JPH09117680A - Regeneration of rapid flow velocity back wash-type ion exchange tower - Google Patents

Regeneration of rapid flow velocity back wash-type ion exchange tower

Info

Publication number
JPH09117680A
JPH09117680A JP7302306A JP30230695A JPH09117680A JP H09117680 A JPH09117680 A JP H09117680A JP 7302306 A JP7302306 A JP 7302306A JP 30230695 A JP30230695 A JP 30230695A JP H09117680 A JPH09117680 A JP H09117680A
Authority
JP
Japan
Prior art keywords
resin
ion exchange
water
tower
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7302306A
Other languages
Japanese (ja)
Other versions
JP3162614B2 (en
Inventor
Kanroku Naganami
勘六 長南
Shigeo Miya
茂夫 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP30230695A priority Critical patent/JP3162614B2/en
Publication of JPH09117680A publication Critical patent/JPH09117680A/en
Application granted granted Critical
Publication of JP3162614B2 publication Critical patent/JP3162614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a countercurrent ion exchange tower in a short time through a stable operation using a compact ion exchange tower. SOLUTION: In a method for regenerating a countercurrent ion exchange tower consisting of an upper and a lower water collecting device with an ion exchange resin 4 packed in a part above the lower water collecting device 3 and an inactive resin 7 with a specific gravity less than 1.0 packed in a part above the ion exchange resin 4 through a free board, for performing a descending water flow and an ascending chemical flow, the following steps (a)-(f) are sequentially put into practices: (a) a step to carry out a back wash at a high speed flow velocity from the lower water collecting device 3 and at the same time, form an ion exchange resin-fixed layer, (b) a step to maintain the fixed layer of (a) in a satisfactory operating state and flow a regenerating agent from the lower water collecting device, (c) a step to maintain the fixed layer in a satisfactory operating state and extrude the regenerating agent by flowing a treated water in the ascending water current, (d) a step to perform a back wash step of (a) again, (e) a step to open a waste cleaning water valve and transfer the fixed layer to the lower part of the tower using the descending water current, and (f) a step to clean the resin by flowing water in the descending water current from the upper water collecting device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換樹脂を
用いた下降流通水・上昇流通薬を行う向流式イオン交換
塔の再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a countercurrent type ion exchange tower which uses downward flow water and upward flow chemicals using an ion exchange resin.

【0002】[0002]

【従来の技術】最近のイオン交換装置は再生剤が節約で
き、且つ良好な処理水質が得られることから向流式が採
用されることが多い。純水装置の場合、強酸性カチオン
交換樹脂(以下強型カチオン樹脂と称す)もしくは、強
塩基性アニオン交換(以下強型アニオン樹脂と称す)の
単床を用いるよりも、原水水質によっては、カチオン塔
は複層床として、採水時は弱酸性カチオン交換樹脂(以
下弱型カチオン樹脂と称す)→強型カチオン樹脂と通
し、再生時は強型カチオン樹脂→弱型カチオン樹脂と通
薬することによって、単一の樹脂を用いるよりも更に再
生剤が節約できる。本発明でいう複層床とは、中間隔壁
で仕切らず、直接強型カチオン交換樹脂の上に弱型イオ
ン交換樹脂が充填されているものである。
2. Description of the Related Art In recent ion exchange apparatuses, a countercurrent type is often adopted because a regenerant can be saved and good treated water quality can be obtained. In the case of a deionizer, rather than using a single bed of strongly acidic cation exchange resin (hereinafter referred to as strong cation resin) or strong basic anion exchange (hereinafter referred to as strong anion resin), depending on the raw water quality, The tower should be a multi-layered bed. When collecting water, pass weakly acidic cation exchange resin (hereinafter referred to as weak cation resin) → strong cation resin, and at the time of regeneration, strong cation resin → weak cation resin. This saves more regenerant than using a single resin. The multi-layer bed as used in the present invention is one in which a weak ion exchange resin is directly filled on a strong cation exchange resin without being partitioned by an intermediate partition wall.

【0003】向流式には、下降流通水・上昇流通薬を行
うものと、上昇流通水・下降流通薬を行うものにわけら
れる。何れの方式においても、向流式の特長を発揮する
には上昇流の工程中、すなわち下降流通水・上昇流通薬
方式においては通薬時に、上昇流通水・下降流通薬方式
においては、通水時にイオン交換樹脂を固定層に維持す
る必要がある。上昇流通水・下降流通薬方式は、通水の
中断により固定層が、すなわちイオン交換帯が乱れ、処
理水質が悪化し易い、また通水中にイオン交換樹脂に蓄
積した懸濁物質の排出に、逆洗用のフリーボードをつく
るため、樹脂の移送工程等の特別の操作が必要である。
一方下降流通水・上昇流通薬方式では通水の中断による
水質悪化は生じないため、採水時にON−OFF運転が
自由にできるメリットがある。
The countercurrent type is divided into a type for performing descending circulating water and ascending circulating drug and a type for performing ascending circulating water and descending circulating drug. In either method, in order to exert the features of the countercurrent method, during the upflow process, that is, when the down-flowing water / up-flowing drug method is used, the up-flowing water / down-flowing drug method is used. Sometimes it is necessary to maintain the ion exchange resin in the fixed bed. In the upflow / downflow drug method, the fixed bed, that is, the ion exchange zone is disturbed due to the interruption of water flow, and the quality of the treated water is apt to deteriorate, and in addition to the discharge of suspended substances accumulated in the ion exchange resin during water flow, To make a freeboard for backwashing, special operations such as resin transfer process are required.
On the other hand, the descending circulating water / ascending circulating medicine method does not cause deterioration of water quality due to interruption of the flowing water, and therefore has an advantage that ON / OFF operation can be freely performed at the time of water sampling.

【0004】また、弱型イオン交換樹脂、及び強型イオ
ン交換樹脂を使用した複層床では、弱型イオン交換樹脂
の方が比重が小さく、上昇流通水・下降流再生方式では
樹脂塔内部を物理的に仕切らないと、弱型と強型を同時
に適用できないのに対し、下降流通水・上昇流通薬では
物理的な仕切(中間隔壁)が無くても、比重差により2
層に分離できる特徴がある。図3に例示するように中間
集水管20を用いて、下降流通水、上昇流通薬方式を物
理的仕切(中間隔壁)無しで、実施する場合下記の問題
点がある。
Further, in a multi-layer bed using a weak type ion exchange resin and a strong type ion exchange resin, the weak type ion exchange resin has a smaller specific gravity, and the inside of the resin tower is used in the upflow water / downflow regeneration system. The weak type and the strong type cannot be applied at the same time unless they are physically separated, whereas the descending flowing water / upflowing drug has 2
There is a feature that the layers can be separated. As shown in FIG. 3, when the intermediate water collecting pipe 20 is used to implement the descending circulating water and ascending circulating drug methods without a physical partition (intermediate partition wall), there are the following problems.

【0005】(1)カチオン塔は、〔弱型カチオン樹脂
+強型カチオン樹脂〕、アニオン塔は、〔弱型アニオン
樹脂+強型アニオン樹脂〕の組合せで使用することにな
る。弱型と強型の比重の差は再生形ではかなりあるため
再生形での分離は可能である。 <各樹脂の比重例> 弱型カチオン樹脂 : 1.13〜1.18 強型カチオン樹脂 : 1.25〜1.30 弱型アニオン樹脂 : 1.04 強型アニオン樹脂 : 1.08〜1.10 しかし、塩形、あるいは弱型アニオン樹脂が有機物を吸
着すると比重差がほとんどなくなり、弱型と強型の混合
が進み、ついには処理水質不良、採水量がとれない等の
問題が生じる。
(1) The cation tower is used in a combination of [weak cation resin + strong cation resin], and the anion tower is used in a combination of [weak anion resin + strong anion resin]. There is a considerable difference in specific gravity between the weak type and the strong type in the regenerated type, so that the regenerated type can be separated. <Specific gravity of each resin> Weak cation resin: 1.13 to 1.18 Strong cation resin: 1.25 to 1.30 Weak anion resin: 1.04 Strong anion resin: 1.08 to 1. 10 However, when the salt type or weak type anion resin adsorbs an organic substance, the difference in specific gravity is almost eliminated, mixing of the weak type and the strong type progresses, and finally problems such as poor treated water quality and inability to collect water amount occur.

【0006】この対策として下記の方法が提案されてい
る。 従来の粒径分布の広い樹脂にかわって粒径分布のせ
まい樹脂(均一粒径が好ましい)を用い、かつ強型イオ
ン樹脂は粒径の大きい、弱型イオン樹脂は粒径の小さい
ものを採用し分離を良くする。 再生は一般的には図3の如く、弱型イオン交換樹脂
5の上部に中間集水管20を配して中間集水管下部の樹
脂を塔上部から弁18を開として加圧水又は加圧空気を
導入して固定層とし、上昇流で通薬していく。そして、
再生廃液排出弁17を開として再生廃液を排出してい
く。
As a countermeasure against this, the following method has been proposed. A resin with a narrow particle size distribution (preferably a uniform particle size) is used instead of a conventional resin with a wide particle size distribution, and a strong ionic resin has a large particle size and a weak ionic resin has a small particle size. And improve separation. As shown in FIG. 3, the regeneration is generally performed by arranging an intermediate water collecting pipe 20 on the upper part of the weak ion exchange resin 5 and introducing resin under the intermediate water collecting pipe from the upper part of the tower by opening a valve 18 to introduce pressurized water or pressurized air. Then, it becomes a fixed bed, and the medicine is passed in an upward flow. And
The regeneration waste liquid discharge valve 17 is opened to discharge the regeneration waste liquid.

