JPS6340137B2 - - Google Patents

Info

Publication number
JPS6340137B2
JPS6340137B2 JP54167597A JP16759779A JPS6340137B2 JP S6340137 B2 JPS6340137 B2 JP S6340137B2 JP 54167597 A JP54167597 A JP 54167597A JP 16759779 A JP16759779 A JP 16759779A JP S6340137 B2 JPS6340137 B2 JP S6340137B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
collector
layer
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167597A
Other languages
Japanese (ja)
Other versions
JPS5689847A (en
Inventor
Juji Haraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP16759779A priority Critical patent/JPS5689847A/en
Publication of JPS5689847A publication Critical patent/JPS5689847A/en
Publication of JPS6340137B2 publication Critical patent/JPS6340137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイオン交換塔内に弱電解質イオン交換
樹脂を上層に、強電解質イオン交換樹脂を下層に
充填した複層床を形成し、下降流でイオン交換処
理(以下通水と称する。)を行ない、上昇流で酸、
アルカリなどの再生剤を用いて当該複層床を再生
する方法に関する。 従来、イオン交換装置の操作法のうちでは下降
流通水、下降流再生法(以下下降流再生法と称す
る。)、および下降流通水、上昇流再生法(以下上
昇流再生法と称する。)の両法が最も一般的であ
るが、これら両者を比較するとそれぞれ同一の再
生剤を用いて再生した場合、上昇流再生法の方が
下降流再生法よりも一般に高純度の処理水をうる
ことができる。換言すれば所定の純度の処理水を
うるために要する再生剤の使用量は上昇流再生法
の方が下降流再生法よりも少なくてよい。上昇流
再生法は下降流再生法に比較してかかる利益があ
るので近年ますます採用されている。 なお上昇流再生法は再生剤をイオン交換塔下部
より上昇流で流入させるので再生剤の上昇流によ
りイオン交換樹脂層が押し上げられ流動すること
を防ぐための手段が必要であるが、その手段のひ
とつとしてイオン交換樹脂層の上面よりやや下に
再生廃液排出用のコレクタを内設せしめ、再生
剤、押出水をイオン交換塔下部から上昇流で流入
させる際に、塔上部より空気、水などの流体を流
入せしめて再生廃液排出用のコレクタから再生廃
液と共に排出して、当該流体の流入圧力により樹
脂層を保持せしめつつ再生する方法が用いられて
いる。 すなわち、埋没せしめたコレクタの上部に位置
するイオン交換樹脂層を当該流体が下向きに通過
する際に生ずる圧力損失をもつてイオン交換樹脂
層を保持せしめて目的を達する。 このような上昇流再生法において、従来は強電
解質イオン交換樹脂のみが使用されていたが、最
近では、より再生剤の使用量を低下させるため
に、再生効率の優れた弱電解質イオン交換樹脂の
併用が考えられている。 すなわち、上層を弱電解質イオン交換樹脂、下
層を強電解質イオン交換樹脂とした複層床とする
ものであり、さらに詳しくはカチオン塔では上層
を弱酸性陽イオン交換樹脂とし、下層を強酸性陽
イオン交換樹脂とし、アニオン塔では上層を弱塩
基性陰イオン交換樹脂とし、下層を強塩基性陰イ
オン交換樹脂とするものである。 一般に弱電解質イオン交換樹脂は、それに対応
する強電解質イオン交換樹脂より密度が小さく、
したがつてこのような複層床は逆洗などの方法に
より容易に達成することができる。イオン交換樹
脂層を弱電解質イオン交換樹脂と強電解質イオン
交換樹脂の複層床とすると、弱電解質イオン交換
樹脂を強電解質イオン交換樹脂の再生廃液で効率
よく再生することができるので、強電解質イオン
交換樹脂のみを用いた単床よりも再生剤使用量を
さらに低下せしめることができることは説明する
までもない。 しかし当該複層床を前述した方法で上昇流で再
生すると以下に述べるような不具合が生じる。 すなわち前述した方法で上昇流再生を行なう場
合、イオン交換樹脂層の上部に内設したコレクタ
にはイオン交換塔の上部から流入する流体とイオ
ン交換塔の下部から上昇してくる再生廃液とが同
時に流入するため、コレクタの周辺のイオン交換
樹脂がコレクタに押しつけられ、コレクタの周囲
にイオン交換樹脂の密着層(以下ブロツキングと
言う。)が形成される。一方イオン交換樹脂全体
が強電解質イオン交換樹脂の場合は飽和型(塩
型)から再生型(陽イオン交換樹脂ではH型、陰
イオン交換樹脂ではOH型)になるとイオン交換
樹脂の体積が若干膨潤する方向であり、またイオ
ン交換樹脂が再生剤などの強電解質溶液に接触す
ることによるイオン交換樹脂の収縮現象
(Shrinkage)が多少生じたとしても、この収縮
はわずかであり、したがつて前述したブロツキン
グが生じても、それ程問題なく再生することがで
きる。しかしイオン交換樹脂が弱電解質イオン交
換樹脂の場合は全く様子が異なつてくる。すなわ
ち弱電解質イオン交換樹脂は飽和型から再生型に
なると大幅にその体積が減少(弱酸性陽イオン交
換樹脂の場合は約50%、弱塩基性陰イオン交換樹
脂の場合は約20%)するので、この体積の減少分
を見込んで、あらかじめコレクタの上部に余分の
弱電解質イオン交換樹脂を充填して上昇流再生を
スタートせねばならないが、前述したように、再
生中にコレクタの周辺部に弱電解質イオン交換樹
脂のブロツキングが形成され、このブロツキング
が障害となつてコレクタの上部に充填した弱電解
質イオン交換樹脂が下方部に落下しない。したが
つてコレクタ下部のイオン交換樹脂層は弱電解質
イオン交換樹脂の体積の減少分だけ空間部が形成
されることになり、たとえイオン交換塔の上部か
ら流体が流入しても再生中にイオン交換樹脂層が
流動化してしまう。 このようにイオン交換樹脂層が流動化すると再
生剤が片流れを起こし、イオン交換樹脂の再生が
満足に行なわれなくなる。特に複層床においては
再生剤の使用量を極力減少せしめているので、こ
の流動化はそのまま処理水の純度の低下および収
量の低下などにつながりその影響は大きい。した
がつて前述したコレクタ周辺のイオン交換樹脂の
ブロツキングを解除しないかぎり、複層床の上昇
流再生はその目的を達成し得ないこととなる。な
お再生中にイオン交換樹脂層が流動化した場合、
イオン交換塔の下部からの再生剤の流入を中断
し、イオン交換塔の上部から水などを流入させる
と共に、イオン交換塔の下部からイオン交換塔内
の液体を排出させて強制的にイオン交換塔内に下
降流を形成させれば、イオン交換樹脂層全体がピ
ストンフローとなるので、コレクタ上部の弱電解
質イオン交換樹脂をコレクタ下部に落下させるこ
とができる。しかしながら本操作を行なうと、折
角再生した下方部のイオン交換樹脂層に、再生の
際に脱着された塩類を多量に含有しているイオン
交換樹脂層上部の再生廃液が接触することによ
り、再生型の樹脂が汚染され、かつイオン交換塔
下部に存在する流入した直後の有効な再生剤が塔
外に排出されることにより無駄となり、両者によ
り再生効率を低下させるので好ましい方法とは言
えない。 本発明は複層床のイオン交換樹脂層を上昇流で
再生するにあたり、イオン交換樹脂層に下降流を
与えずに、前述のブロツキング現象を解除し、再
生効率を低下せしめることなく、コレクタ上部の
弱電解質イオン交換樹脂をコレクタ下部に落下せ
しめ、これにより、イオン交換樹脂層を流動化さ
せることなく効果的に再生することを目的とする
ものである。 すなわち、本発明はイオン交換塔内に弱電解質
イオン交換樹脂を上層に、強電解質イオン交換樹
脂を下層に充填した複層床を形成し、弱電解質イ
オン交換樹脂の上層部内、あるいは弱電解質イオ
ン交換樹脂のさらに上層に充填した不活性樹脂層
内にコレクタを内設し、イオン交換塔の上部より
空気、水などの流体を流入すると同時にイオン交
換塔の下部より再生剤を流入し、当該流体と再生
廃液を前記コレクタから流出することにより、イ
オン交換樹脂層を押圧保持しながらイオン交換樹
脂を上昇流で再生するにあたり、当該再生中に流
体の流入と再生剤の流入を同時に実質的に一時中
断する操作を1回ないし複数回行なうことを特徴
とする複層床にしたイオン交換樹脂の上昇流再生
方法に関するものである。 以下に本発明を図面に基づいて詳細に説明す
る。 第1図は本発明の実施態様の一例である複層床
のフローを示す説明図であり、イオン交換塔1内
に強電解質イオン交換樹脂2を下層に、弱電解質
イオン交換樹脂3を上層に充填する。弱電解質イ
オン交換樹脂3の上層部に再生廃液排出用のコレ
クタ4を内設し、コレクタ4に再生廃液流出管5
を接続する。当該コレクタ4は多数の穴のあいた
ステンレススチール管などを放射状または肋骨状
にし、その外周面にサラン布などの網体をまきつ
けたもので、弱電解質イオン交換樹脂3の上層部
に水平に内設するが、他にステンレス管などの一
方の尖端に多数のスリツトなどからなる排出口を
開口させた棒状体を構成し、この棒状体の排出口
が、弱電解質イオン交換樹脂3の上層部内に位置
するように、弱電解質イオン交換樹脂層の上部か
ら多数本垂直状に差し込む縦型のコレクタとして
もよい。イオン交換塔1の上部に配水用デイスト
リビユータ6を付設し、配水用デイストリビユー
タ6に配水管7を連通し、また配水管7に逆洗排
水管8を分岐して接続する。一方イオン交換塔1
の下部に硅石あるいは硅石を接着剤で固めたイオ
ン交換樹脂の支持床9を形成すると共に、当該支
持床9の内部に再生用デイストリビユータ10を
内設し、再生用デイストリビユータ10に再生剤
流入管11を接続する。またイオン交換塔1の下
部に処理水流出管12を連通し、処理水流出管1
2に逆洗水流入管13および洗浄排水管14を分
岐して接続する。さらにイオン交換塔の上部に上
昇流再生の際に用いる空気、水などの流体流入管
15を連通する。また16ないし23は弁であ
る。なおイオン交換塔1がカチオン塔の場合は、
強電解質イオン交換樹脂2が強酸性陽イオン交換
樹脂、弱電解質イオン交換樹脂3が弱酸性陽イオ
ン交換樹脂であり、さらにイオン交換塔1がアニ
オン塔の場合は、強電解質イオン交換樹脂2が強
塩基性陰イオン交換樹脂、弱電解質イオン交換樹
脂3が弱塩基性陰イオン交換樹脂であることは言
うまでもない。 本イオン交換塔において通水する場合は弁1
6,23をそれぞれ開口し、原水を配水管7から
流入し、処理水を処理水流出管12から流出す
