹脂層を積んでなる複層床式の
純水装置の再生方法において、前記のイオン交換
樹脂塔の上部より水または空気を流入させて該イ
オン交換樹脂層を上方より保持しながらイオン交
換樹脂塔の下部より再生剤を流入させて該コレク
ターより下方のイオン交換樹脂層の再生を行う工
程の前または後に、あるいはこれと同時に、該イ
オン交換樹脂塔の上部より再生剤を流入させて前
記コレクターより上方に位置する弱電解質イオン
交換樹脂層を下降流で再生する際、該コレクター
の塔外への液抜パイプに設けられたサイフオン部
にサイフオンブレカー用弁を付設し、この弁を開
放した状態でこのサイフオン部の立上りヘツドと
同一の高さまでイオン交換樹脂塔の液面を抜いた
後、該イオン交換樹脂塔の上部に内設されている
通水用デイストリビユーターから再生剤を流入し
て再生し、その再生廃液を該コレクターを介して
当該液抜パイプより排出せしめることを特徴とす
る複層床式上昇流再生式純水装置におけるイオン
交換樹脂の再生方法。 2 イオン交換樹脂塔の上部より再生剤を流入さ
せてコレクターより上方に位置する弱電解質イオ
ン交換樹脂層を下降流で再生するに当り、イオン
交換樹脂塔の上部に通水用デイストリビユーター
の他に通薬用デイストリビユーターを併設してこ
の通薬用デイストリビユーターより再生剤を流入
して再生し、その再生廃液をコレクターより塔外
へ排出することを特徴とする特許請求の範囲第1
項記載の複層床上昇流再生式純水装置における再
生方法。 3 コレクター上方に位置する弱電解質イオン交
換樹脂層の再生剤としてコレクター下方の樹脂層
を再生したときの再生廃液を用いることを特徴と
する特許請求の範囲第1項または第2項記載の複
層床上昇流再生式純水装置における再生方法。
[Scope of Claims] 1. An ion exchange resin tower having distributors on the upper and lower sides and a collector in the middle thereof is filled with a strong electrolyte ion exchange resin in the lower layer and a weak electrolyte ion exchange resin in the upper layer. , and in a method for regenerating a multi-layered deionized water device in which a weak electrolyte ion exchange resin layer is stacked above the collector to suppress the lower resin layer, water or Before or after the step of regenerating the ion exchange resin layer below the collector by flowing air to hold the ion exchange resin layer from above and flowing a regenerating agent from the lower part of the ion exchange resin tower, or after this step. At the same time, when a regenerating agent is introduced from the upper part of the ion exchange resin column to regenerate the weak electrolyte ion exchange resin layer located above the collector in a downward flow, a drain pipe provided to the outside of the collector column is provided. A siphon breaker valve is attached to the siphon section, and with this valve open, the liquid level of the ion exchange resin column is drained to the same height as the rising head of the siphon section. A multi-layered riser characterized in that a regenerating agent flows in from a water distribution distributor installed in the upper part for regeneration, and the regenerated waste liquid is discharged from the drain pipe via the collector. A method for regenerating ion exchange resin in a flow regeneration type water purification device. 2. When the regenerating agent is introduced from the upper part of the ion exchange resin tower to regenerate the weak electrolyte ion exchange resin layer located above the collector in a downward flow, a water distribution distributor is installed at the upper part of the ion exchange resin tower. Claim 1, characterized in that a drug distributor is also installed, a regenerating agent is introduced from the drug distributor, and the regenerated waste liquid is discharged from the collector to the outside of the column. 1
A regeneration method in the multi-layer bed upflow regeneration type pure water apparatus described in 2. 3. The multilayer structure according to claim 1 or 2, characterized in that the recycled waste liquid obtained when the resin layer below the collector is regenerated is used as a regenerating agent for the weak electrolyte ion exchange resin layer located above the collector. Regeneration method in bed upflow regeneration pure water equipment.
JP7146278A 1978-06-15 1978-06-15 Regenerating method for ion exchange resin in multi-layer bed rising stream regeneration type pure water making apparatus Granted JPS54162680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7146278A JPS54162680A (en) 1978-06-15 1978-06-15 Regenerating method for ion exchange resin in multi-layer bed rising stream regeneration type pure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7146278A JPS54162680A (en) 1978-06-15 1978-06-15 Regenerating method for ion exchange resin in multi-layer bed rising stream regeneration type pure water making apparatus

Publications (2)

Publication Number Publication Date
JPS54162680A JPS54162680A (en) 1979-12-24
JPS6132055B2 true JPS6132055B2 (en) 1986-07-24

Family

ID=13461270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7146278A Granted JPS54162680A (en) 1978-06-15 1978-06-15 Regenerating method for ion exchange resin in multi-layer bed rising stream regeneration type pure water making apparatus

Country Status (1)

Country Link
JP (1) JPS54162680A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001328A (en) * 2000-06-15 2002-01-08 Japan Organo Co Ltd Method for charging resin in mixed bed ion exchanger resin tower and device therefor

Also Published As

Publication number Publication date
JPS54162680A (en) 1979-12-24

Similar Documents

Publication Publication Date Title
JP3145240B2 (en) Continuous ion exchange equipment
JPS61209087A (en) Percolation type water desalting system and method
JPH0286849A (en) Ion exchange method and apparatus for especially regenerating aqueous solution after softening/demineralization
JP3632343B2 (en) Pure water production method and ion exchange tower
JPS6132055B2 (en)
JP2940651B2 (en) Pure water production equipment
JP3922824B2 (en) High purity water production equipment
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP2576155B2 (en) Multi-layer ion exchanger
JPH09117680A (en) Regeneration of rapid flow velocity back wash-type ion exchange tower
KR830002096B1 (en) Regeneration of Ion Exchange Resin by Upflow Regeneration
JPS6340137B2 (en)
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3278128B2 (en) Countercurrent ion exchanger
JP2654053B2 (en) Condensate desalination equipment
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JP3162615B2 (en) Regeneration method of countercurrent ion exchange column
JPS6133625B2 (en)
JP2003088765A (en) Countercurrent regeneration type ion exchange apparatus and method for cleaning packed layer of ion exchange resin in the apparatus
JPH0363439B2 (en)
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JP3677591B2 (en) Ion exchange method
JPH049583B2 (en)
JP3212463B2 (en) Multi-layer ion exchange equipment