【0007】(2)イオン交換樹脂は再生剤に接触する
と収縮する傾向が有り、特に上昇流通薬時に弱型イオン
交換樹脂では著しい。この収縮現象は主に弱型イオン交
換樹脂が再生されやすいため、イオン形が塩形から再生
形(R−H、R−OH)に、急激に変換するためであ
る。塩形と再生形の体積変化の例を表1に示す。
(2) Ion-exchange resins tend to contract when they come into contact with regenerants, especially weak-type ion-exchange resins during up-flow drugs. This shrinkage phenomenon is mainly because the weak ion-exchange resin is easily regenerated, so that the ionic form is rapidly converted from the salt form to the regenerated form (RH, R-OH). Table 1 shows examples of volume changes between the salt form and the regenerated form.

【表1】 [Table 1]

【0008】強型イオン交換樹脂は塩形では小さく、再
生形では体積を増す。反対に弱型イオン交換樹脂では再
生形で小さく塩形になると体積を増す。すなわち再生
時、強型イオン交換樹脂では再生液による若干の収縮、
また、再生されにくい性質を加味しても一般的に再生後
は、特に押出工程終了後は再生前の4〜10%程度は膨
潤する方向にある。しかし弱型イオン交換樹脂では、再
生されやすいため、塩形から再生形へほぼ100%近く
変換するため通水する原水イオンの構成によっても異な
るが、その体積は再生後は再生前の約20〜30%体積
が減少してしまう。一方、採水時は弱型イオン交換樹脂
は再生形から塩形へ変換していくため、その体積は膨潤
していき、樹脂層の圧密化が生じやすい。強型イオン交
換樹脂は反対に体積収縮方向となるため、圧密化は生じ
にくいと言ってよい。
Strong ion exchange resins are small in salt form and increase in volume in regenerated form. On the other hand, weak ion-exchange resins increase in volume when they are regenerated and small in salt form. That is, at the time of regeneration, the strong ion exchange resin causes some shrinkage due to the regeneration liquid,
Even if the property of being difficult to be regenerated is taken into consideration, generally after the regeneration, particularly after the completion of the extrusion step, about 4 to 10% of the swelling tends to swell. However, since weak ion exchange resins are easily regenerated, the volume of the ion exchange resin after regeneration is about 20- The volume is reduced by 30%. On the other hand, at the time of water sampling, the weak ion exchange resin is converted from the regenerated type to the salt type, so that the volume thereof swells and the resin layer is likely to be consolidated. On the contrary, since the strong ion exchange resin has a volume shrinkage direction, it can be said that compaction hardly occurs.

【0009】以上に述べた如く、弱型イオン交換樹脂の
イオン形の変化が再生時に大きく、かつ急激に生ずるた
め、弱型と強型の分離界面付近では空隙ができやすくな
り、樹脂の一部が流動化し、再生剤の不均一分散(チャ
ネリング)の危険が増してくる。そして処理水質の悪化
を招くことが多い。 (3)(2)で述べた問題点を解決するため、従来いろ
いろの工夫がされてきた。イオン交換樹脂の収縮による
流動化を防止し、再生剤の均一分散を達成するため、
通薬途中で通薬を中断し、収縮したイオン交換樹脂を沈
静させてから通薬を再開することを何回か繰り返す方
法、低濃度の再生剤を低流速で通薬することにより、
収縮の影響を軽減する方法、上部から導入する加圧
水、又は空気量を増す方法等が提案されている。これら
の方法によってイオン交換樹脂層の流動化は一応防止で
きている。しかし、再生操作の複雑化による長い再生時
間、再生廃液量の増加、装置そのものの複雑化、再生コ
ストの増加、等の不利益が生じている。
As described above, since the change in the ionic form of the weak type ion exchange resin is large and abruptly generated during the regeneration, voids are easily formed in the vicinity of the separation interface between the weak type and the strong type, and a part of the resin is formed. Becomes fluidized, and the risk of uneven distribution (channeling) of the regenerant increases. And the quality of treated water often deteriorates. (3) In order to solve the problems described in (2), various measures have been conventionally made. To prevent fluidization due to contraction of the ion exchange resin and to achieve uniform dispersion of the regenerant,
By interrupting the drug in the middle of drug delivery, calming the contracted ion-exchange resin and then restarting the drug delivery several times, by delivering a low concentration regenerant at a low flow rate,
A method of reducing the influence of contraction, a method of increasing the amount of pressurized water introduced from above, or an amount of air has been proposed. By these methods, fluidization of the ion exchange resin layer can be prevented for the time being. However, there are disadvantages such as a long regeneration time due to the complicated regeneration operation, an increase in the amount of waste liquid for regeneration, a complicated apparatus itself, and an increase in the regeneration cost.

【0010】(4)中間集水管20上部の非有効樹脂2
1はそのまま毎回逆洗しており、中間集水管20下部の
樹脂は通常の再生時は逆洗しない。しかし、この状態で
運転をつづけると懸濁物質の蓄積、及び樹脂粒子の圧密
化が生じるので通常〔再生−採水〕7〜20回に1回程
度の割合で下部のイオン交換樹脂全層を逆洗している。
全層を逆洗した場合にはイオン交換帯が乱れるため、通
常再生の2〜2.5倍の再生剤量が必要となる。そし
て、弱型イオン交換樹脂を大部分再生した条件で逆洗分
離し、初期の弱型と強型が十分に分離した条件に戻す必
要がある。
(4) Ineffective resin 2 on the upper part of the intermediate water collecting pipe 20
No. 1 is backwashed as it is, and the resin under the intermediate water collecting pipe 20 is not backwashed during normal regeneration. However, if operation is continued in this state, accumulation of suspended solids and consolidation of resin particles occur. Therefore, [regeneration-water collection] is usually performed once every 7 to 20 times, so that the entire lower layer of the ion exchange resin is washed. I'm backwashing.
When all layers are backwashed, the ion exchange zone is disturbed, so that a regenerant amount of 2 to 2.5 times that of normal regeneration is required. Then, it is necessary to carry out backwash separation under the condition that most of the weak ion exchange resin is regenerated, and return to the initial condition where the weak type and strong type are sufficiently separated.

【0011】(5)しかし前述の如く、(再生−採水)
の工程が進むにつれて、特に塔径が大きい程、弱型と強
型の混合が進み、通薬時のチャンネリング、処理水質の
悪化、採水量の不足を生じることが多い。これを避ける
ため、設計当初から混合することを考慮して必要量の2
0〜30%増しの樹脂を充填しておくことも多い。すな
わち、このような方式は塔径が大きくなる程不適となり
採用できないのが実状である。 (6)中間集水管20が樹脂層内にある採水時の圧力損
失等による繰り返し荷重によって破損事故の生ずること
もある。それ故、下降流通水・上昇流通薬方式におい
て、弱型と強型のイオン交換樹脂を同一塔内で使用する
ことは、現状では塔径が大きくなる程安定した運転を達
成することは、かなり困難であることが明白になってき
ている。
(5) However, as described above, (regeneration-water sampling)
As the process proceeds, the mixing of the weak type and the strong type progresses particularly as the column diameter increases, and channeling during drug passing, deterioration of treated water quality, and insufficient water intake often occur. In order to avoid this, considering the mixing from the beginning of design, the required amount of 2
Often, 0 to 30% more resin is filled in advance. That is, such a system is unsuitable as the tower diameter becomes larger and cannot be adopted in the actual situation. (6) The intermediate water collecting pipe 20 may be damaged due to a repeated load due to a pressure loss when collecting water in the resin layer. Therefore, in the downward flow water / upflow flow system, using weak and strong ion-exchange resins in the same column does not achieve stable operation as the column diameter increases. It has become clear that it is difficult.