る。 本通水により、イオン交換塔1がカチオン塔の
場合は、原水中の炭酸水素イオンに相当するカル
シウムイオン、マグネシウムイオンを弱電解質イ
オン交換樹脂3で除去し、ナトリウムイオンなど
ののこりのイオンを強電解質イオン交換樹脂2で
除去する。またイオン交換塔1がアニオン塔の場
合は、原水中の塩素イオン、硫酸イオンなどの鉱
酸イオンを弱電解質イオン交換樹脂3で除去し、
炭酸イオン、シリカなどの弱酸イオンを強電解質
イオン交換樹脂2で除去する。なおアニオン塔の
場合、原水とはカチオン塔で処理された酸性軟水
を指す。 このような通水を行なうと、イオン交換樹脂が
イオン交換能力を喪失するので以下に説明する再
生工程を行なう。 まず通水中に流入した濁質を除去し、イオン交
換樹脂層をほぐすため逆洗工程を行なう。すなわ
ち弁22および弁17を開口し、逆洗水流入管1
3から逆洗水を流入し、逆洗排水を逆洗排水管8
から排水する。使用する逆洗水としては、カチオ
ン塔の場合は原水、アニオン塔の場合は酸性軟水
などが用いられる。この逆洗工程が終了した後、
弁17および弁22を閉じると共に弁16および
弁21を開口し、配水管7から高流速の原水を短
時間で流入する圧縮工程を行なう。当該圧縮工程
は通薬前にできるだけイオン交換樹脂層をコンパ
クトにするために行なうもので、通常LV10m/H
以上で1分以上好ましくはLV20〜30m/Hで約2
分間行なう。次に弁16および弁21を閉じると
共に弁20,19,18を開口し、再生剤流入管
11から再生剤、すなわちカチオン塔の場合は塩
酸水溶液、アニオン塔の場合はか性ソーダ水溶液
を流入し、流体流入管15から空気あるいは水
(以下、バランス流体と言う。)を流入し、再生廃
液および流体流入管15から流入したバランス流
体をコレクタ4を介して再生廃液流出管5から流
出する再生工程を行なう。なおバランス流体とし
て原水を用いる場合は、配水管7から流入しても
よいし、また純水を用いる場合は配水管7に純水
管(図示せず)を分岐して連通し、配水管7から
純水を流入してもよい。本工程は前述したごと
く、再生剤の上昇流によりイオン交換樹脂層が流
動化するのを防止するため、イオン交換塔の上部
からバランス流体を流入しながら上昇流でイオン
交換樹脂層を再生するものであるが、イオン交換
樹脂層がすべて強電解質イオン交換樹脂2の場合
は、前述のごとく本工程によりイオン交換樹脂層
があまり流動化せず、問題なく再生することがで
きる。 しかし第1図に示したような弱電解質イオン交
換樹脂3と強電解質イオン交換樹脂2の複層床の
場合は、このまま再生を続行すると、前述したご
とく以下のような不具合が生じる。すなわちコレ
クタ4は下方部からの再生廃液と上方部からのバ
ランス流体を集めるため、第2図に示したように
コレクタ4の周囲にイオン交換樹脂のブロツキン
グ層Bが形成される。また前述したごとく弱電解
質イオン交換樹脂3は飽和型から再生型になると
大幅にその体積が減少するが、ブロツキング層B
が障害となつて、コレクタ4上部の弱電解質イオ
ン交換樹脂3′がコレクタ4の下部に落下せず、
したがつてこの体積が減少した分だけコレクタ4
下部に空間が生じ、強電解質イオン交換樹脂2お
よび弱電解質イオン交換樹脂3が流動化してしま
う。したがつて本発明においてはこの流動化が起
こる前に弁20および弁18を同時に閉じ、流体
流入管15からのバランス流体の流入と再生剤流
入管11からの再生剤の流入を一時中断する。こ
のようにバランス流体と再生剤の流入を中断する
と、コレクタ4にはバランス流体および再生剤が
流れなくなり、その結果ブロツキング層Bが消失
する。このようにブロツキング層Bを消失させる
ことにより、コレクタ4の上部の弱電解質イオン
交換樹脂をその自重によりコレクタ4の下部に落
下させることができる。以上の落下が終了した
後、再び弁20および弁18を開口し、前記の再
生工程を続行する。本発明における当該中断は再
生中にすくなくとも1回以上行なう必要があり、
好ましくは3回以上行なうとよい。また中断時間
としてはブロツキング層Bを解除し、かつコレク
タ4上部の弱電解質イオン交換樹脂3′がその自
重によりコレクタ4下部に落下するに要する時間
が必要で、少なくとも30秒以上とし、好ましくは
1分ないし2分とするとよい。なお中断を2分も
行なえば充分にその目的を達成できるので、これ
以上の中断は再生時間を延長させるのであまり必
要ない。本発明においてブロツキング層Bを解除
し、コレクタ4上部の弱電解質イオン交換樹脂
3′を落下させるためには、バランス流体の流入
と再生剤の流入を同時に完全に停止するのが最も
好ましいが、両流体の流速を同時に著しく小さく
することによつても、その目的をある程度達成す
ることができるので、これも実質的に一時中断す
る操作として本発明の範囲に含まれる。 以上述べたごとく、上昇流再生中にバランス流
体と再生剤の流入を一時中断する操作を複数回行
なうと、その度ごとにブロツキング層Bを解除
し、コレクタ4上部の弱電解質イオン交換樹脂が
コレクタ4下部に落下するので、弱電解質イオン
交換樹脂3が再生型になることによる体積の減少
が生じても、コレクタ4下方部のイオン交換樹脂
層に空間部を形成させることがなく、バランス流
体の押圧効果を充分に発揮でき、上昇流再生中に
イオン交換樹脂層が流動化することがない。 再生剤流入管11からの規定量の再生剤の流入
が終了すると、次に押出工程を行なう。押出工程
はイオン交換樹脂層中に残留する再生剤を通薬と
ほぼ同じ流速で押し出すもので、再生剤流入管1
1から純水を流入するものである。なおこの押出
工程の際にも流体流入管15からバランス流体を
流入し、イオン交換樹脂層を押圧しながら純水を
上昇流で流入する。この押出工程の際にも必要で
あればバランス流体の流入と純水の流入を一時中
断する操作を行なつてもさしつかえない。 このような押出工程が終了した後、弁18,1
9,20を閉じ、弁16および弁21を開口して
常法により配水管7から原水を流入し、イオン交
換樹脂層を洗浄する。なおバランス流体として空
気を用いた場合は前記の洗浄を行なう前にコレク
タ4の上部の空間部を満水し、その後に洗浄を行
なう。規定の洗浄を終了した後、再びイオン交換
塔1は通水に供される。 次に本発明の再生方法におけるバランス流体に
ついて述べる。 前述したごとくバランス流体は、再生剤あるい
は押出水の上昇流によりイオン交換樹脂層が流動
化するのを防止するために流入するものであり、
通常、空気あるいは水が用いられるが、水を用い
る場合は純水の方が好ましい。何故なら弱電解質
イオン交換樹脂はそのイオン型の密度について飽
和型と再生型とを比較すると、再生型の方が軽
く、したがつて通水終了時に逆洗を行なうと、通
水終了時において残留している再生型の弱電解質
イオン交換樹脂が上層部に集まり、再生前におい
てすでにコレクタ4の上方に、再生型の弱電解質
イオン交換樹脂に富んだ充填層を形成することが
できる。したがつてバランス水として純水を用い
ることにより、コレクタ4上方の再生型の弱電解
質イオン交換樹脂を通水に際して有効に利用する
ことが可能となる。 従来の上昇流再生においては、コレクタ上部の
イオン交換樹脂は再生剤と接触しないためイオン
交換的に無効樹脂となり、場合によつてはバラン
ス流体として再生剤を使用し、コレクタの上部の
イオン交換樹脂をも再生していたが、弱電解質イ
オン交換樹脂と強電解質イオン交換樹脂の複層床
においては、前述の理由により単に逆洗を実施す
るだけでコレクタ上部に再生型に富んだ充填層を
形成することができ、よつて当該充填層を再生中
にそのまま維持することにより、特にこの充填層
を再生しなくとも有効樹脂として算入することが
可能となる。なおバランス流体として空気を用い
る場合も、当該充填層を再生中にそのまま維持す
るために効果的であり、かつ再生廃液の量を減少
させるという点でバランス流体として空気を用い
る方が優れている。 またイオン交換塔内に充填したイオン交換樹脂
を最大限に活用するという見地から、第3図に示
したように弱電解質イオン交換樹脂3および強電
解質イオン交換樹脂2からなる複層床の上部に、
弱電解質イオン交換樹脂3より軽い不活性樹脂2
4を充填し、当該不活性樹脂24の層内にコレク
タ4を内設したイオン交換塔1も、場合によつて
は使用されるが、当該イオン交換塔の再生におい
ても、上昇流再生中にコレクタ4の周囲に不活性
樹脂がブロツキングを起こし、コレクタ上部の不
活性樹脂24が落下しないことにより、同じよう
にイオン交換樹脂層が流動することとなる。した
がつて当該イオン交換塔においても、本発明を実
施することによりイオン交換樹脂の流動化を防止
でき、効果的に再生することができる。 以上説明したごとく、本発明は上昇流再生時に
おいてバランス流体の流入と再生剤の上昇流を単
に一時的に中断する操作を1回ないし複数回行な
うだけで、当該中断時にコレクタの周囲に形成さ
れるブロツキングを効果的に解消せしめることが
でき、かつ弱電解質イオン交換樹脂が飽和型から
再生型になる際に生ずる体積の減少分に相当する
コレクタ下部の空間部に、コレクタ上部の弱電解
質イオン交換樹脂あるいは不活性樹脂をこの中断
時に効果的に落下せしめることができるので、コ
レクタ下部のイオン交換樹脂層を常に満杯状態と
することが可能となり、よつて上昇流再生時にイ
オン交換樹脂層を流動化させることなく効果的に
再生することができる。さらに本発明においては
イオン交換樹脂層に対して再生廃液が逆方向に流
れることがないので、再生型のイオン交換樹脂を
再生廃液で汚染したり、再生剤が無駄に使用され
ることによる再生効率の低下がまつたくない。 以下に本発明の実施例を説明する。 実施例 第1図に示したようにカチオン塔として下層を
強酸性陽イオン交換樹脂、上層を弱酸性陽イオン
交換樹脂とした複層床を形成し、またアニオン塔
として下層を強塩基性陰イオン交換樹脂、上層を
弱塩基性陰イオン交換樹脂とした複層床を形成
し、本発明方法と従来方法に関して下記の装置、
使用樹脂、再生剤、通水および再生の条件下でカ
チオン塔、脱炭酸塔、アニオン塔の順に第1表に
示した組成の原水を通水して純水を製造した。 1 装 置 カチオン塔;高さ2500mm、内径340mm アニオン塔;高さ2500mm、内径480mm 脱炭酸塔;脱炭酸部 高さ2500mm、内径480mm 下部貯槽 高さ1450mm、内径1450mm ( ( ( ( (脱炭酸部にラシヒリングを充填し、 脱炭酸部の下部からブロワを用いて 100Nm3/Hの空気を流入した。) ) ) ) ) 2 使用樹脂 カチオン塔;弱酸性陽イオン交換樹脂アンバ
ーライト(登録商標、以下同
様)IRC―84 50 強酸性陽イオン交換樹脂アンバ
ーライトIR―124 60 アニオン塔;弱塩基性陰イオン交換樹脂アン
バーライトIRA―94 100 強塩基性陰イオン交換樹脂アン
バーライトIRA―410 50 3 再生剤使用量 カチオン塔;35%HCl 10/サイクル アニオン塔;25%NaOH 15/サイクル 4 通水条件 通水流量 3m3/H 5 再生条件 5―1 本発明方法 (1) カチオン塔 通水終了後、LV8m/Hで15分間逆洗を
行ない、沈整後、LV30m/Hで2分間圧縮
工程を行ない、その後8%に希釈した塩酸
水溶液をLV2m/Hで上昇流で流入すると
共に樹脂層を押さえるためバランス流体と
して圧力0.2Kg/cm2の空気を0.3Nm3/m2/mi
n.の流速で流入した。通薬を開始してか
ら15分後、20分後、終了時の計3回、約2
分間バランス流体と上昇流の通薬を停止
し、コレクタ上部の弱電解質イオン交換樹
脂を自重で落下させた。その後全樹脂量と
同容量の純水を用いて押し出しを行ない、
次いで原水で洗浄を行なつた。なお、バラ
ンス流体として純水を用いたものも行なつ
たが、この場合はLV2m/Hで流入し、他
は全く同じ条件とした。 (2) アニオン塔 通水終了後、LV6m/Hで15分間逆洗を
行ない、沈整後、LV20m/Hで1分間圧縮
工程を行ない、その後前述した再生剤の半
量を2%のか性ソーダ溶液に希釈し、のこ
りの半量を4%のか性ソーダ溶液に希釈
し、2%および4%の順にLV6m/Hで上
昇流で流入すると共に、樹脂層を押さえる
ためにバランス流体として圧力0.2Kg/cm2
空気を0.3Nm3/m2/min.の流速で流入した。
通薬を開始してから15分後、20分後、終了
時の計3回、約2分間バランス流体と上昇
流の通薬を停止し、コレクタ上部の弱電解
質イオン交換樹脂を自重で落下させた。な
おか性ソーダの通薬にあたつてはか性ソー
ダ溶液を40℃に加温した。その後全樹脂量
と同容量の純水を用いて押し出しを行な
い、次いでカチオン塔の処理水で洗浄を行
なつた。なおバランス流体として純水を用
いたものも行なつたが、この場合はLV2
m/Hで流入し、他は全く同じ条件とした。 5―2 従来方法 (1) カチオン塔 通薬時にバランス流体の流入および再生
剤の流入をまつたく中断しない以外は、本
発明方法と同じ条件で再生した。 (2) アニオン塔 通薬時にバランス流体の流入および再生剤
の流入をまつたく中断しない以外は、本発明
方法と同じ条件で再生した。
The present invention forms a multilayer bed in which a weak electrolyte ion exchange resin is filled in the upper layer and a strong electrolyte ion exchange resin is packed in the lower layer in an ion exchange tower, and performs ion exchange treatment (hereinafter referred to as water flow) in a downward flow. , acid in the upflow,
The present invention relates to a method of regenerating the multilayer bed using a regenerating agent such as an alkali. Conventionally, among the operating methods of ion exchange equipment, there are two methods: downward flowing water, downward flow regeneration method (hereinafter referred to as downflow regeneration method), and downward flow water, upward flow regeneration method (hereinafter referred to as upflow regeneration method). Both methods are the most common, but when comparing these two methods, when regenerating using the same regenerant, the upflow regeneration method generally yields higher purity treated water than the downflow regeneration method. can. In other words, the amount of regenerating agent required to obtain treated water of a predetermined purity may be smaller in the upflow regeneration method than in the downflow regeneration method. Upflow regeneration has been increasingly adopted in recent years because of its benefits compared to downflow regeneration. Note that in the upward flow regeneration method, the regenerant flows upward from the bottom of the ion exchange tower, so a means is required to prevent the ion exchange resin layer from being pushed up and fluidized by the upward flow of the regenerant. As one example, a collector for discharging regenerated waste liquid is installed slightly below the top surface of the ion exchange resin layer, and when the regenerating agent and extruded water are introduced in an upward flow from the bottom of the ion exchange column, air, water, etc. are removed from the top of the column. A method is used in which a fluid is caused to flow in and discharged together with the recycled waste liquid from a collector for discharging the recycled waste liquid, and the resin layer is held and regenerated by the inflow pressure of the fluid. That is, the objective is achieved by holding the ion exchange resin layer with the pressure loss that occurs when the fluid passes downward through the ion exchange resin layer located above the buried collector. Traditionally, only strong electrolyte ion exchange resins were used in such upflow regeneration methods, but recently, in order to further reduce the amount of regenerant used, weak electrolyte ion exchange resins with excellent regeneration efficiency have been used. Concomitant use is being considered. In other words, it is a multi-layer bed in which the upper layer is made of a weak electrolyte ion exchange resin and the lower layer is made of a strong electrolyte ion exchange resin.More specifically, in the cation tower, the upper layer is made of a weakly acidic cation exchange resin and the lower layer is made of a strongly acidic cation exchange resin. In the anion tower, the upper layer is a weakly basic anion exchange resin, and the lower layer is a strongly basic anion exchange resin. Weak electrolyte ion exchange resins generally have a lower density than their strong electrolyte ion exchange counterparts;