【0012】[0012]

【発明が解決しようとする課題】本発明は、下降流通水
・上昇流通薬方式を改良し、前記の問題点、すなわち長
い再生時間、再生廃液量の増加、弱型と強型イオン交換
樹脂の混合、通薬時の諸問題、及び装置・再生操作の複
雑化等を解決し、コンパクトなイオン交換塔を用いて短
時間に再生でき、かつ安定した運転のできる向流式イオ
ン交換塔の再生方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention has improved the down-flowing water / up-flowing drug system, and has the above-mentioned problems, namely, a long regeneration time, an increase in the amount of regeneration waste liquid, and weak and strong ion exchange resins. Regeneration of countercurrent ion exchange tower that solves various problems at the time of mixing and passing, complicated apparatus and regeneration operation, etc., and can be regenerated in a short time using a compact ion exchange tower and can be operated stably. The challenge is to provide a method.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、イオン交換塔の上下に集水装置を設
け、下部集水装置の上部にイオン交換樹脂を充填し、更
にその上部に採水終了時のイオン交換樹脂の5〜25%
のフリーボードを介してイオン交換樹脂より大粒径で且
つ、イオン交換樹脂を保持できる大きさで比重が1.0
より小さい不活性樹脂を充填した下降流通水・上昇流通
薬を行う向流式イオン交換塔の再生方法において、下記
(a)〜(f)の工程を順次行い樹脂を再生することと
したものである。 (a)、塔下部に設けた下部集水装置からの高流速逆洗
によりイオン交換樹脂の大部分を不活性樹脂に押しつ
け、通水時に蓄積した懸濁物質を不活性樹脂を経由して
塔上部に設けた上部集水装置から排出除去すると共に、
イオン交換樹脂の固定層を形成する高流速逆洗工程、
(b)、高流速逆洗工程より低速で、(a)工程で形成
された固定層を維持するに必要な流速で再生剤を下部集
水装置から上昇流で通薬する通薬工程、(c)、大部分
の前記固定層を維持できる流速で下部集水装置から処理
水を上昇流で通水し、残留する再生剤を有効に利用する
押出工程、(d)、再度前記(a)工程を行い懸濁物質
を上部集水装置から排出する工程、(e)、上部集水装
置から塔下部の洗浄排水弁を開とするか、又は塔頂部の
空気抜弁と塔下部の洗浄排水弁を開として、水の下降流
を用いて前記形成された固定層を塔下部に移動させる樹
脂移動工程、(f)、上部集水装置から下降流で通水し
て樹脂を洗浄する洗浄工程。
In order to solve the above problems, according to the present invention, water collecting devices are provided above and below an ion exchange tower, and an upper part of a lower water collecting device is filled with an ion exchange resin, and an upper part thereof is further provided. 5-25% of ion exchange resin at the end of water sampling
The particle size is larger than that of the ion-exchange resin through the free board and the specific gravity is 1.0
In a method of regenerating a countercurrent ion exchange tower in which descending circulating water and ascending circulating medicine filled with smaller inert resin are used, the following steps (a) to (f) are sequentially performed to regenerate the resin. is there. (A), most of the ion-exchange resin is pressed against the inert resin by high-speed backwashing from the lower water collecting device provided at the lower part of the tower, and the suspended substances accumulated during water passage are passed through the inert resin to the tower. While discharging and removing from the upper water collecting device provided at the top,
A high flow rate backwashing process to form a fixed bed of ion exchange resin,
(B), a replenishment step in which the regenerant is passed upflow from the lower water collecting device at a flow rate required to maintain the fixed bed formed in step (a) at a lower speed than the high-flow rate backwash step; c), an extrusion step in which treated water is passed in an upward flow from the lower water collecting device at a flow rate that can maintain most of the fixed bed, and the remaining regenerant is effectively used, (d), and again (a) (E), opening the washing drain valve at the lower part of the tower from the upper water collecting device, or the air vent valve at the top of the tower and the washing drain valve at the lower part of the tower. And a resin moving step of moving the formed fixed layer to the lower part of the tower by using a downward flow of water, (f), a washing step of washing the resin by passing a downward flow of water from the upper water collecting device.

【0014】前記再生方法において、該再生処理及び採
水処理の一定頻度毎に、又は採水時、圧力損失が増大し
た時等に、採水終了後、又は前記(c)の押出工程終了
後に、前記(a)工程と、通水を停止し樹脂を自由に落
下させる沈整工程を繰り返して、蓄積した懸濁物質を弱
型、強型イオン交換樹脂から分離促進して、不活性樹脂
層を経由して上部集水装置から排出除去する工程を行う
こともできる。これらの工程はフリーボード割合が大き
い程、効果的であるので、フリーボード割合が最も大き
くなった条件で実施するのが好ましい。前記再生方法に
おいて、不活性樹脂は、イオン交換樹脂の有効径の2〜
8倍の粒径のものを使用し、不活性樹脂層高を100〜
400mmにするのがよく、また、イオン交換樹脂は、
強酸性カチオン交換樹脂単床、強酸性カチオン交換樹脂
と弱酸性カチオン交換樹脂の複層床、強塩基性アニオン
交換樹脂単床、強塩基性アニオン交換樹脂と弱塩基性ア
ニオン交換樹脂の複層床のいずれかを充填することがで
きる。
In the regenerating method, the regenerating treatment and the water collecting treatment are carried out at regular intervals, or at the time of water collecting, when the pressure loss increases, or the like, after the water collecting is completed, or after the extrusion step of (c) is completed. The step (a) and the settling step in which water flow is stopped and the resin is allowed to fall freely are repeated to promote separation of the accumulated suspended substance from the weak type and strong type ion exchange resins, and an inert resin layer. It is also possible to carry out the step of discharging and removing from the upper water collecting device via the. Since these steps are more effective as the freeboard ratio is higher, it is preferable to carry out these steps under the condition where the freeboard ratio is the highest. In the regeneration method, the inert resin has an effective diameter of 2 to 2 of the ion exchange resin.
Use 8 times the particle size, and the height of the inert resin layer is 100 ~
It is better to make it 400 mm, and the ion exchange resin is
Strong acidic cation exchange resin single bed, strong acidic cation exchange resin and weak acidic cation exchange resin multi-layer bed, strong basic anion exchange resin single bed, strong basic anion exchange resin and weak basic anion exchange resin double bed Either can be filled.

【0015】[0015]

【発明の実施の形態】以下に本発明の再生方法を適用す
るイオン交換塔の一例を示した図1及び図2を用いて、
本発明を詳細に説明する。図1は、強型イオン交換樹脂
の単一樹脂を用いる例であり、図2は、強型イオン交換
樹脂と弱型イオン交換樹脂とを用いる複層床の例であ
る。図において、イオン交換塔1の上下に集水装置2、
3を設け、下部集水装置2の上部に強型イオン交換樹脂
4又は強型イオン交換樹脂4と弱型イオン交換樹脂5を
充填し、更にその上に若干のフリーボード6を介してイ
オン交換樹脂4、5より大粒径で、かつイオン交換樹脂
を保持できる大きさで比重が1.0より小さい不活性樹
脂7を100〜400mm充填する。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to FIGS. 1 and 2 showing an example of an ion exchange column to which the regeneration method of the present invention is applied,
The present invention will be described in detail. FIG. 1 is an example using a single strong ion exchange resin, and FIG. 2 is an example of a multi-layer bed using a strong ion exchange resin and a weak ion exchange resin. In the figure, water collecting devices 2 are provided above and below the ion exchange tower 1,
3 is provided, the strong ion exchange resin 4 or the strong ion exchange resin 4 and the weak ion exchange resin 5 are filled in the upper part of the lower water collecting device 2, and the ion exchange is further performed on it by some free board 6. An inert resin 7 having a larger particle size than the resins 4 and 5 and a size capable of holding the ion exchange resin and a specific gravity of less than 1.0 is filled in a range of 100 to 400 mm.

【0016】上下の集水装置2、3はノズル付の多孔板
方式が好ましいが多孔管方式のものでもかまわない。上
部集水装置2には原水流入弁8、再生廃液排出弁9、下
部集水装置3には処理水流出弁10、逆洗水流入弁1
1、再生剤兼押出水流入弁12、洗浄排水弁13、そし
て塔頂部には空気抜弁14が接続されている。また、イ
オン交換塔壁には、イオン交換樹脂量、不活性樹脂量を
調整できるように手動ボール弁15、16、17が設け
られている。サイトグラス、マンホール等は適宜適切な
ところに設ける。従来の中間集水管を持つタイプの向流
式は通常75〜100%の逆洗用フリーボードを持つ必
要がある。充満充填するタイプの向流式ではフリーボー
ドはもたないが、別に逆洗塔を有する必要があること等
従来法においては、装置構成配管が複雑となっている。
The upper and lower water collecting devices 2 and 3 are preferably a perforated plate type with nozzles, but may be a perforated tube type. Raw water inflow valve 8, reclaimed waste liquid discharge valve 9 in upper water collecting device 2, treated water outflow valve 10, backwash water inflow valve 1 in lower water collecting device 3.
1, a regenerant / extruded water inflow valve 12, a cleaning drainage valve 13, and an air vent valve 14 are connected to the top of the tower. Further, on the wall of the ion exchange tower, manual ball valves 15, 16 and 17 are provided so that the amount of ion exchange resin and the amount of inert resin can be adjusted. Sight glasses and manholes will be installed in appropriate places. The countercurrent type of the conventional type having an intermediate water collecting pipe usually needs to have a backwash freeboard of 75 to 100%. In the countercurrent type of full filling type, there is no freeboard, but in the conventional method such as the need to have a backwash tower separately, the apparatus configuration piping is complicated.