Therefore, such a multilayer bed can be easily achieved by methods such as backwashing. If the ion exchange resin layer is a multilayer bed of weak electrolyte ion exchange resin and strong electrolyte ion exchange resin, the weak electrolyte ion exchange resin can be efficiently regenerated with the recycled waste liquid of the strong electrolyte ion exchange resin. It goes without saying that the amount of regenerant used can be further reduced than in a single bed using only exchanged resin. However, when the multilayer bed is regenerated by upward flow using the method described above, the following problems occur. In other words, when performing upflow regeneration using the method described above, the fluid flowing from the top of the ion exchange tower and the recycled waste liquid rising from the bottom of the ion exchange tower are simultaneously fed into the collector installed above the ion exchange resin layer. Because of the inflow, the ion exchange resin around the collector is pressed against the collector, and an adhesion layer (hereinafter referred to as blocking) of the ion exchange resin is formed around the collector. On the other hand, if the entire ion exchange resin is a strong electrolyte ion exchange resin, the volume of the ion exchange resin will swell slightly when it changes from a saturated type (salt type) to a regenerated type (H type for cation exchange resins and OH type for anion exchange resins). Furthermore, even if some shrinkage of the ion exchange resin occurs when the ion exchange resin comes into contact with a strong electrolyte solution such as a regenerant, this shrinkage is slight, and therefore, as mentioned above, Even if blocking occurs, playback can be performed without much problem. However, when the ion exchange resin is a weak electrolyte ion exchange resin, the situation is completely different. In other words, when a weak electrolyte ion exchange resin changes from a saturated type to a regenerated type, its volume decreases significantly (approximately 50% in the case of a weakly acidic cation exchange resin and approximately 20% in the case of a weakly basic anion exchange resin). In order to account for this volume reduction, it is necessary to fill the upper part of the collector with extra weak electrolyte ion exchange resin and start upflow regeneration. Blocking of the electrolyte ion exchange resin is formed, and this blocking prevents the weak electrolyte ion exchange resin filled in the upper part of the collector from falling to the lower part. Therefore, a space is formed in the ion exchange resin layer at the bottom of the collector by the volume reduction of the weak electrolyte ion exchange resin, and even if fluid flows in from the top of the ion exchange column, ion exchange will not be possible during regeneration. The resin layer becomes fluidized. When the ion exchange resin layer is fluidized in this manner, the regenerant flows in one direction, and the ion exchange resin cannot be regenerated satisfactorily. In particular, in multilayer beds, the amount of regenerant used is minimized, so this fluidization directly leads to a decrease in the purity of the treated water and a decrease in yield, which has a large effect. Therefore, unless the above-mentioned blocking of the ion exchange resin around the collector is removed, the upflow regeneration of the multilayer bed will not be able to achieve its purpose. If the ion exchange resin layer becomes fluidized during regeneration,
The inflow of regenerant from the bottom of the ion exchange tower is interrupted, water, etc. is allowed to flow in from the top of the ion exchange tower, and the liquid inside the ion exchange tower is discharged from the bottom of the ion exchange tower to forcibly close the ion exchange tower. If a downward flow is formed inside, the entire ion exchange resin layer becomes a piston flow, so that the weak electrolyte ion exchange resin in the upper part of the collector can fall to the lower part of the collector. However, when this operation is performed, the regenerated waste liquid in the upper part of the ion exchange resin layer, which contains a large amount of salts desorbed during regeneration, comes into contact with the ion exchange resin layer in the lower part that has been regenerated. This is not a preferable method because the resin is contaminated and the effective regenerant present at the bottom of the ion exchange column immediately after entering the column is wasted by being discharged outside the column, both of which reduce the regeneration efficiency. In regenerating the ion exchange resin layer of a multi-layer bed with an upward flow, the present invention eliminates the above-mentioned blocking phenomenon without applying a downward flow to the ion exchange resin layer, and without reducing the regeneration efficiency. The purpose is to allow the weak electrolyte ion exchange resin to fall to the lower part of the collector, thereby effectively regenerating the ion exchange resin layer without fluidizing it. That is, the present invention forms a multilayer bed in which a weak electrolyte ion exchange resin is filled in the upper layer and a strong electrolyte ion exchange resin is packed in the lower layer in an ion exchange tower, and the weak electrolyte ion exchange resin is filled in the upper layer or the weak electrolyte ion exchange A collector is installed inside the inert resin layer