【0017】本発明においては、塔内の構成を代表的に
図1の如くしている。フリーボード6が従来法よりはる
かに小さく不活性樹脂層7を加えても塔内は有効に活用
されて、コンパクトなものとなる。そして更にその上
に、イオン交換樹脂の有効径の2〜8倍の比重1.0以
下の不活性樹脂7を100〜400mm充填した構成と
する。本発明の構成において重要なのはフリーボード6
をいくらにするかである。図1に示す単一樹脂の場合、
このフリーボード6を最大膨潤した時より小さくとって
しまうと最も膨潤した時、すなわち2〜3倍量の再生を
行い、再生形が大幅に増した時、また、再生形の樹脂を
使用し、交換補給、充填した場合、前記表1のように塩
形から再生形になり樹脂の体積が増し、これによる膨潤
圧がかかってしまうことになる。それ故、図1に示すフ
リーボード6は樹脂が再生形の時の2〜10%とし、樹
脂の膨潤圧が万一にも塔にかからないようにしておく必
要がある。
In the present invention, the structure inside the tower is typically as shown in FIG. Even if the freeboard 6 is much smaller than the conventional method and the inert resin layer 7 is added, the inside of the tower is effectively utilized and becomes compact. Further, an inert resin 7 having a specific gravity of 1.0 or less, which is 2 to 8 times the effective diameter of the ion-exchange resin, is further filled thereon to 100 to 400 mm. The freeboard 6 is important in the configuration of the present invention.
How much is In the case of the single resin shown in FIG. 1,
If this freeboard 6 is made smaller than the maximum swell, it will swell the most, that is, it will be regenerated 2-3 times, and the regenerated type will increase significantly, and the regenerated type resin will be used. When replacement and replenishment and filling are performed, as shown in Table 1, the salt type is changed to the regenerated type, and the volume of the resin is increased, which causes swelling pressure. Therefore, it is necessary to set the freeboard 6 shown in FIG. 1 to 2 to 10% of that of the regenerated type resin so that the swelling pressure of the resin will not be applied to the tower.

【0018】このようにしておくと、実際の1サイクル
の採水終了後における樹脂の体積は、負荷イオンの種
類、採水量、樹脂の種類等によって異なるが、前記2〜
10%の再生形に対するフリーボードの割合は、採水終
了後の体積収縮により、若干大きくなり強型カチオン樹
脂で5〜18%、弱型アニオン樹脂で15〜25%程度
となる。この採水終了後のフリーボードの割合は、維持
管理上重要であり、定期的に1サイクルの採水終了時の
樹脂レベルをチェックし、適正にフリーボード6が保た
れていることを確認することが重要である。また、再生
後についても、通常再生レベル時、及び必要に応じて2
〜2.5倍量再生する時も同様に確認しておくことが重
要である。図2に示す強型イオン交換樹脂と強型イオン
交換樹脂とを用いる複層床では、更に複雑な樹脂体積の
膨潤を示す。
In this way, the volume of the resin after the completion of the actual one-cycle water sampling differs depending on the type of the load ions, the amount of water sampling, the type of the resin, etc.
The ratio of the freeboard to the recycled type of 10% is slightly increased due to the volume shrinkage after the completion of water collection, and is about 5 to 18% for the strong cation resin and about 15 to 25% for the weak anion resin. The ratio of the freeboard after the completion of water sampling is important for maintenance and management, and the resin level at the end of one cycle of water sampling is checked regularly to confirm that the freeboard 6 is properly maintained. This is very important. Also, after playback, at the normal playback level, and if necessary, 2
It is important to confirm the same when reproducing up to 2.5 times. The multi-layer bed using the strong ion exchange resin and the strong ion exchange resin shown in FIG. 2 shows more complicated resin volume swelling.

【0019】強型イオン交換樹脂は表1に示すように、
採水時、再生形から塩形になるため収縮し、再生時は反
対に膨潤する。一方、弱型イオン交換樹脂は完全に逆に
なる。弱型カチオン樹脂の体積変化は樹脂の種類、ま
た、負荷イオン形によってかなり異なっているが、一例
を示せば次のようになる。 <イオン形の体積変化例> R−H → R−Ca : + 5〜+15% R−H → R−Na : +40〜+55% 弱型カチオン樹脂5は原水の硬度(Ca+Mg)がM−
アルカリ度より大きい場合、採水終了時のイオン形は大
部分〔R−Ca+R−Mg〕となり、一部にR−Na、
及び再生形(R−H)がふくまれる。
As shown in Table 1, the strong ion exchange resin is
At the time of water sampling, it shrinks from the regenerated form to the salt form, and contracts when regenerated. On the other hand, the weak ion exchange resin is completely reversed. The volume change of the weak cation resin is considerably different depending on the type of the resin and the type of loaded ions, but an example is as follows. <Example of ionic volume change> RH → R-Ca: +5 to + 15% RH → R-Na: +40 to + 55% The weak cation resin 5 has a hardness (Ca + Mg) of raw water of M−.
When the alkalinity is higher than the alkalinity, most of the ion forms at the end of water sampling are [R-Ca + R-Mg], and some of them are R-Na,
And a regenerated type (RH) is included.

【0020】また、原水の硬度がM−アルカリ度より小
さい場合、原水の硬度分はすべてR−Ca、R−Mgに
なるが、〔Mアルカリ度−硬度〕分に相当するNaHC
3もイオン交換するため、R−Naもかなり生成す
る。この場合、原水のイオン組成及び1サイクルの各々
のイオンの負荷量によってR−Ca、R−Mg、R−N
a、未利用のR−Hの生成量がきまる。一方、弱型アニ
オン樹脂は、一般に脱炭酸塔後の酸性軟水を原水として
用いられることが多いので、その負荷イオン形はR−C
l、R−SO4 を主体とする。 しかし、R−HCO3 形では弱型カチオン樹脂と同様の
かなり大きい膨潤率を示す樹脂もある。そして脱炭酸塔
を設けないでHCO3 - 、CO2 を負荷させる装置もあ
る。
When the hardness of the raw water is smaller than M-alkalinity, the hardness of the raw water is R-Ca and R-Mg, but NaHC corresponding to [M alkalinity-hardness]
Since O 3 is also ion-exchanged, a considerable amount of R-Na is also produced. In this case, R-Ca, R-Mg, and R-N depend on the ion composition of raw water and the amount of each ion loaded in one cycle.
a, the amount of unused RH produced is determined. On the other hand, the weak anion resin is generally used as raw water by using acidic soft water after the decarbonation tower.
1, mainly R-SO 4 . However, in the R-HCO 3 type, there are some resins that exhibit a considerably large swelling ratio similar to the weak cationic resin. There is also a device for loading HCO 3 and CO 2 without providing a decarbonation tower.

【0021】したがって、図2に示す強型・弱型イオン
交換樹脂を用いる場合、樹脂のイオン形、負荷イオン
量、樹脂の種類だけでなく、強型4と弱型5との充填比
率によっても、採水終了時の体積、再生後の体積は異な
ってくる。その故、採水終了時、再生時の膨潤、収縮の
変化の多い弱型5は最大でも、全樹脂の6割以下の充填
量として、その膨潤圧による塔への影響を小さくするの
が良い。そして、1サイクルの採水終了後の平均体積
(V1 )と、再生後の平均体積(V2 )を求めておく。
一般には再生後の平均体積(V2 )の方が小さくなるた
め、フリーボードの割合は、下記のように決めるのがよ
い。
Therefore, when the strong type / weak type ion exchange resin shown in FIG. 2 is used, not only the ion type of the resin, the amount of loaded ions, the kind of the resin but also the filling ratio of the strong type 4 and the weak type 5 are used. The volume at the end of water sampling and the volume after regeneration are different. Therefore, even if the weak type 5 has many changes in swelling and contraction at the end of water collection and regeneration, it is preferable to reduce the influence of the swelling pressure on the tower by setting the filling amount to 60% or less of the total resin. . Then, the average volume (V 1 ) after the completion of water collection for one cycle and the average volume (V 2 ) after the regeneration are obtained.
Generally, the average volume (V 2 ) after reproduction is smaller, so the proportion of freeboard should be determined as follows.

【0022】1サイクルの採水終了後の平均体積(膨潤
傾向を一般に示す)を基準にして、それに水質変動、す
なわち採水終了時の負荷イオン形、各イオン形の生成
量、更に弱型イオン交換樹脂5の充填割合を考慮して、
フリーボード6の割合を決める。一般に、採水終了後の
平均体積の5〜25%をフリーボードの割合としておけ
ばよい。弱型イオン交換樹脂の割合が多い程、フリーボ
ード6の割合を大き目にして塔の安全を図るのが良い。
また、1サイクルの採水終了時の樹脂レベルをチェック
し、前記の如き5〜25%のフリーボード6が確保され
ていることを定期的に確認することが不可欠である。そ
して、水質変動等によって、膨潤が大きくなった時は、
弁16、弁17から強型又は弱型イオン交換樹脂を抜き
出して、適正なフリーボード6の割合を維持していく。
With reference to the average volume (generally indicating the swelling tendency) after the completion of water sampling for one cycle, the water quality fluctuation, that is, the load ion type at the end of water sampling, the production amount of each ion type, and the weak ion Considering the filling ratio of the exchange resin 5,
Determine the percentage of freeboard 6. Generally, 5-25% of the average volume after completion of water sampling may be set as the percentage of freeboard. The higher the ratio of the weak ion-exchange resin, the larger the ratio of the freeboard 6 is to improve the safety of the tower.
Also, it is essential to check the resin level at the end of one cycle of water sampling and periodically confirm that the free board 6 of 5 to 25% as described above is secured. And when swelling becomes large due to water quality fluctuations,
The strong type or weak type ion exchange resin is extracted from the valves 16 and 17 to maintain an appropriate ratio of the freeboard 6.

【0023】また、本発明で使用する不活性樹脂の材質
は、比重1.0以下の例えばポリプロピレン等で、再生
剤の残留性のない、洗浄しやすい、かつイオン交換樹脂
の膨潤圧をある程度吸収できる、弾力性のある材質、形
状であればよい。その粒径は、捕捉した懸濁物質が排出
しやすいように、イオン交換樹脂の有効径が通常、0.
65mm程度であるので、その2〜8倍程度であればよ
い。すなわち不活性樹脂の粒径としては、概略1.0〜
5.0mmφのものを、好ましくは2〜4mmφ程度の
ものとするのがよい。この粒径が小さすぎると、捕捉し
た懸濁物質の排出が困難となる。また、大きすぎると上
昇流の通薬時、押出時等にイオン交換樹脂4、5が不活
性樹脂7を通り抜け、上部集水装置2の集水口(スリッ
ト)を防ぎ、設定流量が流れにくくなる。
The material of the inert resin used in the present invention is, for example, polypropylene having a specific gravity of 1.0 or less, which has no residual regenerant, is easy to wash, and absorbs the swelling pressure of the ion exchange resin to some extent. Any elastic material and shape can be used. The particle size is usually such that the effective diameter of the ion exchange resin is 0.
Since it is about 65 mm, it may be about 2 to 8 times that. That is, the particle size of the inert resin is approximately 1.0 to
The diameter of 5.0 mmφ is preferably about 2 to 4 mmφ. If the particle size is too small, it becomes difficult to discharge the trapped suspended matter. On the other hand, if it is too large, the ion exchange resins 4 and 5 pass through the inert resin 7 when passing an upward flow, during extrusion, etc., preventing the water collecting port (slit) of the upper water collecting device 2 and making the set flow rate difficult to flow. .

【0024】また、不活性樹脂7の層高は、100〜4
00mmでよいが、塔径が大きい場合、不活性樹脂層が
均一にフラットになるかどうか考慮し、大き目に設定し
ておく。しかし、この層高が大きすぎると、高流速逆洗
時の懸濁物質の排出がしにくくなるので注意する。不活
性樹脂7自体も、破砕することによって目詰まりの原因
となるので、定検時毎に不活性樹脂全量を排出し、塔内
点検し破砕、粉化した不活性樹脂を除去して再充填する
ことも考慮しておく必要がある。以上のようなフリーボ
ードの割合及びその管理をふまえた塔構造を用いて、本
発明は採水終了後、下記の再生工程を行い、フリーボー
ドの割合が大きくなっても、イオン交換帯が乱れにく
く、また採水時に捕捉した懸濁物質を排出させ易くして
いる。
The layer height of the inert resin 7 is 100-4.
Although it may be 00 mm, when the tower diameter is large, it should be set to a large value in consideration of whether or not the inert resin layer is uniformly flat. However, be aware that if the bed height is too large, it will be difficult to discharge suspended substances during high-flow backwashing. Since the inert resin 7 itself also causes clogging by crushing, the entire amount of the inert resin is discharged at every regular inspection, the inside of the tower is inspected and crushed, and the crushed inert resin is removed and refilled. It is also necessary to consider what to do. Using the tower structure based on the ratio of freeboards and its management as described above, the present invention performs the following regeneration process after the completion of water collection, and the ion exchange zone is disturbed even if the ratio of freeboards increases. Difficulty and easy to discharge the suspended substances trapped during water sampling.

【0025】(a)カチオン塔でLV20〜26m/h
以上、アニオン塔でLV14〜20m/h以上の高流速
逆洗を2〜3分間、下部集水装置3から上向流で処理水
を用いて行い、強型、弱型イオン交換樹脂4又は4+5
の大部分を不活性樹脂7に押し付け固定層を形成させ
る。この高流速逆洗の流速は樹脂の比重、水温、フリー
ボード6の割合によって若干異なるが、要するに固定層
を形成できる流速であればよい。この時、採水時に図1
の強型カチオン樹脂4に蓄積した、また図2で主に弱型
カチオン樹脂5に蓄積した懸濁物質も一部排出されてい
く。 (b)この形成された固定層を維持できる流速、例えば
カチオン塔の強型カチオン樹脂ではLV6〜8m/h以
上、アニオン塔の強型アニオン樹脂ではLV4〜6m/
h以上の流速で、再生剤として各々2.5〜4%のHC
l、1.5〜4%NaOH(30〜45℃)を通薬して
いく。
(A) LV 20 to 26 m / h in the cation tower
As described above, high-velocity backwash of LV 14 to 20 m / h or more is performed in the anion tower for 2 to 3 minutes using the treated water in the upward flow from the lower water collecting device 3, and the strong or weak ion exchange resin 4 or 4 + 5 is used.
Is pressed against the inert resin 7 to form a fixed layer. The flow rate of the high-flow-rate backwash is slightly different depending on the specific gravity of the resin, the water temperature, and the ratio of the freeboard 6, but any flow rate that can form the fixed layer is essential. At this time, when collecting water
Part of the suspended solids accumulated in the strong cation resin 4 and mainly accumulated in the weak cation resin 5 in FIG. 2 are also discharged. (B) A flow velocity capable of maintaining the formed fixed bed, for example, LV6 to 8 m / h or more for the strong cation resin of the cation tower, and LV4 to 6 m / h for the strong anion resin of the anion tower.
2.5 to 4% of HC as a regenerant at flow rates above h
1, 1.5-4% NaOH (30-45 ° C.) is passed through.

【0026】(c)次いで、この固定層を維持できる流
速で処理水を通水し、押出工程を行う。通薬工程、押出
工程において、弱型イオン交換樹脂は強型イオン交換樹
脂より、比重が小さいので、固定層を維持する流速は強
型イオン交換樹脂に必要な流速でよい。また、通薬工
程、押出工程において、強型イオン交換樹脂は塩形から
再生形に変換していくため樹脂は膨潤する。このため、
図1の例において、この膨潤による樹脂の圧変化が生
じ、カチオン塔において、捕捉した懸濁物質の排出が困
難になることが懸念されたが、実験の結果、実用的な塔
径の大きい、500φ以上の場合、充填層高Lと塔径D
の比L/Dが2〜3以下であれば、押出工程終了時にお
いて、樹脂の膨潤による圧密化は全く生じないことがわ
かった。
(C) Next, the treated water is passed through at a flow rate capable of maintaining the fixed bed, and the extrusion step is performed. In the drug passing step and the extrusion step, the weak ion exchange resin has a smaller specific gravity than the strong ion exchange resin, and therefore the flow rate for maintaining the fixed bed may be the flow rate required for the strong ion exchange resin. Further, in the drug passing step and the extrusion step, the strong ion-exchange resin is converted from the salt form to the regenerated form, so that the resin swells. For this reason,
In the example of FIG. 1, it was feared that the resin pressure change due to the swelling would make it difficult to discharge the suspended substances trapped in the cation tower, but as a result of the experiment, the practical tower diameter was large, In case of 500φ or more, packed bed height L and tower diameter D
It was found that if the ratio L / D of 2 to 3 is less than or equal to 2 or 3, no consolidation due to swelling of the resin occurs at the end of the extrusion process.

【0027】これは下記の理由によると思われる。本発
明では、実施する高流速逆洗工程で形成された固定層を
維持する程度の低流速で通薬工程、押出工程を実施する
ため、この強型イオン交換樹脂の膨潤分の体積、強型カ
チオン樹脂で4〜5%の増加分は、樹脂が下方に落下す
る力も作用することによって、塔の横方向でなく下方に
向かっていくため膨潤圧は開放されていくものと考えら
れる。また、その膨潤する体積も強型カチオン樹脂で前
記のように、再生後で4〜5%の増加であり、小さいこ
とにもよろう。
This is probably due to the following reasons. In the present invention, since the flow-through step and the extrusion step are carried out at a low flow rate such that the fixed layer formed in the high-flow rate backwash step is carried out, the volume of the swollen portion of the strong ion-exchange resin, the strong type It is considered that the swelling pressure is released because the amount of increase of 4 to 5% in the cationic resin goes downward rather than in the lateral direction of the tower by the force of the resin dropping downward. The swelling volume of the strong cation resin is also 4 to 5% after regeneration as described above, which may be small.