filled in the upper layer of the resin, and fluids such as air and water are introduced from the upper part of the ion exchange tower, and at the same time, a regenerating agent is introduced from the lower part of the ion exchange tower. When the ion exchange resin is regenerated in an upward flow while the ion exchange resin layer is held under pressure by flowing out the recycled waste liquid from the collector, the inflow of the fluid and the inflow of the regenerating agent are substantially temporarily interrupted at the same time during the regeneration. The present invention relates to an upflow regeneration method for ion exchange resin in a multi-layered bed, characterized in that the above operation is carried out one or more times. The present invention will be explained in detail below based on the drawings. FIG. 1 is an explanatory diagram showing the flow of a multilayer bed which is an example of an embodiment of the present invention, in which a strong electrolyte ion exchange resin 2 is placed in the lower layer and a weak electrolyte ion exchange resin 3 is placed in the upper layer in the ion exchange column 1. Fill. A collector 4 for discharging recycled waste liquid is installed in the upper layer of the weak electrolyte ion exchange resin 3, and a recycled waste liquid outflow pipe 5 is connected to the collector 4.
Connect. The collector 4 is made of a stainless steel tube with many holes in a radial or rib shape, and its outer circumferential surface is wrapped with a mesh such as saran cloth, and is installed horizontally in the upper layer of the weak electrolyte ion exchange resin 3. However, in addition, a rod-shaped body having a discharge port consisting of a large number of slits or the like is opened at one end of a stainless steel pipe, etc., and the discharge port of this rod-shaped body is located in the upper layer of the weak electrolyte ion exchange resin 3. A vertical collector may be used, in which a large number of collectors are vertically inserted from above the weak electrolyte ion exchange resin layer. A water distribution distributor 6 is attached to the upper part of the ion exchange tower 1, a water distribution pipe 7 is connected to the water distribution distributor 6, and a backwash drain pipe 8 is branched and connected to the water distribution pipe 7. On the other hand, ion exchange tower 1
A support bed 9 of ion exchange resin made of silica stone or silica stone hardened with adhesive is formed at the bottom of the support bed 9, and a regeneration distributor 10 is installed inside the support bed 9. The agent inflow pipe 11 is connected. In addition, a treated water outflow pipe 12 is connected to the lower part of the ion exchange tower 1, and the treated water outflow pipe 1
2, a backwash water inflow pipe 13 and a washing drain pipe 14 are branched and connected. Furthermore, a fluid inflow pipe 15 for air, water, etc. used during upward flow regeneration is connected to the upper part of the ion exchange tower. Further, 16 to 23 are valves. In addition, when the ion exchange tower 1 is a cation tower,
If the strong electrolyte ion exchange resin 2 is a strongly acidic cation exchange resin, the weak electrolyte ion exchange resin 3 is a weakly acidic cation exchange resin, and the ion exchange tower 1 is an anion tower, the strong electrolyte ion exchange resin 2 is a strong acid cation exchange resin. Basic anion exchange resin, weak electrolyte It goes without saying that the ion exchange resin 3 is a weak basic anion exchange resin. When passing water in this ion exchange tower, valve 1
6 and 23 are opened, raw water flows in from the water distribution pipe 7, and treated water flows out from the treated water outflow pipe 12. By this water flow, if the ion exchange tower 1 is a cation tower, calcium ions and magnesium ions corresponding to hydrogen carbonate ions in the raw water are removed by the weak electrolyte ion exchange resin 3, and residual ions such as sodium ions are strengthened. Remove with electrolyte ion exchange resin 2. In addition, when the ion exchange tower 1 is an anion tower, mineral acid ions such as chlorine ions and sulfate ions in the raw water are removed by the weak electrolyte ion exchange resin 3,
Weak acid ions such as carbonate ions and silica are removed using a strong electrolyte ion exchange resin 2. In the case of an anion tower, raw water refers to acidic soft water treated in a cation tower. When water is passed in this manner, the ion exchange resin loses its ion exchange ability, so a regeneration step described below is performed. First, a backwashing process is performed to remove suspended matter that has entered the water and loosen the ion exchange resin layer. That is, the valve 22 and the valve 17 are opened, and the backwash water inflow pipe 1 is opened.
Backwash water flows in from 3, and backwash wastewater flows into backwash drain pipe 8.
Drain from. As the backwash water used, raw water is used in the case of a cation tower, and acidic soft water is used in the case of an anion tower. After this backwashing process is completed,
Valve 17 and valve 22 are closed, valve 16 and valve 21 are opened, and a compression process is performed in which raw water flows in at a high flow rate from water pipe 7 in a short time. The compression process is carried out to make the ion exchange resin layer as compact as possible before drug delivery, and usually LV10m/H.
For more than 1 minute, preferably about 2 at LV20-30m/H
Do this for minutes. Next, the valves 16 and 21 are closed, and the valves 20, 19, and 18 are opened, and the regenerant, that is, a hydrochloric acid aqueous solution in the case of a cation column, and a caustic soda aqueous solution in the case of an anion column, is injected from the regenerant inflow pipe 11. , a regeneration process in which air or water (hereinafter referred to as balance fluid) flows in from the fluid inflow pipe 15, and the regenerated waste liquid and the balance fluid that flowed in from the fluid inflow pipe 15 flow out from the regenerated waste liquid outflow pipe 5 via the collector 4. Do the following. If raw water is used as the balance fluid, it may flow in from the water pipe 7, or if pure water is used, a pure water pipe (not shown) is branched and communicated with the water pipe 7. Pure water may also be introduced. As mentioned above, in this process, in order to prevent the ion exchange resin layer from fluidizing due to the upward flow of the regenerant, the ion exchange resin layer is regenerated by the upward flow while flowing the balance fluid from the top of the ion exchange column. However, when the ion exchange resin layer is entirely made of the strong electrolyte ion exchange resin 2, the ion exchange resin layer is not fluidized much in this step as described above, and can be regenerated without problems. However, in the case of a multilayer bed of a weak electrolyte ion exchange resin 3 and a strong electrolyte ion exchange resin 2 as shown in FIG. 1, if regeneration is continued as is, the following problems will occur as described above. That is, since the collector 4 collects the recycled waste liquid from the lower part and the balance fluid from the upper part, a blocking layer B of ion exchange resin is formed around the collector 4 as shown in FIG. Furthermore, as mentioned above, the volume of the weak electrolyte ion exchange resin 3 decreases significantly when changing from the saturated type to the regenerated type, but the
becomes an obstacle, and the weak electrolyte ion exchange resin 3' on the upper part of the collector 4 does not fall to the lower part of the collector 4.
Therefore, the collector 4
A space is created in the lower part, and the strong electrolyte ion exchange resin 2 and the weak electrolyte ion exchange resin 3 become fluidized. Therefore, in the present invention, before this fluidization occurs, valve 20 and valve 18 are simultaneously closed to temporarily interrupt the inflow of balance fluid from fluid inflow pipe 15 and the inflow of regenerant from regenerant inflow pipe 11. When the flow of the balance fluid and the regenerant is interrupted in this manner, the balance fluid and the regenerant no longer flow into the collector 4, and as a result, the blocking layer B disappears. By eliminating the blocking layer B in this way, the weak electrolyte ion exchange resin at the upper part of the collector 4 can be caused to fall to the lower part of the collector 4 by its own weight. After the above-mentioned dropping is completed, the valves 20 and 18 are opened again, and the above-mentioned regeneration process is continued. In the present invention, the interruption must be performed at least once during playback,
Preferably, this is done three times or more. The interruption time is the time required for the blocking layer B to be released and for the weak electrolyte ion exchange resin 3' on the upper part of the collector 4 to fall to the lower part of the collector 4 due to its own weight, and should be at least 30 seconds, preferably 1. A good time is between 1 and 2 minutes. Note that an interruption of two minutes is sufficient to achieve the purpose, and further interruptions are not necessary since they extend the playback time. In the present invention, in order to release the blocking layer B and cause the weak electrolyte ion exchange resin 3' on the upper part of the collector 4 to fall, it is most preferable to completely stop the inflow of the balance fluid and the regenerant at the same time. The purpose can be achieved to some extent by simultaneously significantly reducing the flow rate of the fluid, and therefore this is also included within the scope of the present invention as a substantially temporary interruption operation. As described above, if the operation of temporarily interrupting the inflow of the balance fluid and regenerant is performed multiple times during upflow regeneration, the blocking layer B is released each time, and the weak electrolyte ion exchange resin on the upper part of the collector 4 becomes the collector. Since the weak electrolyte ion exchange resin 3 falls to the bottom of the collector 4, even if the volume decreases due to the weak electrolyte ion exchange resin 3 becoming regenerated, no space is formed in the ion exchange resin layer below the collector 4, and the balance fluid is The pressing effect can be sufficiently exerted, and the ion exchange resin layer will not be fluidized during upward flow regeneration. When the prescribed amount of regenerant has finished flowing from the regenerant inflow pipe 11, an extrusion step is then performed. In the extrusion process, the regenerant remaining in the ion-exchange resin layer is extruded at approximately the same flow rate as the drug is passed through the regenerant inlet pipe 1.
Pure water flows in from 1. Also during this extrusion step, a balance fluid flows in from the fluid inflow pipe 15, and pure water flows in an upward flow while pressing the ion exchange resin layer. During this extrusion process, if necessary, it is possible to temporarily interrupt the inflow of the balance fluid and the inflow of pure water. After such an extrusion process is completed, the valve 18,1
9 and 20 are closed, valves 16 and 21 are opened, and raw water is introduced from the water pipe 7 in a conventional manner to wash the ion exchange resin layer. Note that when air is used as the balance fluid, the space above the collector 4 is filled with water before the cleaning described above, and then the cleaning is performed. After completing the prescribed cleaning, the ion exchange tower 1 is again subjected to water flow. Next, the balance fluid in the regeneration method of the present invention will be described. As mentioned above, the balance fluid flows in to prevent the ion exchange resin layer from fluidizing due to the upward flow of the regenerant or extruded water.