【0028】このため、原水と最初に接触する図1のカ
チオン塔においても、捕捉した懸濁物質は、通薬、押出
工程において上方に移行し易くなっている。弱型カチオ
ン樹脂の場合は、上向流の流れの通薬工程、押出工程に
よって、イオン形は塩形から再生形になるため、体積が
通常20〜25%収縮し、採水時、圧密化傾向にあった
樹脂自体の圧密化もなくなり、樹脂間にすきまが多くな
り、捕捉していた懸濁物質は徐々に上方へと移行してい
く。アニオン塔の場合、懸濁物質の混入はほとんどない
が、強型、弱型アニオン樹脂も同様の傾向となるため、
圧密化が解消され、破砕した樹脂等が徐々に上方へ移行
していく。
For this reason, even in the cation tower of FIG. 1 which first comes into contact with the raw water, the suspended substance trapped is likely to move upward during the feeding and extrusion steps. In the case of a weak cation resin, the ionic form changes from a salt form to a regenerated form due to the upward flow flow-through process and extrusion process, so the volume usually shrinks by 20-25%, and it is consolidated during water sampling. The tendency of consolidation of the resin itself also disappears, the gap between the resins increases, and the suspended substances trapped gradually move upward. In the case of an anion tower, there is almost no mixing of suspended substances, but strong and weak anion resins have the same tendency, so
The consolidation is eliminated, and the crushed resin, etc. gradually moves upward.

【0029】(d)続いて、(a)と同様に高流速逆洗
工程を行い、これらの懸濁物質や、破砕され微細化した
樹脂を一気に不活性樹脂層を通り、上部集水装置から系
外に排出する。(b)、(c)、(d)の工程による懸
濁物質、破砕した微細な樹脂の排出は、図1の強型カチ
オン樹脂単層の場合より、図2の強型、弱型カチオン樹
脂を用いた複層床の方がし易い。これは次の理由によ
る。すなわち、採水時、特に原水が最初に流入する弱型
カチオン樹脂は再生形から塩形へとなっていくため、膨
潤傾向となり、原水中の懸濁物質を捕捉し易いことによ
って、弱型カチオン樹脂の表層から400〜600mm
程度までしか懸濁物質は入り込みにくい。したがって、
大部分は弱型カチオン樹脂で捕捉され、強型カチオン樹
脂へ入り込むのは極くわずかであることによる。前述の
如く、弱型カチオン樹脂5は、塩形から再生形への体積
の収縮が大きく、通薬、押出工程後の再度の高流速逆洗
によって、懸濁物質の排出が更に確実になっているので
ある。
(D) Subsequently, as in (a), a high flow rate backwashing step is carried out, and these suspended substances and the crushed and atomized resin pass through the inert resin layer all at once and are discharged from the upper water collecting device. Discharge to the outside of the system. Discharge of suspended substances and crushed fine resin by the steps (b), (c), and (d) is stronger and weaker than that of the strong cationic resin single layer of FIG. It is easier to use a multi-story floor using. This is for the following reason. That is, at the time of water sampling, the weak cation resin into which the raw water first flows is changed from the regenerated form to the salt form, so that it tends to swell, and it is easy to capture suspended substances in the raw water. 400 to 600 mm from the surface layer of resin
Suspended matter is difficult to enter only to some extent. Therefore,
This is because most of them are captured by the weak cation resin, and only a small amount of them enter the strong cation resin. As described above, the weak cation resin 5 has a large volume contraction from the salt form to the regenerated form, and the discharge of the suspended substance is further ensured by the high flow rate backwashing again after the injection process and the extrusion process. Is there.

【0030】(e)次いで、上部集水装置から、塔下部
の洗浄排水弁13を開として、又は塔頂部の空気抜弁1
4、洗浄排水弁13を開として、水の下降流を用いて高
流速逆洗で形成された固定層を塔下部に移動させる樹脂
移動工程を行う。この工程はフリーボードが小さいた
め、0.5〜2分程度で終了するので、空気抜弁14と
洗浄排水弁13を開としてゆっくり行う方が好ましい。
空気抜弁14を開として行った場合は、その後塔内の満
水工程が必要になる。
(E) Next, from the upper water collecting device, the washing drain valve 13 at the bottom of the tower is opened, or the air vent valve 1 at the top of the tower.
4. The washing / drainage valve 13 is opened, and the resin moving step of moving the fixed bed formed by high-velocity backwashing to the lower part of the tower by using the descending flow of water is performed. This process is completed in about 0.5 to 2 minutes because the size of the freeboard is small, so it is preferable to slowly open the air vent valve 14 and the cleaning drain valve 13.
When the air vent valve 14 is opened, a full water process in the tower is required thereafter.

【0031】(f)最後の工程として、原水流入弁8、
洗浄排水弁13を開として通常の洗浄を行い、規定水
質、時間で再生を終了する。また、本発明においては、
特にカチオン塔において生じ易いが、懸濁物質等がかな
りの量樹脂層に入り込み、採水時の圧力損失の増大や、
通薬・押出工程での再生剤不均一分散等が生じた場合の
対策として、次のような方法を採用している。すなわ
ち、表層よりかなり深いところまで懸濁物質が入り込ん
だ場合、図1の強型カチオン樹脂4単層の場合は、採水
終了後の塩形の樹脂体積の最も小さい条件で、フリーボ
ードが最も大きくなった条件下で原水又は処理水を用い
て高流速逆洗を2〜3分間行い、続いて、形成された固
定層への通水を止め、樹脂を自由沈降させて樹脂と懸濁
物質との分離を促進させる5〜15分間の沈整工程を繰
り返して、懸濁物質を排出していくのである。
(F) As the final step, the raw water inflow valve 8,
The cleaning / drainage valve 13 is opened to perform normal cleaning, and the regeneration is completed at the specified water quality and time. In the present invention,
In particular, it is likely to occur in the cation tower, but a considerable amount of suspended matter and the like enters the resin layer, increasing the pressure loss during water collection,
The following methods have been adopted as countermeasures against non-uniform dispersion of regenerants during the drug passing / extrusion process. That is, in the case where the suspended solids penetrate deeper than the surface layer, and in the case of the strong cation resin 4 single layer in Fig. 1, the freeboard is the most under the condition that the volume of the salt-type resin after the completion of water sampling is the smallest. High-velocity backwash with raw water or treated water under increased conditions for 2-3 minutes, then stop the flow of water to the formed fixed bed, and let the resin settle freely to suspend the resin and suspended solids. The suspended substance is discharged by repeating the settling process for 5 to 15 minutes to accelerate the separation of the suspended solids.

【0032】図2の複層床の場合は、再生前、再生後の
どちらでもよいが、好ましくはトータルとして全樹脂の
体積が小さくなる再生後に処理水を用いて同様に行うの
がよい。これは弱型イオン交換樹脂の体積は、再生形で
最も小さくなるからである。すなわち、通常再生レベル
の通薬、押出終了後、2〜10分間の沈整工程を行い、
2〜3分間の高流速逆洗を繰り返す通常カチオン塔で3
回程度でよい。アニオン塔は、懸濁物質の混入が通常ほ
とんどないので、カチオン塔のような頻度で行われなく
てもよい。本操作のあとは、再度通常再生を行い、トー
タルとして2〜2.5倍量の再生レベルとなるようにす
ると安定した処理水が得られる。このような高流速逆洗
工程と沈整工程の繰り返しにより、異常時の対策も本発
明では実施できるのである。
In the case of the multi-layer bed shown in FIG. 2, it may be either before or after the regeneration, but it is preferable to use the treated water after the regeneration so that the total volume of the resin becomes small. This is because the volume of the weak ion exchange resin is the smallest in the regenerated type. That is, the normal regeneration level of the medicine is passed, and after the extrusion, a setting step for 2 to 10 minutes is performed,
Repeat the high flow rate backwash for 2-3 minutes in a normal cation tower.
Only about once. Anion towers do not need to be run as frequently as cation towers, as suspended solids are usually rarely mixed. After this operation, normal treated water is regenerated again so that the total regeneration level is 2 to 2.5 times, so that stable treated water can be obtained. By repeating the high-flow-rate backwashing step and the sedimentation step as described above, the present invention can implement countermeasures against abnormalities.

【0033】[0033]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 内径1300φ×3200H(胴長)のイオン交換塔の
大部室に強型カチオン樹脂としてHCR−W2をR−H
形で2780mm層高となるように充填した。 上下の集水装置 : ノズル付き多孔板方式 フリーボード : 再生形に対して、220mm(6.8%)、 採水終了後、370〜390mm(14.2〜15.0 %)、 不活性樹脂 : ポリプロピレン製2.5〜3.5mmφ、 再生レベル : 29.5g/リットル−R(強型カチオン樹脂R−Na )、100%HCl、
The present invention will be described below in more detail with reference to examples. Example 1 RH of HCR-W2 as a strong cation resin was used in a large chamber of an ion exchange column having an inner diameter of 1300φ × 3200H (body length).
It was filled so as to have a layer height of 2780 mm. Top and bottom water collecting device: Perforated plate method with nozzle Freeboard: 220mm (6.8%) against regenerated type, 370-390mm (14.2 to 15.0%) after water sampling, inert resin : Polypropylene 2.5-3.5 mmφ, reproduction level: 29.5 g / liter-R (strong type cationic resin R-Na), 100% HCl,

【0034】 原 水 : 河川水 凝集ろ過水 処理濃度:0.5度以下 表2に原水のイオン組成を示す。Raw water: River water Coagulated filtered water Treatment concentration: 0.5 degrees or less Table 2 shows the ionic composition of raw water.