Usually, air or water is used, but when water is used, pure water is preferred. This is because when comparing the saturated type and regenerated type of weak electrolyte ion exchange resin in terms of ionic density, the regenerated type is lighter.Therefore, if backwashing is performed at the end of water flow, residual The regenerated weak electrolyte ion exchange resin collected in the upper layer can form a packed layer rich in the regenerated weak electrolyte ion exchange resin above the collector 4 even before regeneration. Therefore, by using pure water as the balance water, it becomes possible to effectively utilize the regenerated weak electrolyte ion exchange resin above the collector 4 during water passage. In conventional upflow regeneration, the ion exchange resin at the top of the collector does not come into contact with the regenerant, making it ineffective for ion exchange.In some cases, the regenerant is used as a balance fluid, and the ion exchange resin at the top of the collector However, in a multilayer bed of weak electrolyte ion exchange resin and strong electrolyte ion exchange resin, simply backwashing can form a packed bed rich in regenerated types at the top of the collector for the reasons mentioned above. Therefore, by maintaining the filled bed as it is during regeneration, it becomes possible to count this filled bed as an effective resin even without regenerating it. Note that even when air is used as the balance fluid, it is effective for maintaining the packed bed as it is during regeneration, and it is better to use air as the balance fluid in terms of reducing the amount of regeneration waste liquid. In addition, from the standpoint of maximizing the use of the ion exchange resin packed in the ion exchange column, the upper part of the multilayer bed consisting of the weak electrolyte ion exchange resin 3 and the strong electrolyte ion exchange resin 2 is ,
Inert resin 2 lighter than weak electrolyte ion exchange resin 3
In some cases, an ion exchange tower 1 filled with 4 and a collector 4 inside the layer of the inert resin 24 is used. The inert resin causes blocking around the collector 4, and the inert resin 24 on the upper part of the collector does not fall, so that the ion exchange resin layer similarly flows. Therefore, by carrying out the present invention in the ion exchange column as well, fluidization of the ion exchange resin can be prevented and effective regeneration can be achieved. As explained above, in the present invention, during upward flow regeneration, the inflow of balance fluid and the upward flow of regenerant are simply temporarily interrupted once or multiple times, and at the time of the interruption, the The weak electrolyte ion exchange resin at the upper part of the collector can be used to effectively eliminate blocking caused by the weak electrolyte ion exchange resin in the lower part of the collector. Since the resin or inert resin can be effectively allowed to fall during this interruption, it is possible to keep the ion exchange resin layer at the bottom of the collector always full, thus fluidizing the ion exchange resin layer during upflow regeneration. It can be played effectively without causing any damage. Furthermore, in the present invention, since the recycled waste liquid does not flow in the opposite direction to the ion exchange resin layer, the regenerated ion exchange resin is not contaminated with the recycled waste liquid, and the regenerating agent is wasted. I can't wait for the decline to continue. Examples of the present invention will be described below. Example As shown in Fig. 1, a multilayer bed was formed as a cation tower, with the lower layer containing strongly acidic cation exchange resin and the upper layer containing weakly acidic cation exchange resin, and as an anion tower, the lower layer was composed of strongly basic anion exchange resin. A multilayer bed was formed using an exchange resin and a weakly basic anion exchange resin as the upper layer.
Pure water was produced by passing raw water having the composition shown in Table 1 through the cation tower, decarboxylation tower, and anion tower in this order under the conditions of the resin used, the regenerant, water flow, and regeneration. 1 Equipment Cation tower: Height 2500mm, inner diameter 340mm Anion tower: Height 2500mm, inner diameter 480mm Decarboxylation tower: Decarboxylation section Height 2500mm, inner diameter 480mm Lower storage tank Height 1450mm, inner diameter 1450mm ( ( ( (Decarboxylation section was filled with Raschig rings, and 100Nm 3 /H of air was flowed in from the bottom of the decarboxylation section using a blower. ) ) ) ) ) 2 Resin used Cation column: Weakly acidic cation exchange resin Amberlite (registered trademark, hereinafter referred to as Similar) IRC-84 50 Strongly acidic cation exchange resin Amberlite IR-124 60 Anion tower; Weakly basic anion exchange resin Amberlite IRA-94 100 Strongly basic anion exchange resin Amberlite IRA-410 50 3 Regenerating agent Amount used Cation tower; 35% HCl 10/cycle Anion tower; 25% NaOH 15/cycle 4 Water flow conditions Water flow rate 3 m 3 /H 5 Regeneration conditions 5-1 Method of the present invention (1) Cation tower After water flow is completed, Backwashing was performed at LV8m/H for 15 minutes, and after settling, a compression process was performed at LV30m/H for 2 minutes, and then an aqueous hydrochloric acid solution diluted to 8% was flowed upward at LV2m/H to suppress the resin layer. Air with a pressure of 0.2Kg/cm 2 as a balance fluid at 0.3Nm 3 /m 2 /mi
n. It flowed in at a flow rate of . Approximately 2 times, 15 minutes after starting the medication, 20 minutes later, and at the end of the medication.
The flow of balance fluid and upward flow was stopped for a minute, and the weak electrolyte ion exchange resin at the top of the collector was allowed to fall under its own weight. After that, extrusion is performed using pure water of the same volume as the total amount of resin,
Next, washing was performed with raw water. In addition, we also conducted an experiment using pure water as the balance fluid, but in this case, the flow was carried out at LV2m/H, and the other conditions were exactly the same. (2) Anion tower After water flow, perform backwashing at LV6m/H for 15 minutes, settle, perform compression process at LV20m/H for 1 minute, and then add half of the above-mentioned regenerant to 2% caustic soda solution. Half of the remaining residue is diluted with 4% caustic soda solution, and 2% and 4% are introduced in the order of LV6m/H in an upward flow, and a pressure of 0.2Kg/cm is applied as a balance fluid to suppress the resin layer. 2 of air was introduced at a flow rate of 0.3 Nm 3 /m 2 /min.
After 15 minutes, 20 minutes, and the end of the drug flow, the balance fluid and upward flow were stopped for about 2 minutes, and the weak electrolyte ion exchange resin at the top of the collector was allowed to fall under its own weight. Ta. Furthermore, when administering caustic soda, the caustic soda solution was heated to 40°C. Thereafter, extrusion was performed using pure water of the same volume as the total amount of resin, and then washing was performed with treated water from the cation tower. We also conducted experiments using pure water as the balance fluid, but in this case LV2
The flow rate was m/H, and the other conditions were exactly the same. 5-2 Conventional method (1) Cation tower Regeneration was carried out under the same conditions as in the method of the present invention, except that the inflow of balance fluid and inflow of regenerant were not immediately interrupted during drug passage. (2) Anion tower Regeneration was performed under the same conditions as in the method of the present invention, except that the inflow of balance fluid and inflow of regenerant were not interrupted immediately during drug passage.