【表2】 [Table 2]

【0035】表3に再生工程(カチオン塔)の再生条件
を示す。
Table 3 shows the regeneration conditions in the regeneration step (cation tower).

【表3】 注)樹脂移動工程:空気抜弁開として行った。[Table 3] Note) Resin transfer process: The air vent valve was opened.

【0036】 〔結 果〕 1)採水時間: 19.1時間、採水 30m3 /h、 2)採水量: 572.5m3 /c アニオン塔出口 エンドポイント:5μS/cm 3)再生効率: 75% 4)処理水質: 0.2〜5.0μS/cm 5)再生時間: 約78分 6)圧力損失の上昇は10サイクル目でも認められなかった。[Results] 1) Water sampling time: 19.1 hours, water sampling 30 m 3 / h, 2) Water sampling amount: 572.5 m 3 / c Anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 75% 4) Treated water quality: 0.2 to 5.0 μS / cm 5) Regeneration time: about 78 minutes 6) No increase in pressure loss was observed even at the 10th cycle.

【0037】実施例2 内径1200φ×2500H(胴長)のイオン交換塔に
強型カチオン樹脂としてダウエックス650CをR−H
形で1200mm、その上に弱型カチオン樹脂、レバチ
ットCNP80をR−H形で750mm充填し、表2の
原水を通水した。 上下の集水装置: ノズル付多孔板方式 フリーボード: 350mm 弱型カチオン樹脂再生形 1350mm 強型カチオン樹脂再生形 750mm この時のフリーボード% 16.7% 1サイクル採水終了後の層高 弱型カチオン樹脂 810mm 強型カチオン樹脂 1310mm この時のフリーボード% 16.5% 再生剤量: 100%HCl 85kg 不活性樹脂: ポリプロピレン製 2.5〜3.5mmφ、200mm
Example 2 Dowex 650C was used as a strong cation resin in an ion exchange column having an inner diameter of 1200φ × 2500H (body length) and RH.
The shape was 1200 mm, and the weak cationic resin, Levatit CNP80, was filled in the shape R-H for 750 mm, and the raw water in Table 2 was passed through. Upper and lower water collecting device: Perforated plate method with nozzle Freeboard: 350mm Weak type cationic resin regenerated type 1350mm Strong type cationic resin regenerated type 750mm Freeboard at this time% 16.7% Layer height weak after one cycle of water sampling Cationic resin 810mm Strong type cationic resin 1310mm Freeboard at this time% 16.5% Regenerator amount: 100% HCl 85kg Inert resin: polypropylene 2.5-3.5mmφ, 200mm

【0038】表4に再生工程の再生条件を示す。Table 4 shows the regeneration conditions in the regeneration step.

【表4】 [Table 4]

【0039】 〔結 果〕 1)採水時間 : 19時間、採水 30m3 /h、 2)採水量 : 570m3 /c アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 88.1% 4)処理水質 : 0.2〜5.0μS/cm 5)再生時間 : 約80分 6)圧力損失の上昇は10サイクル目でも認められなかった。[Results] 1) Water sampling time: 19 hours, water sampling 30 m 3 / h, 2) Water sampling amount: 570 m 3 / c Anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 88.1% 4) Treated water quality: 0.2 to 5.0 μS / cm 5) Regeneration time: about 80 minutes 6) No increase in pressure loss was observed even at the 10th cycle.

【0040】実施例3 実施例2のイオン交換塔を用い、原水に河川底泥の懸濁
物質を濁度として0.5度〜2度の範囲で注入した。実
施例2と同一の方法で再生した。また10サイクル毎に
塩酸通薬前に処理水を用い、高流速逆洗工程2分間と通
水を停止し、樹脂を自由に落下させる沈整工程、5分間
を2回繰り返す懸濁物質の排出を行う特別再生を行っ
た。特別再生の再生剤量は通常時と同一とした。
Example 3 Using the ion exchange column of Example 2, the suspended matter of river bottom mud was injected into raw water in the range of 0.5 to 2 degrees in terms of turbidity. Regeneration was carried out in the same manner as in Example 2. In addition, every 10 cycles, the treated water is used before the hydrochloric acid injection, the high flow rate backwash step is stopped for 2 minutes and the water flow is stopped, and the sedimentation step in which the resin is allowed to fall freely is repeated 5 minutes twice. Special reproduction was performed. The amount of regenerant for special regeneration was the same as in normal times.

【0041】 〔結 果〕 1)採水時間 : 18.8時間、採水 30m3 /h、 2)採水量 : 565m3 アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 87.3% 4)処理水質 : 0.2〜5.0μS/cm 5)再生時間 : 通常時 約80分間、特別再生時 約105分 6)圧力損失の上昇はサイクルが進んでも見られなかった。[Results] 1) Water sampling time: 18.8 hours, water sampling 30 m 3 / h, 2) Water sampling: 565 m 3 Anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 87.3% 4) Treated water quality: 0.2 to 5.0 μS / cm 5) Regeneration time: Approximately 80 minutes during normal regeneration, approximately 105 minutes during special regeneration 6) No increase in pressure loss was observed even when the cycle proceeded.

【0042】[0042]

【発明の効果】本発明によれば従来の下降流通水・上昇
流通薬を行う向流式イオン交換塔の持つ欠点、すなわち
再生時間の延長、再生廃液量の増加、逆洗に伴う諸問題
の発生、強・弱樹脂の混合、及び装置・再生操作の複雑
化、再生コストの増加等が解決できる。その結果、シン
プルでコンパクトなイオン交換装置、及び簡単で短時間
に終了する再生方法を提供でき、良好な処理水質を安価
にかつ安定的に得ることができる。
EFFECTS OF THE INVENTION According to the present invention, the disadvantages of the conventional countercurrent type ion exchange tower for performing descending flow water / upflow drug, namely, extension of regeneration time, increase of the amount of regeneration waste liquid, and problems associated with backwashing It is possible to solve problems such as generation, mixing of strong and weak resins, complication of equipment and recycling operation, and increase of recycling cost. As a result, a simple and compact ion exchange apparatus and a simple and short-term regeneration method can be provided, and good treated water quality can be obtained inexpensively and stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の再生方法に用いる強型イオン交換樹脂
の単層のイオン交換塔の概略図。
FIG. 1 is a schematic view of a single layer ion exchange tower of a strong ion exchange resin used in the regeneration method of the present invention.

【図2】本発明の再生方法に用いる強型と弱型イオン交
換樹脂の複層床のイオン交換塔の概略図。
FIG. 2 is a schematic view of an ion exchange column having a double bed of strong and weak ion exchange resins used in the regeneration method of the present invention.

【図3】中間集水方式を用いた従来法のイオン交換塔の
概略図。
FIG. 3 is a schematic view of a conventional ion exchange tower using an intermediate water collection system.

【符号の説明】[Explanation of symbols]

1:イオン交換塔、2:上部集水装置、3:下部集水装
置、4:強型イオン交換樹脂、5:弱型イオン交換樹
脂、6:フリーボード、7:不活性樹脂、8:原水流入
弁、9:再生排水流出弁、10:処理水流出弁、11:
逆洗水流入弁、12:再生剤兼押出水流入弁、13:洗
浄排水弁、14:空気抜弁、15:不活性樹脂量調整
弁、16:強型イオン交換樹脂量調整弁、17:弱型イ
オン交換樹脂量調整弁、18:加圧水又は加圧空気導入
弁、19:上部逆洗水弁、20:中間集水装置、21:
逆洗排水弁、22:非有効樹脂、
1: Ion exchange tower, 2: Upper water collector, 3: Lower water collector, 4: Strong ion exchange resin, 5: Weak ion exchange resin, 6: Free board, 7: Inert resin, 8: Raw water Inflow valve, 9: regeneration drainage outflow valve, 10: treated water outflow valve, 11:
Backwash water inflow valve, 12: Regeneration agent and extruded water inflow valve, 13: Wash drainage valve, 14: Air vent valve, 15: Inert resin amount adjustment valve, 16: Strong ion exchange resin amount adjustment valve, 17: Weak Type ion exchange resin amount adjusting valve, 18: pressurized water or pressurized air introduction valve, 19: upper backwash water valve, 20: intermediate water collecting device, 21:
Backwash drain valve, 22: ineffective resin,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換塔の上下に集水装置を設け、
下部集水装置の上部にイオン交換樹脂を充填し、更にそ
の上部に採水終了時のイオン交換樹脂の5〜25%のフ
リーボードを介してイオン交換樹脂より大粒径で且つ、
イオン交換樹脂を保持できる大きさで比重が1.0より
小さい不活性樹脂を充填した下降流通水・上昇流通薬を
行う向流式イオン交換塔の再生方法において、下記
(a)〜(f)の工程を順次行い樹脂を再生することを
特徴とする向流式イオン交換塔の再生方法。 (a)、塔下部に設けた下部集水装置からの高流速逆洗
によりイオン交換樹脂の大部分を不活性樹脂に押しつ
け、通水時に蓄積した懸濁物質を不活性樹脂を経由して
塔上部に設けた上部集水装置から排出除去すると共に、
イオン交換樹脂の固定層を形成する高流速逆洗工程、
(b)、高流速逆洗工程より低速で、(a)工程で形成
された固定層を維持するに必要な流速で再生剤を下部集
水装置から上昇流で通薬する通薬工程、(c)、大部分
の前記固定層を維持できる流速で下部集水装置から処理
水を上昇流で通水し、残留する再生剤を有効に利用する
押出工程、(d)、再度前記(a)工程を行い懸濁物質
を上部集水装置から排出する工程、(e)、上部集水装
置から塔下部の洗浄排水弁を開とするか、又は塔頂部の
空気抜弁と塔下部の洗浄排水弁を開として、水の下降流
を用いて前記形成された固定層を塔下部に移動させる樹
脂移動工程、(f)、上部集水装置から下降流で通水し
て樹脂を洗浄する洗浄工程。
1. Water collecting devices are provided above and below the ion exchange tower,
The upper part of the lower water collecting device is filled with an ion exchange resin, and the upper part thereof has a particle size larger than that of the ion exchange resin through a free board of 5 to 25% of the ion exchange resin at the end of water sampling.
In a method for regenerating a countercurrent type ion exchange column, which is a size capable of holding an ion exchange resin and is filled with an inert resin having a specific gravity of less than 1.0, downward flow water / upflow flow chemical is used. The method for regenerating a countercurrent ion exchange tower is characterized in that the steps are sequentially performed to regenerate the resin. (A), most of the ion-exchange resin is pressed against the inert resin by high-speed backwashing from the lower water collecting device provided at the lower part of the tower, and the suspended substances accumulated during water passage are passed through the inert resin to the tower. While discharging and removing from the upper water collecting device provided at the top,
A high flow rate backwashing process to form a fixed bed of ion exchange resin,
(B), a replenishment step in which the regenerant is passed upflow from the lower water collecting device at a flow rate required to maintain the fixed bed formed in step (a) at a lower speed than the high-flow rate backwash step; c), an extrusion step in which treated water is passed in an upward flow from the lower water collecting device at a flow rate that can maintain most of the fixed bed, and the remaining regenerant is effectively used, (d), and again (a) (E), opening the washing drain valve at the lower part of the tower from the upper water collecting device, or the air vent valve at the top of the tower and the washing drain valve at the lower part of the tower. And a resin moving step of moving the formed fixed layer to the lower part of the tower by using a downward flow of water, (f), a washing step of washing the resin by passing a downward flow of water from the upper water collecting device.
【請求項2】 前記の再生処理及び採水処理の一定頻度
毎に、採水終了後、又は前記(c)の押出工程終了後
に、前記(a)工程と、通水を停止し樹脂を自由に落下
させる沈整工程を繰り返して、蓄積した懸濁物質を不活
性樹脂層を経由して上部集水装置から排出除去する工程
を行うことを特徴とする請求項1記載の向流式イオン交
換塔の再生方法。
2. The resin is freed by stopping the flow of water in step (a) after the completion of water collection or after the completion of the extrusion step of (c) at regular intervals of the regeneration processing and water collection processing. The countercurrent ion exchange according to claim 1, wherein the step of discharging the accumulated suspended solids from the upper water collecting device through the inert resin layer is repeated by repeating the settling step of dropping to the upper side. How to regenerate the tower.
【請求項3】 前記不活性樹脂はイオン交換樹脂の有効
径の2〜8倍の粒径のものを使用し、不活性樹脂層高を
100〜400mmにすることを特徴とする請求項1又
は2記載の向流式イオン交換塔の再生方法。
3. The inert resin having a particle diameter of 2 to 8 times the effective diameter of the ion exchange resin is used, and the height of the inert resin layer is 100 to 400 mm. 2. The method for regenerating a countercurrent ion exchange tower according to 2.
【請求項4】 前記イオン交換樹脂は、強酸性カチオン
交換樹脂単床、強酸性カチオン交換樹脂と弱酸性カチオ
ン交換樹脂の複層床、強塩基性アニオン交換樹脂単床、
強塩基性アニオン交換樹脂と弱塩基性アニオン交換樹脂
の複層床のいずれかを充填することを特徴とする請求項
1、2又は3記載の向流式イオン交換塔の再生方法。
4. The ion exchange resin is a single bed of strongly acidic cation exchange resin, a multi-layered bed of strongly acidic cation exchange resin and weakly acidic cation exchange resin, a single bed of strongly basic anion exchange resin,
The method for regenerating a countercurrent type ion exchange column according to claim 1, 2 or 3, characterized in that it is packed with either a multi-layer bed of a strongly basic anion exchange resin or a weakly basic anion exchange resin.
JP30230695A 1995-10-27 1995-10-27 Regeneration method of high flow backwash type ion exchange column Expired - Lifetime JP3162614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30230695A JP3162614B2 (en) 1995-10-27 1995-10-27 Regeneration method of high flow backwash type ion exchange column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30230695A JP3162614B2 (en) 1995-10-27 1995-10-27 Regeneration method of high flow backwash type ion exchange column

Publications (2)

Publication Number Publication Date
JPH09117680A true JPH09117680A (en) 1997-05-06
JP3162614B2 JP3162614B2 (en) 2001-05-08

Family

ID=17907382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30230695A Expired - Lifetime JP3162614B2 (en) 1995-10-27 1995-10-27 Regeneration method of high flow backwash type ion exchange column

Country Status (1)

Country Link
JP (1) JP3162614B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277126B1 (en) * 2010-05-10 2013-06-20 미우라고교 가부시키카이샤 Method for operating ion exchange equipment and ion exchange equipment
JP2016002540A (en) * 2014-06-19 2016-01-12 栗田工業株式会社 Method and apparatus for regenerating double layer type anion exchange resin column
JPWO2015159948A1 (en) * 2014-04-16 2017-04-13 栗田工業株式会社 Method for regenerating weakly acidic cation exchange resin
CN111056594A (en) * 2019-12-26 2020-04-24 世源科技工程有限公司 Fixed bed capable of supporting bed regeneration and regeneration process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835998B1 (en) * 2016-10-25 2018-03-07 주식회사 엘지생활건강 Hinge member and vessel having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277126B1 (en) * 2010-05-10 2013-06-20 미우라고교 가부시키카이샤 Method for operating ion exchange equipment and ion exchange equipment
US8845904B2 (en) 2010-05-10 2014-09-30 Miura Co., Ltd. Method for operating ion exchange equipment
JPWO2015159948A1 (en) * 2014-04-16 2017-04-13 栗田工業株式会社 Method for regenerating weakly acidic cation exchange resin
JP2016002540A (en) * 2014-06-19 2016-01-12 栗田工業株式会社 Method and apparatus for regenerating double layer type anion exchange resin column
CN111056594A (en) * 2019-12-26 2020-04-24 世源科技工程有限公司 Fixed bed capable of supporting bed regeneration and regeneration process thereof

Also Published As

Publication number Publication date
JP3162614B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3145240B2 (en) Continuous ion exchange equipment
EP3283218B1 (en) Regeneration of mixed bed resins
US3512640A (en) Countercurrent solid-liquid contacting system
US5108616A (en) Process for ion exchangers, particularly for regeneration after softening and demineralization of aqueous solutions
JPS5953098B2 (en) Methods for transporting and processing resins in moving bed ion exchange systems
JPH09117680A (en) Regeneration of rapid flow velocity back wash-type ion exchange tower
US3512641A (en) Countercurrent solid-liquid contacting system
US4269715A (en) Process and apparatus for treating by ion exchange or adsorption fluids having solid particles suspended therein
JP3162616B2 (en) Regeneration method of countercurrent ion exchange column
US20040251191A1 (en) Method of liquid purification using ion exchange resin being kept in a compacted state by means of elastic material
CA1166618A (en) Methods of ion exchange countercurrent regeneration
JP3162615B2 (en) Regeneration method of countercurrent ion exchange column
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP3278128B2 (en) Countercurrent ion exchanger
JP3941890B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP2940651B2 (en) Pure water production equipment
JP4315385B2 (en) Ion exchange tower
JP3907013B2 (en) Countercurrent ion exchange apparatus using resin having uniform particle size and regenerating method thereof
WO2023119747A1 (en) Separator column for mixed ion exchange resins, and method for separating mixed ion exchange resins using same
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JP3212463B2 (en) Multi-layer ion exchange equipment
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JPH049583B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term