【表】 6 通水結果 以上の条件で通水と再生を10サイクル繰り返
し、3サイクル以降の平均値を第2表に示し
た。
[Table] 6 Water flow results Water flow and regeneration were repeated 10 cycles under the above conditions, and the average values after the 3rd cycle are shown in Table 2.

【表】 なお純水の採取は処理水の純度が5μS/cm
(25℃)の点を終点とした。また表中、Aはバ
ランス流体として空気を用いた場合、Bはバラ
ンス流体として純水を用いた場合を示す。
[Table] When collecting pure water, the purity of the treated water is 5 μS/cm.
(25°C) was defined as the end point. In the table, A indicates the case where air is used as the balance fluid, and B indicates the case where pure water is used as the balance fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様の一例を示すフロー
の説明図であり、第2図は上昇流再生時にコレク
タ周囲に形成されるブロツキング現象を示した概
略説明図、第3図は本発明の他の実施態様を示す
概略説明図である。 1……イオン交換塔、2……強電解質イオン交
換樹脂、3……弱電解質イオン交換樹脂、4……
コレクタ、5……再生廃液流出管、6……配水用
デイストリビユータ、7……配水管、8……逆洗
排水管、9……支持床、10……再生用デイスト
リビユータ、11……再生剤流入管、12……処
理水流出管、13……逆洗水流入管、14……洗
浄排水管、15……流体流入管、16〜23……
弁、24……不活性樹脂。
Fig. 1 is a flow explanatory diagram showing an example of an embodiment of the present invention, Fig. 2 is a schematic explanatory diagram showing a blocking phenomenon formed around a collector during upflow regeneration, and Fig. 3 is a flow explanatory diagram showing an example of an embodiment of the present invention. FIG. 7 is a schematic explanatory diagram showing another embodiment. 1... Ion exchange tower, 2... Strong electrolyte ion exchange resin, 3... Weak electrolyte ion exchange resin, 4...
Collector, 5... Regeneration waste liquid outflow pipe, 6... Water distribution distributor, 7... Water distribution pipe, 8... Backwash drain pipe, 9... Support floor, 10... Regeneration distributor, 11... ... Regenerant inflow pipe, 12 ... Treated water outflow pipe, 13 ... Backwash water inflow pipe, 14 ... Washing drain pipe, 15 ... Fluid inflow pipe, 16 to 23 ...
Valve, 24...Inert resin.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換塔内に弱電解質イオン交換樹脂を
上層に、強電解質イオン交換樹脂を下層に充填し
た複層床を形成し、弱電解質イオン交換樹脂の上
層部内、あるいは弱電解質イオン交換樹脂のさら
に上層に充填した不活性樹脂層内にコレクタを内
設し、イオン交換塔の上部より空気、水などの流
体を流入すると同時にイオン交換塔の下部より再
生剤を流入し、当該流体と再生廃液を前記コレク
タから流出することにより、イオン交換樹脂層を
押圧保持しながらイオン交換樹脂を上昇流で再生
するにあたり、当該再生中に流体の流入と再生剤
の流入を同時に実質的に一時中断する操作を1回
ないし複数回行なうことを特徴とする複層床にし
たイオン交換樹脂の上昇流再生方法。
1. Form a multi-layer bed in the ion exchange tower, filling the upper layer with a weak electrolyte ion exchange resin and the lower layer with a strong electrolyte ion exchange resin, and place the ion exchange resin in the upper layer of the weak electrolyte ion exchange resin or in the layer further above the weak electrolyte ion exchange resin. A collector is installed inside the inert resin layer filled in the ion exchange tower, and fluids such as air and water are introduced from the upper part of the ion exchange tower, and at the same time, a regenerating agent is introduced from the lower part of the ion exchange tower. When regenerating the ion exchange resin in an upward flow while pressing and holding the ion exchange resin layer by flowing out from the collector, an operation of substantially temporarily interrupting the inflow of the fluid and the inflow of the regenerating agent at the same time during the regeneration is performed. A method for upflow regeneration of ion exchange resin in a multi-layered bed, characterized in that the process is carried out once or multiple times.
JP16759779A 1979-12-25 1979-12-25 Ascending flow regenerating method of ion exchange resins which are formed into double layer beds Granted JPS5689847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16759779A JPS5689847A (en) 1979-12-25 1979-12-25 Ascending flow regenerating method of ion exchange resins which are formed into double layer beds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16759779A JPS5689847A (en) 1979-12-25 1979-12-25 Ascending flow regenerating method of ion exchange resins which are formed into double layer beds

Publications (2)

Publication Number Publication Date
JPS5689847A JPS5689847A (en) 1981-07-21
JPS6340137B2 true JPS6340137B2 (en) 1988-08-09

Family

ID=15852709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16759779A Granted JPS5689847A (en) 1979-12-25 1979-12-25 Ascending flow regenerating method of ion exchange resins which are formed into double layer beds

Country Status (1)

Country Link
JP (1) JPS5689847A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020060B2 (en) * 1981-09-28 1985-05-20 日本錬水株式会社 How to regenerate a multilayer ion exchange tower
JPH0722713B2 (en) * 1986-10-13 1995-03-15 日本錬水株式会社 Countercurrent regeneration ion exchange tower regeneration method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889171A (en) * 1972-02-29 1973-11-21
JPS53114781A (en) * 1977-03-18 1978-10-06 Japan Organo Co Ltd Ion exchanger apparatus of up-flow regeneration type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889171A (en) * 1972-02-29 1973-11-21
JPS53114781A (en) * 1977-03-18 1978-10-06 Japan Organo Co Ltd Ion exchanger apparatus of up-flow regeneration type

Also Published As

Publication number Publication date
JPS5689847A (en) 1981-07-21

Similar Documents

Publication Publication Date Title
JP3145240B2 (en) Continuous ion exchange equipment
JPS6340137B2 (en)
JP4883680B2 (en) Ion exchange tower
JP5075159B2 (en) Separation tower for mixed ion exchange resin
JP3162614B2 (en) Regeneration method of high flow backwash type ion exchange column
JP3922824B2 (en) High purity water production equipment
JPH05212300A (en) Method for regenerating ion-exchange resin
JPS6132055B2 (en)
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP2940651B2 (en) Pure water production equipment
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
JP3162616B2 (en) Regeneration method of countercurrent ion exchange column
JP3212463B2 (en) Multi-layer ion exchange equipment
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPS6133625B2 (en)
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JP2006007027A (en) Ion exchange apparatus
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JP2654053B2 (en) Condensate desalination equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP2003088765A (en) Countercurrent regeneration type ion exchange apparatus and method for cleaning packed layer of ion exchange resin in the apparatus
JP2578853B2 (en) Upflow regeneration method for ion exchange tower
JPH0768254A (en) Pure water producing apparatus and its regeneration
JPH11276911A (en) Rising flow regeneration of double-layered bed anion exchange resin
JP3677591B2 (en) Ion exchange method